1
|
Yang J, Jiang M, Jia S, Liao M, Cao H, Zhao N. Expression Pattern of Entire Cytochrome P450 Genes and Response of Defenses in a Metabolic-Herbicide-Resistant Biotype of Polypogon fugax. FRONTIERS IN PLANT SCIENCE 2022; 13:868807. [PMID: 35401603 PMCID: PMC8990753 DOI: 10.3389/fpls.2022.868807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Enhanced herbicide metabolism mediated by cytochrome P450s has been proposed as one of the major mechanisms of resistance to fenoxaprop-P-ethyl in a metabolic-herbicide-resistant biotype of Asia minor bluegrass (Polypogon fugax Nees ex Steud.). Upon pre-treatment with the P450 inhibitor piperonyl butoxide, a remarkable reduction in metabolic rates of the phytotoxic fenoxaprop-P has been observed in the resistant plants, implying that constitutive and/or fenoxaprop-P-ethyl-induced up-regulation of specific P450 isoforms are involved in the fenoxaprop-P-ethyl resistance. However, which P450 gene(s) were responsible for the metabolic resistance is still unknown. In this present study, based on the abundant gene resources of P. fugax established previously, a total of 48 putative P450 genes were isolated from the metabolic-herbicide-resistant plants and used for gene expression analysis. The most suitable reference genes for accurate normalization of real-time quantitative PCR data were first identified in P. fugax and recognized as actin (ACT), 18S rRNA (18S), and ribulose-1,5-bisphosphate carboxylase oxygenase (RUBP) under fenoxaprop-P-ethyl stress, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and elongation factor 1α (EF1α) under mesosulfuron-methyl stress, and ACT, EF1α, eukaryotic initiation factor 4a (EIF4A), and 25S rRNA (25S) at different growth stages. Expression analysis of the putative P450 genes revealed that six genes, respectively, annotated as CYP709B1, CYP71A1-4, CYP711A1, CYP78A9, P450-11, and P450-39 were up-regulated more than 10-fold in the resistant plants by fenoxaprop-P-ethyl treatment, and all of them exhibited constitutively and/or herbicide-induced higher transcript levels in the fenoxaprop-P-ethyl-resistant than in the susceptible plants. Three genes, respectively, annotated as CYPRO4, CYP313A4, and CYP51H11 constantly up-regulated in the resistant than in the susceptible plants after fenoxaprop-P-ethyl treatment. Up-regulated expressions of these specific P450 genes were consistent with the higher P450 contents determined in the resistant plants. These results will help to elucidate the mechanisms for P450-mediated metabolic-herbicide resistance in P. fugax as well as other grass weed species.
Collapse
Affiliation(s)
- Jiajia Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Minghao Jiang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Siwei Jia
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Min Liao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Haiqun Cao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ning Zhao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Selection and Validation of Reference Genes for RT-qPCR Analysis in Spinacia oleracea under Abiotic Stress. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4853632. [PMID: 33623781 PMCID: PMC7875621 DOI: 10.1155/2021/4853632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/16/2021] [Indexed: 11/17/2022]
Abstract
Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is an accurate and convenient method for mRNA quantification. Selection of optimal reference gene(s) is an important step in RT-qPCR experiments. However, the stability of housekeeping genes in spinach (Spinacia oleracea) under various abiotic stresses is unclear. Evaluating the stability of candidate genes and determining the optimal gene(s) for normalization of gene expression in spinach are necessary to investigate the gene expression patterns during development and stress response. In this study, ten housekeeping genes, 18S ribosomal RNA (18S rRNA), actin, ADP ribosylation factor (ARF), cytochrome c oxidase subunit 5C (COX), cyclophilin (CYP), elongation factor 1-alpha (EF1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H3 (H3), 50S ribosomal protein L2 (RPL2), and tubulin alpha chain (TUBα) from spinach, were selected as candidates in roots, stems, leaves, flowers, and seedlings in response to high temperature, CdCl2, NaCl, NaHCO3, and Na2CO3 stresses. The expression of these genes was quantified by RT-qPCR and evaluated by NormFinder, BestKeeper, and geNorm. 18S rRNA, actin, ARF, COX, CYP, EF1α, GAPDH, H3, and RPL2 were detected as optimal reference genes for gene expression analysis of different organs and stress responses. The results were further confirmed by the expression pattern normalized with different reference genes of two heat-responsive genes. Here, we optimized the detection method of the gene expression pattern in spinach. Our results provide the optimal candidate reference genes which were crucial for RT-qPCR analysis.
Collapse
|
3
|
Zhang Y, Chen L, Song W, Cang T, Xu M, Zhou G, Wu C. Reference genes for the study of herbicide stress responses in Leptochloa chinensis (L.) Nees and estimation of ACCase expression in cyhalofop-butyl resistant populations. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104739. [PMID: 33357561 DOI: 10.1016/j.pestbp.2020.104739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 06/12/2023]
Abstract
Cyhalofop-butyl resistance in Leptochloa chinensis (L.) Nees is a threat to rice production. Qualitative changes to the acetyl-CoA carboxylase gene (ACCase) have been reported to induce cyhalofop-butyl resistance in some weed species, but the role of ACCase in cyhalofop-butyl resistance through quantitative changes remains uncertain. The accurate assessment of transcriptional changes in the functional genes associated with herbicide resistance in L. chinensis is challenging owing to the lack of available reference genes for expression normalization. Here, we selected nine candidate reference genes in L. chinensis and assessed their transcription stability in populations susceptible and resistant to cyhalofop-butyl. Transcription stability was compared under conditions of herbicide stress and control conditions using BestKeeper, NormFinder, and geNorm. Elongation factor 1 alpha, eukaryotic initiation factor 4A, and cap-binding protein CBP20 were the most stable reference genes under cyhalofop-butyl treatment. Transcription levels of ACCase were evaluated in seven resistant populations, one of which showed higher transcription than the susceptible population after 24 h cyhalofop-butyl treatment. However, the slight up-regulation of ACCase (approximately 2.0-fold) is unlikely to be responsible for the high resistance levels in these populations of L. chinensis.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Lab Breeding Base for Zhejiang Sustainable Plant Pest Control, MOA Key Lab for Pesticide Residue Detection, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liping Chen
- State Key Lab Breeding Base for Zhejiang Sustainable Plant Pest Control, MOA Key Lab for Pesticide Residue Detection, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen Song
- State Key Lab Breeding Base for Zhejiang Sustainable Plant Pest Control, MOA Key Lab for Pesticide Residue Detection, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Cang
- State Key Lab Breeding Base for Zhejiang Sustainable Plant Pest Control, MOA Key Lab for Pesticide Residue Detection, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingfei Xu
- State Key Lab Breeding Base for Zhejiang Sustainable Plant Pest Control, MOA Key Lab for Pesticide Residue Detection, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guojun Zhou
- Shaoxing Academy of Agricultural Sciences, Shaoxing 312003, China
| | - Changxing Wu
- State Key Lab Breeding Base for Zhejiang Sustainable Plant Pest Control, MOA Key Lab for Pesticide Residue Detection, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
4
|
Miao L, Qin X, Gao L, Li Q, Li S, He C, Li Y, Yu X. Selection of reference genes for quantitative real-time PCR analysis in cucumber ( Cucumis sativus L.), pumpkin ( Cucurbita moschata Duch .) and cucumber-pumpkin grafted plants. PeerJ 2019; 7:e6536. [PMID: 31024757 PMCID: PMC6475253 DOI: 10.7717/peerj.6536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/29/2019] [Indexed: 11/20/2022] Open
Abstract
Background Quantitative real-time PCR (qRT-PCR) is a commonly used high-throughput technique to measure mRNA transcript levels. The accuracy of this evaluation of gene expression depends on the use of optimal reference genes. Cucumber-pumpkin grafted plants, made by grafting a cucumber scion onto pumpkin rootstock, are superior to either parent plant, as grafting conveys many advantages. However, although many reliable reference genes have been identified in both cucumber and pumpkin, none have been obtained for cucumber-pumpkin grafted plants. Methods In this work, 12 candidate reference genes, including eight traditional genes and four novel genes identified from our transcriptome data, were selected to assess their expression stability. Their expression levels in 25 samples, including three cucumber and three pumpkin samples from different organs, and 19 cucumber-pumpkin grafted samples from different organs, conditions, and varieties, were analyzed by qRT-PCR, and the stability of their expression was assessed by the comparative ΔCt method, geNorm, NormFinder, BestKeeper, and RefFinder. Results The results showed that the most suitable reference gene varied dependent on the organs, conditions, and varieties. CACS and 40SRPS8 were the most stable reference genes for all samples in our research. TIP41 and CACS showed the most stable expression in different cucumber organs, TIP41 and PP2A were the optimal reference genes in pumpkin organs, and CACS and 40SRPS8 were the most stable genes in all grafted cucumber samples. However, the optimal reference gene varied under different conditions. CACS and 40SRPS8 were the best combination of genes in different organs of cucumber-pumpkin grafted plants, TUA and RPL36Aa were the most stable in the graft union under cold stress, LEA26 and ARF showed the most stable expression in the graft union during the healing process, and TIP41 and PP2A were the most stable across different varieties of cucumber-pumpkin grafted plants. The use of LEA26, ARF and LEA26+ARF as reference genes were further verified by analyzing the expression levels of csaCYCD3;1, csaRUL, cmoRUL, and cmoPIN in the graft union at different time points after grafting. Discussion This work is the first report of appropriate reference genes in grafted cucumber plants and provides useful information for the study of gene expression and molecular mechanisms in cucumber-pumpkin grafted plants.
Collapse
Affiliation(s)
- Li Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.,Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xing Qin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Qing Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuzhen Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaoxing He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yansu Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchang Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Busi R, Goggin DE, Heap IM, Horak MJ, Jugulam M, Masters RA, Napier RM, Riar DS, Satchivi NM, Torra J, Westra P, Wright TR. Weed resistance to synthetic auxin herbicides. PEST MANAGEMENT SCIENCE 2018; 74:2265-2276. [PMID: 29235732 PMCID: PMC6175398 DOI: 10.1002/ps.4823] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 05/03/2023]
Abstract
Herbicides classified as synthetic auxins have been most commonly used to control broadleaf weeds in a variety of crops and in non-cropland areas since the first synthetic auxin herbicide (SAH), 2,4-D, was introduced to the market in the mid-1940s. The incidence of weed species resistant to SAHs is relatively low considering their long-term global application with 30 broadleaf, 5 grass, and 1 grass-like weed species confirmed resistant to date. An understanding of the context and mechanisms of SAH resistance evolution can inform management practices to sustain the longevity and utility of this important class of herbicides. A symposium was convened during the 2nd Global Herbicide Resistance Challenge (May 2017; Denver, CO, USA) to provide an overview of the current state of knowledge of SAH resistance mechanisms including case studies of weed species resistant to SAHs and perspectives on mitigating resistance development in SAH-tolerant crops. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Roberto Busi
- Australian Herbicide Resistance Initiative, School of Agriculture and EnvironmentUniversity of Western AustraliaPerthAustralia
| | - Danica E Goggin
- Australian Herbicide Resistance Initiative, School of Agriculture and EnvironmentUniversity of Western AustraliaPerthAustralia
| | - Ian M Heap
- International Survey of Herbicide‐Resistant WeedsCorvallisORUSA
| | | | | | | | | | | | | | - Joel Torra
- Department of Horticulture, Botany and GardeningUniversity of LleidaLleidaSpain
| | - Phillip Westra
- Department of Bioagricultural Sciences and Pest ManagementColorado State UniversityFort CollinsCOUSA
| | | |
Collapse
|