1
|
Liang YL, Li SS, Yin NN, Li SL, Lu YY, Liu NY. Functional characterization of four antenna-enriched odorant binding proteins in Rhaphuma horsfieldi reveals the importance of RhorOBP1 in odorant recognition and insecticide resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106210. [PMID: 39672606 DOI: 10.1016/j.pestbp.2024.106210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 12/15/2024]
Abstract
The cerambycid beetles are key players for the sustenance of biodiversity in the forest ecosystem, but in most cases are well known due to their harmfulness to agricultural and forest plants. Here, we characterized the odorant binding protein (OBP) gene family in Rhaphuma horsfieldi, emphasizing the roles of RhorOBP1 in odorant reception and insecticide sequestering. A homology-based search led to the identification of 35 RhorOBP genes with a major distribution in the Minus-C OBPs clade (21/35 genes). Expression profiles showed that RhorOBP1-RhorOBP4 had the abundant expression in antennae. Binding assays revealed that the four RhorOBPs exhibited diverse odorant response profiles tuned differentially to various classes of plant odorants, comprising walnut-derived host volatiles and ordinary floral scents. Two broadly tuned RhorOBP1 and RhorOBP2 exhibited different chain length-dependent binding properties to 10C12C alcohols, aldehydes or acetates. Compared with other three proteins, RhorOBP1 reduced the binding to ligands with high affinities at pH 5.0 (1.27-6.72-fold differences relative to pH 7.4). Molecular docking and point-mutation experiments confirmed that Ser107, Tyr118, Tyr119 and Phe120 situated in the binding pocket of RhorOBP1 were critical determinants for the recognition of 14, 15, 10 and 10 compounds, respectively. On the other hand, RhorOBP1 could strongly bind six insecticides, particularly chlorpyrifos (dissociation constant, Ki = 3.69 ± 0.74 μM). This study has provided insights into different binding properties of four antenna-enriched RhorOBPs in R. horsfieldi and identifies a dual role of RhorOBP1 in the binding of odorants and insecticides.
Collapse
Affiliation(s)
- Yin-Lan Liang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Shun-Si Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Ning-Na Yin
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Shu-Lin Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yu-Yue Lu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
2
|
Zhao R, Wang HH, Wang Z, Xiao X, Yin XH, Hu SY, Miao HN, Zhang YJ, Liang P, Gu SH. Omics Analysis of Odorant-Binding Proteins and Cuticle-Enriched SfruOBP18 Confers Multi-Insecticide Tolerance in Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39373658 DOI: 10.1021/acs.jafc.4c05737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Spodoptera frugiperda is a notorious pest that develops a high resistance to many insecticides. Recently, insect odorant-binding proteins (OBPs) have been proven to participate in insecticide resistance. However, the functional evidence supporting the cross-link between OBPs and insecticide resistance remains unexplored. Here, we identified 50 SfruOBPs from the larval transcriptome and genome. Notably, SfruOBP18 was highly expressed in the larval cuticle and could be induced to upregulate its expression by multi-insecticides. Ligand-binding assays revealed that SfruOBP18 bound strongly with four insecticides; RNAi and insecticide bioassay demonstrated that the knockdown of SfruOBP18 did not affect larval survival and development. However, it can significantly increase the larval susceptibility to multi-insecticides, suggesting an uncommon role of SfruOBP18 in multi-insecticide susceptibility. Our study provides a comprehensive understanding of SfruOBPs and furthermore proves that a larval cuticle-enriched OBP can bind with and confer larval tolerance to multi-insecticides. SfruOBP18 could be a new insecticidal target for controlling Lepidoptera pests.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Huan-Huan Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Zhuo Wang
- Department of Entomology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572024, China
| | - Xing Xiao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xin-Hui Yin
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Shi-Yuan Hu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Hao-Nan Miao
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Shao-Hua Gu
- Department of Entomology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572024, China
| |
Collapse
|
3
|
Wang L, Hou M, Liang C, Xu Q, Lu Y, Zhao Z. Role of odorant binding protein C12 in the response of Tribolium castaneum to chemical agents. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105861. [PMID: 38685215 DOI: 10.1016/j.pestbp.2024.105861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 05/02/2024]
Abstract
Tribolium castaneum is a worldwide pest of stored grain that mainly damages flour, and not only causes serious loss of flour quality but also leads to deterioration of flour quality. Chemical detection plays a key role in insect behavior, and the role of odorant-binding proteins (OBPs) in insect chemical detection has been widely studied. OBPs can interact with small molecule compounds and thereby modulate variation in insecticide susceptibility in insects. In this study, a total of 65 small molecule compounds are selected to investigate the bound effect with TcOBP C12. The molecular docking results showed that β-caryophyllene, (-)-catechin, butylated hydroxytoluene, diphenyl phthalate and quercetin were the top five compounds, with docking binding energies of -6.11, -5.25, -5.09, -5.05, and - 5.03 Kcal/mol, respectively. Molecular dynamics analysis indicated that odorant binding protein C12 (TcOBP C12) exhibited high binding affinity to all five tested chemical ligands, evidenced by fluorescence quenching assay in vitro. In addition, the contact toxicity assay results suggested that these chemical agents caused a dose-dependent increase in mortality rate for T. castaneum adults. The TcOBP C12 gene was upregulated >2 times after a 24-h exposure, indicating that OBP C12 may play an important role for T. castaneum in response to these chemical agents. In conclusion, our results provide a theoretical basis for future insecticide experiments and pest management.
Collapse
Affiliation(s)
- Lei Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Mingrui Hou
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Chuanqi Liang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Qingfen Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Yujie Lu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang 212100, PR China.
| | - Zongpei Zhao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang 212100, PR China.
| |
Collapse
|
4
|
Annaz H, Annaz H, Ajaha A, Bouayad N, El Fakhouri K, Laglaoui A, El Bouhssini M, Sobeh M, Rharrabe K. Chemical profiling and bioactivities of essential oils from Thymus capitatus and Origanum compactum against Tribolium castaneum. Heliyon 2024; 10:e26102. [PMID: 38444480 PMCID: PMC10912041 DOI: 10.1016/j.heliyon.2024.e26102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
The use of essential oils has emerged as an ecofriendly solution for controlling different pests, particularly insects of stored products. Essential oils (EOs) from Thymus capitatus (TC) and Origanum compactum (OC) have received less attention for these bioactivities. Therefore, our study aimed to assess the repellent, antifeedant and contact toxicity of their EOs against a major stored product pest Tribolium castaneum. Besides, GC-MS was also carried out to determine the compounds responsible for the observed bioactivities. Regarding contact toxicity, LC50 values were 0.58 and 0.35 μL/cm2 for TC and OC after 24 h of exposure, respectively. For the repellent effect, the percentage of repellency (PR) was variable across different concentrations and exposure durations. TC exhibited the best PR (98%) after 3 h of exposure at 0.031 μL/cm2. For prolonged repulsive effect (24 h), TC sustained its repulsive efficacy with a PR of 90% at 0.062 μL/cm2 followed by OC with a PR of 88% at 0.125 μL/cm2. As for the antifeedant effect, both EOs had a significant impact on nutritional indexes, especially the feeding deterrent index and relative consumption rate. OC displayed a notable effect, causing 59% of feeding deterrence at 1.92 μL/pellet. These multifaced effects can be explained by the high content of carvacrol in both EOs (OC: 90% and TC: 78%). These multifaced effects demonstrated through different exposure routes and bioassays promote the use of T. capitatus and O. compactum EOs as a sustainable management strategy to control T. castaneum.
Collapse
Affiliation(s)
- Houssam Annaz
- Research Team Agricultural and Aquacultural Engineering, FPL, Abdelmalek Essaadi University, Tetouan, Morocco
- Research Team Biotechnology and Biomolecules Engineering, FSTT, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Hassan Annaz
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Ayoub Ajaha
- Research Team Agricultural and Aquacultural Engineering, FPL, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Noureddin Bouayad
- Research Team Biotechnology and Biomolecules Engineering, FSTT, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Amin Laglaoui
- Research Team Biotechnology and Biomolecules Engineering, FSTT, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Kacem Rharrabe
- Research Team Agricultural and Aquacultural Engineering, FPL, Abdelmalek Essaadi University, Tetouan, Morocco
- Research Laboratory Biology, Environment and Sustainable Development, ENS, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
5
|
Chen X, Lei Y, Liang C, Lei Q, Wang J, Jiang H. Odorant Binding Protein Expressed in Legs Enhances Malathion Tolerance in Bactrocera dorsalis (Hendel). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4376-4383. [PMID: 38363824 DOI: 10.1021/acs.jafc.3c08458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Bactrocera dorsalis is a highly invasive species and is one of the most destructive agricultural pests worldwide. Organophosphorus insecticides have been widely and chronically used to control it, leading to the escalating development of resistance. Recently, odorant binding proteins (OBPs) have been found to play a role in reducing insecticide susceptibility. In this study, we used RT-qPCR to measure the expression levels of four highly expressed OBP genes in the legs of B. dorsalis at different developmental stages and observed the effect of malathion exposure on their expression patterns. The results showed that OBP28a-2 had a high expression level in 5 day old adults of B. dorsalis, and its expression increased after exposure to malathion. By CRISPR/Cas9 mutagenesis, we generated OBP28a-2-/- null mutants and found that they were more susceptible to malathion than wild-type adults. Furthermore, in vitro direct affinity assays confirmed that OBP28a-2 has a strong affinity for malathion, suggesting that it plays a role in reducing the susceptibility of B. dorsalis to malathion. Our findings enriched our understanding of the function of OBPs. The results highlighted the potential role of OBPs as buffering proteins that help insects survive exposure to insecticides.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Yibo Lei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Changhao Liang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Quan Lei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - JinJun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Hongbo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Rong H, He X, Liu Y, Liu M, Liu X, Lu M. Odorant binding protein 18 increases the pathogen resistance of the imported willow leaf beetle, Plagiodera versicolora. Front Cell Infect Microbiol 2024; 14:1360680. [PMID: 38476166 PMCID: PMC10928693 DOI: 10.3389/fcimb.2024.1360680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Background Insect odorant-binding proteins (OBPs) are a class of small molecular weight soluble proteins. In the past few years, OBPs had been found to work as carriers of ligands and play a crucial role in olfaction and various other physiological processes, like immunity. A subset of insect OBPs had been found to be expressed differently and play a function in immunity of fungal infection. However, there are few studies on the role of OBPs in immunity of bacterial infection. Methods To identify the immune-related OBPs of Plagiodera versicolora after infected by Pseudomonas aeruginosa, we determined the mortality of P. versicolora to P. aeruginosa and selected the time point of 50% mortality of larvae to collect samples for RNA-seq. RNAi technology was used to investigate the function of immune-related OBPs after P. aeruginosa infection. Results RNA-seq data shows that PverOBP18 gene significantly up-regulated by 1.8-fold and further RT-qPCR affirmed its expression. Developmental expression profile showed that the expression of PverOBP18 was highest in the pupae, followed by the female adults, and lower in the 1st-3rd larvae and male adults with lowest in eggs. Tissue expression profiling showed that PverOBP18 was dominantly expressed in the epidermis. RNAi knockdown of PverOBP18 significantly reduced the expression of bacterial recognition receptor gene PGRP and antibacterial peptide gene Attacin and reduced the resistance of P. versicolora to P. aeruginosa infection. Conclusion Our results indicated that PverOBP18 gene increased the pathogen resistance of P. versicolora by cooperating with the immune genes and provided valuable insights into using OBPs as targets to design novel strategies for management of P. versicolora.
Collapse
Affiliation(s)
| | | | | | | | - Xiaolong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
7
|
Han WK, Tang FX, Yan YY, Wang Y, Zhang YX, Yu N, Wang K, Liu ZW. An OBP gene highly expressed in non-chemosensory tissues affects the phototaxis and reproduction of Spodoptera frugiperda. INSECT MOLECULAR BIOLOGY 2024; 33:81-90. [PMID: 37815404 DOI: 10.1111/imb.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Insect odorant binding proteins (OBPs) were initially regarded as carriers of the odorants involved in chemosensation. However, it had been observed that a growing number of OBP genes exhibited broad expression patterns beyond chemosensory tissues. Here, an OBP gene (OBP31) was found to be highly expressed in the larval ventral nerve cord, adult brain and male reproductive organ of Spodoptera frugiperda. An OBP31 knockout strain (OBP31-/- ) was generated by CRISPR/Cas9 mutagenesis. For OBP31-/- , the larvae needed longer time to pupate, but there was no difference in the pupal weight between OBP31-/- and wild type (WT). OBP31-/- larvae showed stronger phototaxis than the WT larvae, indicating the importance of OBP31 in light perception. For mating rhythm of adults, OBP31-/- moths displayed an earlier second mating peak. In the cross-pairing of OBP31-/- and WT moths, the mating duration was longer, and hatchability was lower in OBP31-/- group and OBP31+/- ♂ group than that in the WT group. These results suggested that OBP31 played a vital role in larval light perception and male reproductive process and could provide valuable insights into understanding the biological functions of OBPs that were not specific in chemosensory tissues.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Xian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yang-Yang Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yi-Xi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Wang Y, Bian XK, Zhang L, Chen WY, Lyu QJ, Du SS. The essential oil of Kochia scoparia (L.) Schrad. as a potential repellent against stored-product insects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124416-124424. [PMID: 37996575 DOI: 10.1007/s11356-023-31011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Chemical composition of the essential oil from Kochia scoparia (L.) Schrad. (syn. Bassia scoparia (L.) A. J. Scott) was analyzed in quality and quantity by GC-MS and GC-FID. Repellent activities of the essential oil from K. scoparia (KSEO) were evaluated against two common species of stored-product insects Tribolium castaneum Herbst and Liposcelis bostrychophila Badonnel. Results indicated that KSEO mainly consisted of eugenol, β-caryophyllene, and α-humulene, accounting for 75.6%, 8.2%, and 1.4% of the total oil, respectively. KSEO and the three major components were repellent to T. castaneum and L. bostrychophila adults. Notably, KSEO exerted significant effects, comparable to the positive control DEET at 2 and 4 h post-exposure. Eugenol at 63.17-2.53 nL/cm2 exhibited high percentage repellency ranging from 96 to 70% against L. bostrychophila during 4-h exposure. To gain further insights into the repellent activity, molecular docking simulation was performed with eugenol as the ligand and an odorant binding protein TcOBPC12 (gene: TcOBP10B) from the model insect T. castaneum as the receptor. Docking calculation results revealed that TcOBPC12 had binding affinity to eugenol (△G = - 4.52 kcal/mol) along with a hydrogen bond of 0.18 nm (1.8 Å) long forming between them, which could be an important target protein associated with identifying volatile repellent molecules. This work highlights the promising potential of KSEO as a botanical repellent for controlling stored-product insects.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Xiao-Kun Bian
- Department of Pharmacy, Yancheng No.1 People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Li Zhang
- Department of Nursing, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Wen-Yan Chen
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Qiu-Ju Lyu
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Shu-Shan Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
9
|
Han WK, Tang FX, Yu N, Zhang YX, Liu ZW. A nonsensory odorant-binding protein plays an important role in the larval development and adult mating of Spodoptera frugiperda. INSECT SCIENCE 2023; 30:1325-1336. [PMID: 36647341 DOI: 10.1111/1744-7917.13178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Odorant-binding proteins (OBPs) play key roles in the perception of semiochemicals in insects. Several OBPs in insect olfactory systems have been functionally characterized, and they provide excellent targets for pest control. The functions of some OBPs that are highly expressed in the nonsensory organs of insects remain unclear. Here, the physiological function of an OBP (OBP27) that was highly expressed in the nonsensory organs of Spodoptera frugiperda was studied. OBP27 was nested within the Plus-C cluster according to phylogenetic analysis. The transcription of OBP27 steadily increased throughout the development of S. frugiperda, and transcripts of this gene were abundant in the fat body and male reproductive organs. An OBP27 knockout strain with an early frameshift mutation was obtained using the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9) system. The development time of OBP27-/- larvae was significantly longer than that of other larvae. Both male and female OBP27-/- pupae weighed significantly less than wild-type (WT) pupae. In crosses of OBP27-/- males or females, the mating rate was lower and the mating duration was longer for OBP27-/- male-WT female pairs than for WT-WT pairs. By contrast, the mating rate, hatching rate, and number of eggs of OBP27-/- female-WT male pairs and WT-WT pairs were similar. These findings indicate that OBP27 plays an important role in the larval development and mating process in male adults. Generally, our findings provide new insights into the physiological roles of nonsensory OBPs.
Collapse
Affiliation(s)
- Wei-Kang Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Xian Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yi-Xi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ze-Wen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Tan W, Zhang N, Wang J, Pu T, Hu J, Li C, Song Y. Fumigant activity and transcriptomic analysis of two plant essential oils against the tea green leafhopper, Empoasca onukii Matsuda. Front Physiol 2023; 14:1217608. [PMID: 37795270 PMCID: PMC10546945 DOI: 10.3389/fphys.2023.1217608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: The tea green leafhopper, Empoasca (Matsumurasca) onukii Matsuda, R., 1952 (Hemiptera: Cicadellidae), is currently one of the most devastating pests in the Chinese tea industry. The long-term use of chemical pesticides has a negative impact on human health, impeding the healthy and sustainable development of the tea industry in this region. Therefore, there is a need for non-chemical insecticides to control E. onukii in tea plants. The essential oils from plants have been identified for their potential insecticidal ability; however, there is a lack of knowledge regarding the effect of plant essential oils on E. onukii and its gene expression. Methods: In order to address these knowledge gaps, the components of Pogostemon cablin and Cinnamomum camphora essential oils were analyzed in the present study using gas chromatography-mass spectrometry. The fumigation toxicity of two essential oils on E. onukii was tested using sealed conical flasks. In addition, We performed comparative transcriptome analyses of E. onukii treated with or without P. cablin essential oil. Results: The 36-h lethal concentration (LC50) values for E. onukii treated with P. cablin and C. camphora essential oils were 0.474 and 1.204 μL mL-1 respectively. Both essential oils exhibited the potential to control E. onukii, but the fumigation activity of P. cablin essential oil was more effective. A total of 2,309 differentially expressed genes were obtained by transcriptome sequencing of E. onukii treated with P. cablin essential oil. Conclusion: Many of differentially expressed genes were found to contain detoxifification genes, indicating that these families may have played an important role when E. onukii was exposed to essential oil stress. We also found differential expression of genes related to redox-related gene families, suggesting the upregulation of genes associated with possible development of drug and stress resistance. This work offers new insights for the prevention and management of E. onukii in the future.
Collapse
Affiliation(s)
- Weiwen Tan
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| | - Ni Zhang
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| | - Jinqiu Wang
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| | - Tianyi Pu
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| | - Jifeng Hu
- Huaxi District Plant Protection Station of Guiyang City, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guiyang University, Guiyang, China
| | - Yuehua Song
- School of Karst Science, Guizhou Normal University, Guiyang, China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
| |
Collapse
|