1
|
Zhao ST, Ran XT, Huang YY, Sang W, Derrick BE, Qiu BL. Transcriptomic response of citrus psyllid salivary glands to the infection of citrus Huanglongbing pathogen. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-20. [PMID: 38444234 DOI: 10.1017/s0007485324000038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is the key vector insect transmitting the Candidatus Liberibacter asiaticus (CLas) bacterium that causes the devastating citrus greening disease (Huanglongbing, HLB) worldwide. The D. citri salivary glands (SG) exhibit an important barrier against the transmission of HLB pathogen. However, knowledge on the molecular mechanism of SG defence against CLas infection is still limited. In the present study, we compared the SG transcriptomic response of CLas-free and CLas-infected D. citri using an illumine paired-end RNA sequencing. In total of 861 differentially expressed genes (DEGs) in the SG upon CLas infection, including 202 upregulated DEGs and 659 downregulated DEGs were identified. Functional annotation analysis showed that most of the DEGs were associated with cellular processes, metabolic processes, and the immune response. Gene ontology and Kyoto Encyclopaedia of Genes and Genomes enrichment analyses revealed that these DEGs were enriched in pathways involving carbohydrate metabolism, amino acid metabolism, the immune system, the digestive system, the lysosome, and endocytosis. A total of 16 DEGs were randomly selected to further validate the accuracy of RNA-Seq dataset by reverse-transcription quantitative polymerase chain reaction. This study provides substantial transcriptomic information regarding the SG of D. citri in response to CLas infection, which may shed light on the molecular interaction between D. citri and CLas, and provides new ideas for the prevention and control of citrus psyllid.
Collapse
Affiliation(s)
- San-Tao Zhao
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Xiao-Tong Ran
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Yu-Yang Huang
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wen Sang
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | | | - Bao-Li Qiu
- Engineering Research Centre of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
2
|
Li Z, Chen M, Bai W, Zhang S, Meng L, Dou W, Wang J, Yuan G. Identification, expression profiles and involvement in insecticides tolerance and detoxification of carboxylesterase genes in Bactrocera dorsalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105443. [PMID: 37248012 DOI: 10.1016/j.pestbp.2023.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023]
Abstract
Carboxylesterases (CarEs) are a multifunctional superfamily of enzymes and play an important role in detoxification of various insecticides in insects. The oriental fruit fly, Bactrocera dorsalis, is one of the most destructive agricultural pests and has developed different degrees of resistance to organophosphates in field. However, the involvement of BdCarEs in tolerance or resistance to other alternative insecticides are still unclear. In the present study, 33 BdCarEs genes were identified based on the genome database of B. dorsalis. Phylogenetic analysis demonstrated that they were classified into nine clades, with abundance of α-esterases. Meanwhile, the sequence characterization and the chromosome distribution were also analyzed. The spatiotemporal expression analysis of BdCarEs genes suggested that the diversity of potential function in different physiological processes. With the exception of BdCarE21, all BdCarEs genes responded to at least one insecticide exposure, and BdCarE20 was found to be up-regulated after exposure to all five tested insecticides individually. Eight BdCarEs genes were overexpressed in MR strain when compared to that in SS strain. Subsequently, knockdown the expression of representative BdCarEs genes significantly increased the susceptibility of the oriental fruit fly to corresponding insecticides, which indicated that the tested BdCarEs genes contributed to one or multiple insecticide detoxification. These findings provide valuable insights into the potential role in respond to tolerance or resistance to insecticides with different mode of action, and will facilitate development of efficiency management strategy for B. dorsalis.
Collapse
Affiliation(s)
- Zhenyu Li
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Mengling Chen
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Wenjie Bai
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Shuxia Zhang
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Liwei Meng
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Guorui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Gao S, Tan Y, Han H, Guo N, Gao H, Xu L, Lin K. Resistance to Beta-cypermethrin, Azadirachtin, and Matrine, and Biochemical Characterization of Field Populations of Oedaleus asiaticus (Bey-Bienko) in Inner Mongolia, Northern China. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:1. [PMID: 36374481 PMCID: PMC9662316 DOI: 10.1093/jisesa/ieac063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Oedaleus asiaticus (Bey-Bienko) is an economically devastating locust species found in grassland and pastoral areas of the Inner Mongolia region of northern China. In this study, resistance to three frequently used insecticides (beta-cypermethrin, matrine, and azadirachtin) was investigated in six field populations of O. asiaticus using the leaf-dip bioassay method. The inhibitory effects of synergists and the activities of detoxification enzyme activities in the different populations were determined to explore potential biochemical resistance mechanisms. The results showed that the field populations SB (resistance ratio [RR] = 7.85), ZB (RR = 5.64), and DB (RR = 6.75) had developed low levels of resistance to beta-cypermethrin compared with a susceptible control strain. Both the SB (RR = 5.92) and XC (RR = 6.38) populations had also developed low levels of resistance against matrine, with the other populations remaining susceptible to both beta-cypermethrin and matrine. All field populations were susceptible to azadirachtin. Synergism analysis showed that triphenyl phosphate (TPP) and diethyl-maleate (DEM) increased the toxicity of beta-cypermethrin significantly in the SB population, while the synergistic effects of TPP, piperonyl butoxide (PBO), and DEM on the toxicity of matrine were higher in SB (SR 3.86, 4.18, and 3.07, respectively) than in SS (SR 2.24, 2.86, and 2.29, respectively), but no synergistic effects of TPP, PBO, and DEM on azadirachtin were found. Biochemical assays showed that the activities of carboxylesterases (CarEs) and glutathione-S-transferases (GSTs) were significantly raised in all field populations of O. asiaticus, with a significant positive correlation observed between beta-cypermethrin resistance and CarE activity. The activities of cytochrome P450 monooxygenases (P450) and multi-function oxidases (MFO) were elevated in all six field populations, and P450 activity displayed strong positive correlations with the three insecticides. Our findings suggest that resistance to beta-cypermethrin in O. asiaticus may be mainly attributed to elevated CarE and GST activities, while P450 plays an important role in metabolizing matrine and azadirachtin. Our study provides insights that will help improve insecticide resistance management strategies.
Collapse
Affiliation(s)
- Shujing Gao
- Institute of Grassland Research, Chinese Academy of Agricultural Science, Hohhot 010010, Inner Mongolia, China
| | - Yao Tan
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Haibin Han
- Institute of Grassland Research, Chinese Academy of Agricultural Science, Hohhot 010010, Inner Mongolia, China
| | - Na Guo
- Institute of Grassland Research, Chinese Academy of Agricultural Science, Hohhot 010010, Inner Mongolia, China
| | - Haiyan Gao
- Institute of Grassland Research, Chinese Academy of Agricultural Science, Hohhot 010010, Inner Mongolia, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Science, Hohhot 010010, Inner Mongolia, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Science, Hohhot 010010, Inner Mongolia, China
| |
Collapse
|
4
|
Microbial elimination of pyrethroids: specific strains and involved enzymes. Appl Microbiol Biotechnol 2022; 106:6915-6932. [PMID: 36184691 DOI: 10.1007/s00253-022-12200-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Pyrethroids, which are synthetic organic insecticides, are widely used in agriculture and households to resist pests and control disease transmission. However, pyrethroids have inevitably caused environmental pollution, leading to concerns for food safety and human health. Bioremediation has emerged as one of the most promising methods to eliminate pyrethroids compounds. Pyrethroid-degrading microorganisms and the relevant enzymes have shown an efficient ability in degrading pyrethroids by hydrolyzing the ester linkage. In this review, a wide variety of pyrethroid-degrading strains were presented and classified from different sources, such as wastewater, soils, and oceans. In addition, the recombinant expression, enzyme identification, and molecular modification of these microbial pyrethroid-degrading enzymes were also compared and discussed in detail. Moreover, the potential applications of pyrethroid-degrading enzymes, including immobilization and biodegradation towards a series of pyrethroids, were also presented. All of the positive results obtained from this review could be a good guideline for the other research in this field. KEY POINTS: • Distribution of pyrethroid-degrading strains in different sources was summarized. • Enzymatic properties including pH, temperature, and substrate specificity were compared. • Promising molecular modification and immobilization of hydrolases were present.
Collapse
|