1
|
Cheng L, Wang L, Wang X, Ou Y, Liu H, Hou X, Yan L, Li X. The various effect of cow manure compost on the degradation of imazethapyr in different soil types. CHEMOSPHERE 2023:139325. [PMID: 37356585 DOI: 10.1016/j.chemosphere.2023.139325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Adding compost to soil is an effective strategy to promote the degradation of organic pollutants and reduce ecological risks. However, the effect of compost on the degradation of imazethapyr (IMET) in different soil types is not clear. To address this issue, a pot experiment was conducted, and high-throughput sequencing and mass spectrometry technology were used to identify the influence of cow manure compost on the degradation efficiency of IMET in black soil and saline-alkali soil and the role of key microorganisms. The results showed that adding compost to black soil increased the degradation rate of IMET by 12.58% and shortened the half-life by 53.37%, while in saline-alkali soil, the degradation rate of IMET decreased by 6.99% with no significant change in the half-life. High-throughput sequencing results showed that adding cow manure compost (mass ratio of 4%) significantly increased the abundance of bacterial families capable of degrading organic pollutants in black soil, but had an inhibitory effect on this bacterial community in saline-alkali soil. Redundancy analysis (RDA) results showed that total organic carbon (TOC), alkali-hydrolyzable nitrogen (AN), ammonia nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) were the main factors driving microbial community variation. Mass spectrometry analysis indicated that IMET generated three metabolites during the degradation process. Sphingomonadaceae and Vicinamibacteraceae could accelerate the breaking of side-chain alkyl groups, while Chitinophagaceae could cause the rearrangement of the imidazole ring structure, gradually metabolizing IMET into small organic molecules. The application of appropriate cow manure compost can promote the development of IMET-degrading bacteria by adjusting the organic carbon and dissolved nitrogen content in black soil. In the future, the quantitative effects of organic fertilizer application on the IMET degradation process in different soil types should be further analyzed, and microbial isolation and purification should be used to enhance the ability of microorganisms to degrade herbicides.
Collapse
Affiliation(s)
- Lei Cheng
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Lixia Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Xinhong Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| | - Yang Ou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China.
| | - Huiping Liu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Xia Hou
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Liming Yan
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xinyi Li
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
2
|
Liu L, Wu Q, Miao X, Fan T, Meng Z, Chen X, Zhu W. Study on toxicity effects of environmental pollutants based on metabolomics: A review. CHEMOSPHERE 2022; 286:131815. [PMID: 34375834 DOI: 10.1016/j.chemosphere.2021.131815] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
In the past few decades, the toxic effects of environmental pollutants on non-target organisms have received more and more attention. As a new omics technology, metabolomics can clarify the metabolic homeostasis of the organism at the overall level by studying the changes in the relative contents of endogenous metabolites in the organism. Recently, a large number of studies have used metabolomics technology to study the toxic effects of environmental pollutants on organisms. In this review, we reviewed the analysis processes and data processes of metabolomics and its application in the study of the toxic effects of environmental pollutants including heavy metals, pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and microplastics. In addition, we emphasized that the combination of metabolomics and other omics technologies will help to explore the toxic mechanism of environmental pollutants and provide new research ideas for the toxicological evaluation of environmental pollutants.
Collapse
Affiliation(s)
- Li Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qinchao Wu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xinyi Miao
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tianle Fan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhiyuan Meng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| | - Xiaojun Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Ran L, Yang Y, Zhou X, Jiang X, Hu D, Lu P. The enantioselective toxicity and oxidative stress of dinotefuran on zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112809. [PMID: 34592523 DOI: 10.1016/j.ecoenv.2021.112809] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 05/21/2023]
Abstract
Dinotefuran is a widely used neonicotinoid pesticides in agriculture and it has certain ecological toxicity to aquatic organisms. Studies on the potential toxicological effects of dinotefuran on fish are limited. In the present study, 96 h acute toxicity test indicated that enantiomers of R-(-)-dinotefuran had a greater toxic effect than Rac-dinotefuran on zebrafish, and S-(+)-dinotefuran was the least. In chronic assay, R-(-)-dinotefuran exerted more effects on the development of zebrafish than S-(+)-dinotefuran, and dinotefuran also had enantioselective effect on oxidative stress. Significant changes were observed in the superoxide dismutase (SOD), glutathione S-transferase (GST) and acetylcholinesterase (AChE) activities and malondialdehyde (MDA) contents, which demonstrated dinotefuran induced oxidative stress in zebrafish. Besides, through an ultra-performance liquid chromatography quadrupole-TOF mass spectrometry (UPLC-Q-TOF-MS)-based metabolomics method was used to evaluate the enantioselectivity of dinotefuran enantiomers in zebrafish. The results indicated that R-(-)-dinotefuran caused greater disturbances of endogenous metabolites. Phenylalanine metabolic pathways, glycine, serine and threonine metabolic pathways are only involved in zebrafish exposed to R-(-)-dinotefuran; whereas phenylalanine, tyrosine and tryptophan biosynthesis was only involved in zebrafish exposed to S-(+)-dinotefuran. This study provides a certain reference value for assessing the environmental risks of dinotefuran enantiomers to aquatic organisms, and has practical significance for guiding the ecologically and environmentally safety use of dinotefuran.
Collapse
Affiliation(s)
- Lulu Ran
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ya Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xia Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiaoxia Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Wei Y, Cui J, Zhai W, Liu X, Zhou Z, Wang P, Liu D. Toxicity and fate of chiral insecticide pyriproxyfen and its metabolites in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116894. [PMID: 33774544 DOI: 10.1016/j.envpol.2021.116894] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Pyriproxyfen is a juvenile hormone analogue insecticide used worldwide. At present, the potential threat of pyriproxyfen to aquatic organism has not been well explored. In this work, the bioaccumulation, metabolic profile and toxicity of pyriproxyfen and its metabolites to zebrafish were studied, and the enantioselectivity of pyriproxyfen and the major chiral metabolites were also determined. Sixteen metabolites of pyriproxyfen in zebrafish were identified. Hydroxylation, ether linkage cleavage and oxidation in phase I metabolism, followed by sulfate and glucuronic acid conjugation. The bioconcentration factors ranged from 1175 to 1246. Hydroxylation metabolites of pyriproxyfen showed enantioselective behavior in zebrafish with enantiomer fractions (EFs) of 4'-OH- pyriproxyfen and 5″-OH- pyriproxyfen ranged from 0.50 to 0.71. Toxicological indexes including acute toxicity, joint toxicity and oxidative stress were tested. Among all the metabolites, 4'-OH- pyriproxyfen was found 2 folds more toxic to zebrafish than pyriproxyfen. (-)-Pyriproxyfen was found 2 folds more toxic than rac- and (+)-pyriproxyfen. Antagonistic effects were found in binary joint toxicity of pyriproxyfen and its hydroxylated metabolites. Pyriproxyfen and its metabolites also showed oxidative stress damage by inhibiting the activity of CAT and SOD and increasing MDA. This work provided deep insight into the metabolism and the potential risks of pyriproxyfen to aquatic organisms.
Collapse
Affiliation(s)
- Yimu Wei
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Jingna Cui
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Wangjing Zhai
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Xueke Liu
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Zhou
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Peng Wang
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China
| | - Donghui Liu
- Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Effects of Dufulin on Oxidative Stress and Metabolomic Profile of Tubifex. Metabolites 2021; 11:metabo11060381. [PMID: 34208357 PMCID: PMC8231163 DOI: 10.3390/metabo11060381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022] Open
Abstract
Dufulin is a highly effective antiviral pesticide used in plants. In this study, a seven-day experiment was conducted to evaluate the effects of Dufulin at five different concentrations (1 × 10−4, 1 × 10−3, 1 × 10−2, 0.1, and 1 mg/L) on Tubifex. LC-MS-based metabolome analysis detected a total of 5356 features in positive and 9110 features in negative, of which 41 showed significant changes and were identified as differential metabolites. Four metabolic pathways were selected for further study. Detailed analysis revealed that Dufulin exposure affected the urea cycle of Tubifex, probably via argininosuccinate lyase (ASL) inhibition. It also affected the fatty acid metabolism, leading to changes in the concentration of free fatty acids in Tubifex. Furthermore, the changes in metabolites after exposure to Dufulin at 1 × 10−2 mg/L were different from those at the other concentrations.
Collapse
|