1
|
Alekaram S, Hemmati SA, Ziaee M, Stelinski LL. Evaluation of diets from various maize hybrids reveals potential tolerance traits against Spodoptera littoralis (Boisd) as measured by developmental and digestive performance. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:642-651. [PMID: 39329175 DOI: 10.1017/s0007485324000403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Spodoptera littoralis (Boisd) (Lepidoptera: Noctuidae) is a highly polyphagous insect that significantly reduces agricultural production of several food staples. We evaluated performance of S. littoralis on several meridic diets based on various maize hybrids, including Oteel, Simon, Valbum, SC703, and SC704. Growth, feeding behaviours, and activity of digestive enzymes of S. littoralis were examined under laboratory conditions. In addition, selected biochemical characteristics of maize hybrid seeds were evaluated, including starch, protein, anthocyanin, as well as phenolic and flavonoid contents, to examine relationships between plant properties and digestive performance of S. littoralis. Performance of S. littoralis on maize hybrids, as measured by nutritional indices, was related to both proteolytic and amylolytic activities quantified using gut extracts. Larval S. littoralis reared on SC703 exhibited the highest efficiency of conversion of digested food, while the lowest was recorded in those fed on the Oteel hybrid. S. littoralis reared on SC703 and Oteel also exhibited the highest and lowest relative growth rates, respectively. The highest levels of proteolytic activity in S. littoralis were measured from larvae reared on the SC703 hybrid, while the lowest levels occurred on the Oteel and Valbum hybrids. Amylolytic activity was lowest in larvae reared on SC703 and Valbum hybrids and highest in larvae reared on the Oteel hybrid. Our results suggest that the SC703 hybrid was the most suitable host for S. littoralis, while the Oteel hybrid demonstrated the greatest level of tolerance against S. littoralis of those evaluated. We discuss the potential utility of maize hybrids exhibiting tolerance traits against this cosmopolitan pest with reference to cultivation of tolerant varieties and identification of specific tolerance traits.
Collapse
Affiliation(s)
- Shirin Alekaram
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Ali Hemmati
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Masumeh Ziaee
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| |
Collapse
|
2
|
Dos Santos CWV, Da Silva AT, de Almeida Barros AC, do Nascimento JS, Meireles Grillo LA, Gomes FS, Pereira HJV. A new trypsin inhibitor from Centrosema plumieri effective against digestive proteases from Tribolium castaneum, an eco-friendly alternative. Protein Expr Purif 2024; 222:106534. [PMID: 38897399 DOI: 10.1016/j.pep.2024.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Tribolium castaneum, also known as the red flour beetle, is a polyphagous pest that seriously damages agricultural products, including stored and processed grains. Researchers have aimed to discover alternative pest control mechanisms that are less harmful to the ecosystem than those currently used. We conduct the purification and characterization of a protease inhibitor from C. plumieri seeds and an in vitro evaluation of its insecticidal potential against the insect pest T. castaneum. The trypsin inhibitor was isolated from C. plumieri seeds in a single-step DEAE-Sepharose column chromatography and had a molecular mass of 50 kDA. When analyzed for interaction with different proteolytic enzymes, the inhibitor exhibited specificity against trypsin and no activity against other serine proteases such as chymotrypsin and elastase-2. The isolated inhibitor was able to inhibit digestive enzymes of T. castaneum from extracts of the intestine of this insect. Therefore, we conclude that the new protease inhibitor, specific in tryptic inhibition, of protein nature from the seeds of C. plumieri was effective in inhibiting the digestive enzymes of T. castaneum and is a promising candidate in the ecological control of pests.
Collapse
Affiliation(s)
- Cláudio Wilian Victor Dos Santos
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code: 57072-900, Maceió, Alagoas, Brazil
| | - Antônio Thomás Da Silva
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code: 57072-900, Maceió, Alagoas, Brazil
| | - Andrea Carla de Almeida Barros
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code: 57072-900, Maceió, Alagoas, Brazil
| | - Josiel Santos do Nascimento
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code: 57072-900, Maceió, Alagoas, Brazil
| | - Luciano Aparecido Meireles Grillo
- Institute of Pharmaceutical Science, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code: 57072-900, Maceió, Alagoas, Brazil
| | - Francis Soares Gomes
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code: 57072-900, Maceió, Alagoas, Brazil
| | - Hugo Juarez Vieira Pereira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, (UFAL), Postal Code: 57072-900, Maceió, Alagoas, Brazil.
| |
Collapse
|
3
|
Weng YM, Shashank PR, Godfrey RK, Plotkin D, Parker BM, Wist T, Kawahara AY. Evolutionary genomics of three agricultural pest moths reveals rapid evolution of host adaptation and immune-related genes. Gigascience 2024; 13:giad103. [PMID: 38165153 PMCID: PMC10759296 DOI: 10.1093/gigascience/giad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/01/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Understanding the genotype of pest species provides an important baseline for designing integrated pest management (IPM) strategies. Recently developed long-read sequence technologies make it possible to compare genomic features of nonmodel pest species to disclose the evolutionary path underlying the pest species profiles. Here we sequenced and assembled genomes for 3 agricultural pest gelechiid moths: Phthorimaea absoluta (tomato leafminer), Keiferia lycopersicella (tomato pinworm), and Scrobipalpa atriplicella (goosefoot groundling moth). We also compared genomes of tomato leafminer and tomato pinworm with published genomes of Phthorimaea operculella and Pectinophora gossypiella to investigate the gene family evolution related to the pest species profiles. RESULTS We found that the 3 solanaceous feeding species, P. absoluta, K. lycopersicella, and P. operculella, are clustered together. Gene family evolution analyses with the 4 species show clear gene family expansions on host plant-associated genes for the 3 solanaceous feeding species. These genes are involved in host compound sensing (e.g., gustatory receptors), detoxification (e.g., ABC transporter C family, cytochrome P450, glucose-methanol-choline oxidoreductase, insect cuticle proteins, and UDP-glucuronosyl), and digestion (e.g., serine proteases and peptidase family S1). A gene ontology enrichment analysis of rapid evolving genes also suggests enriched functions in host sensing and immunity. CONCLUSIONS Our results of family evolution analyses indicate that host plant adaptation and pathogen defense could be important drivers in species diversification among gelechiid moths.
Collapse
Affiliation(s)
- Yi-Ming Weng
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Pathour R Shashank
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
- Division of Entomology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - R Keating Godfrey
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - David Plotkin
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Brandon M Parker
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Tyler Wist
- Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0×2, Canada
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera & Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Hosseini Mousavi SM, Hemmati SA, Rasekh A. Feeding responses and digestive function of Spodoptera littoralis (Boisd) on various leafy vegetables exhibit possible tolerance traits. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:430-438. [PMID: 36919372 DOI: 10.1017/s000748532300010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spodoptera littoralis is a highly polyphagous pest that attacks numerous important crops in the world and causes substantial economic losses to agricultural production. In the present study, the effects of different leafy vegetables, including Purslane, Chives, Parsley, Basil, Dill, Coriander, and Mint, were investigated on feeding responses and enzymatic activities of S. littoralis under laboratory conditions. Furthermore, the total contents of the three major secondary metabolites (phenolics, anthocyanins, and flavonoids) in the studied vegetables were determined. Our findings showed that the lowest and the highest approximate digestibility were on Basil and Purslane, respectively. The highest values of efficiency of conversion of ingested and digested food were achieved in larvae fed on Chives and Coriander, respectively, whereas the lowest values were recorded after feeding on Purslane. The highest and lowest relative growth rates were in larvae reared on Dill and Purslane, respectively. Furthermore, the highest amylolytic and proteolytic activities were in larvae fed with Coriander and Dill, respectively, while the lowest activities of these enzymes were on Purslane. In addition, correlation analysis revealed significant correlations between feeding characteristics and enzymatic activity of S. littoralis with biochemical compounds of the studied leafy vegetables. Our results suggest that Coriander is a suitable host, while Purslane displayed tolerance traits against S. littoralis, which can be used in sustainable management programs aiming to reduce chemical inputs.
Collapse
Affiliation(s)
| | - Seyed Ali Hemmati
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Arash Rasekh
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
5
|
Jafari H, Hemmati SA, Habibpour B. Evaluation of artificial diets based on different legume seeds on the nutritional physiology and digestive function of Helicoverpa armigera (Hübner). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:133-143. [PMID: 36065765 DOI: 10.1017/s0007485322000402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Helicoverpa armigera (Hübner) is considered a serious agricultural pest worldwide. We explored the effects of artificial diets containing ten legumes, including broad beans (Shadan, Feyz, Saraziri, Barekat, and Mahta cultivars), white kidney beans (Dehghan cultivar), red kidney beans (Goli cultivar), common beans (Khomein cultivar), cowpeas (Mashhad and Arabi cultivars) on the feeding responses of H. armigera by quantifying specific primary and secondary metabolites in the studied legumes and determining larval nutritional indices and digestive enzyme activities. The results showed that the highest efficiency of conversion of digested food (ECD) and relative growth rate values (RGR) of whole larval instars were obtained in the Dehghan and Goli cultivars. However, the lowest values of ECD and RGR were observed in the larvae fed on the Khomein and Mahta cultivars. The highest proteolytic and amylolytic activities of larvae were found on the Dehghan and Mashhad cultivars. The highest and lowest values of standardized insect-growth index and index of plant quality were observed in larvae feeding on the Dehghan and Khomein cultivars, respectively. Additionally, significant variations in phytochemical metabolites were recorded among the studied legume cultivars. Significant negative or positive correlations were also found between feeding characteristics and enzymatic activities of H. armigera with the biochemical composition of the studied legumes. The cluster analysis results revealed that artificial diets containing Mahta and Khomein cultivars were unsuitable for H. armigera, and can be used as candidates for integrated pest management programs or for screening insect inhibitors to produce genetically modified pest-resistant plants.
Collapse
Affiliation(s)
- Hasan Jafari
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Ali Hemmati
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Behzad Habibpour
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
6
|
Life Table Parameters and Digestive Enzyme Activity of Spodoptera littoralis (Boisd) (Lepidoptera: Noctuidae) on Selected Legume Cultivars. INSECTS 2022; 13:insects13070661. [PMID: 35886837 PMCID: PMC9321226 DOI: 10.3390/insects13070661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Spodoptera littoralis (Boisd) is a highly destructive pest that attacks a large number of economically important crops. We examined life table parameters as well as activity of major digestive enzymes of S. littoralis larvae in response to protein and starch contents across 11 legume cultivars to identify potential resistance traits. The results showed that S. littoralis reared on the common bean, Arabi, displayed the highest intrinsic rate of increase (r), while the lowest was recorded on the cowpea, Mashhad. Also, the highest net reproductive rate (R0) was obtained in those insects reared on the Arabi cultivar. Larvae displayed the highest and lowest proteolytic activities when fed on Mashhad and Arabi cultivars, respectively. The highest amylolytic activity was quantified in larvae that fed on the Arabi and 1057 cultivars, while the lowest occurred in larvae feeding on Yaghout and Mashhad cultivars. Developmental time of S. littoralis larvae was negatively correlated with protein content, while amylolytic activity was positively correlated with starch content of legumes. Our findings indicate that Arabi was a susceptible cultivar, while Mashhad exhibited tolerance traits against S. littoralis. These results should facilitate selection of legume cultivars for production or breeding efforts that involve S. littoralis management.
Collapse
|
7
|
Gressel J. Perspective: It is time to consider new ways to attack unpesticidable (undruggable) target sites by designing peptide pesticides. PEST MANAGEMENT SCIENCE 2022; 78:2108-2112. [PMID: 35088529 DOI: 10.1002/ps.6817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Evolved resistance and regulatory deregistration have severely limited farmers' pesticide options. Many potential new pesticide target sites have been elucidated using targeted gene suppression and mutational tools, but few small molecules could be found that inhibit the target enzymes; the targets were considered 'undruggable'. Some organisms from all biological kingdoms use toxic peptides to ward off or kill enemies, and the agrochemical industry has used a few peptide analogs (glufosinate and bialophos) for field application. Conversely, pharmaceutical scientists have been using three-dimensional target protein structure to discover and synthesize short peptides that bind tightly to the surfaces of, and inhibit previously undruggable targets. New computational tools to quickly elucidate 3-D protein structure from amino acid sequence have just emerged. They replace crystallizing target proteins and performing X-ray crystallography to elucidate 3-D structure. These new tools allow prediction of peptides that will bind to the target proteins. They have further modified such peptides to enhance penetration, translocation and temperature stability. There is reason to assume that the same pioneering techniques can be used to develop peptide pesticides as well as pesticide synergists that act against undruggable targets and have excellent environmental and toxicological profiles. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan Gressel
- Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel and Hi-Cap Formulations (Israel) Ltd, Rehovot, Israel
| |
Collapse
|
8
|
Hemmati SA, Tabein S. Insect protease inhibitors; promising inhibitory compounds against SARS-CoV-2 main protease. Comput Biol Med 2022; 142:105228. [PMID: 35051855 PMCID: PMC8755557 DOI: 10.1016/j.compbiomed.2022.105228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/25/2021] [Accepted: 01/06/2022] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has adversely affected global health since its emergence in 2019. The lack of effective treatments prompted worldwide efforts to immediately develop therapeutic strategies against COVID-19. The main protease (Mpro) of SARS-CoV-2 plays a crucial role in viral replication, and therefore it serves as an attractive target for COVID-19-specific drug development. Due to the richness and diversity of insect protease inhibitors, we docked SARS-CoV-2 Mpro onto 25 publicly accessible insect-derived protease inhibitors using the ClusPro server, and the regions with high inhibitory potentials against Mpro were used to design peptides. Interactions of these inhibitory peptides with Mpro were further assessed by two directed docking programs, AutoDock and Haddock. AutoDock analysis predicted the highest binding energy (-9.39 kcal/mol) and the lowest inhibition constant (130 nM) for the peptide 1KJ0-7 derived from SGCI (Schistocerca gregaria chymotrypsin inhibitor). On the other hand, Haddock analysis resulted in the discovery of a different peptide designated 2ERW-9 from infestin, a serine protease inhibitor of Triatoma infestans, with the best docking score (-131), binding energy (-11.7 kcal/mol), and dissociation constant (2.6E-09 M) for Mpro. Furthermore, using molecular dynamic simulations, 1KJ0-7 and 2ERW-9 were demonstrated to form stable complexes with Mpro. The peptides also showed suitable drug-likeness properties compared to commercially available drugs based on Lipinski's rule. Our findings present two peptides with possible protease inhibitor activities against Mpro and further demonstrate the potential of insect-derived peptides and computer-aided methods for drug discovery.
Collapse
Affiliation(s)
- Seyed Ali Hemmati
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
9
|
Shishehbor P, Hemmati SA. Investigation of secondary metabolites in bean cultivars and their impact on the nutritional performance of Spodoptera littoralis (Lep.: Noctuidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 112:1-11. [PMID: 34704547 DOI: 10.1017/s0007485321000948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spodoptera littoralis (Boisd) is globally recognized as a destructive polyphagous insect pest of various crops in the world. It is commonly managed by chemical pesticides, which can cause deleterious effects such as environmental pollution, toxicity to non-target organisms and the emergence of secondary pests. Hence, investigations into alternative pest control strategies such as the use of resistant host plant cultivar against S. littoralis is important. This study aimed to explore the nutritional performance of S. littoralis larvae in dependence on total anthocyanin, flavonoid, and phenol levels across 11 bean cultivars (Phaseolus and Vigna spp.) under laboratory conditions. The results revealed that the Mashhad cultivar accumulated the highest amount of total phenols (13.59 mg ml-1), whereas Yaghout and Arabi cultivars posed the lowest total phenols contents (1.80 and 1.90 mg ml-1, respectively). Across larval instars (third to sixth), the highest consumption index and relative consumption rate were recorded on the Mashhad cultivar. The lowest values of efficiency of conversion of ingested food and the efficiency of conversion of digested food of total larval instars were detected in the larvae which were reared on the Mashhad cultivar. Likewise, the lowest value of the index of plant quality (IPQ) was obtained in the Mashhad cultivar; however, IPQ was figured out at the highest level in the Arabi cultivar. Our findings show that the differential accumulation of secondary metabolites would change the nutritional quality of plants for S. littoralis. Based on the findings, the Mashhad cultivar may serve as a candidate for either integrated pest management or breeding programs aiming at controlling this pest.
Collapse
Affiliation(s)
- Parviz Shishehbor
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyed Ali Hemmati
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
10
|
Inhibitory Potential of a Designed Peptide Inhibitor Based on Zymogen Structure of Trypsin from Spodoptera frugiperda: In Silico Insights. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10200-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|