1
|
Torra J, Alcántara-de la Cruz R, de Figueiredo MRA, Gaines TA, Jugulam M, Merotto A, Palma-Bautista C, Rojano-Delgado AM, Riechers DE. Metabolism of 2,4-D in plants: comparative analysis of metabolic detoxification pathways in tolerant crops and resistant weeds. PEST MANAGEMENT SCIENCE 2024; 80:6041-6052. [PMID: 39132883 DOI: 10.1002/ps.8373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The commercialization of 2,4-D (2,4-dichlorophenoxyacetic acid) latifolicide in 1945 marked the beginning of the selective herbicide market, with this active ingredient playing a pivotal role among commercial herbicides due to the natural tolerance of monocots compared with dicots. Due to its intricate mode of action, involving interactions within endogenous auxin signaling networks, 2,4-D was initially considered a low-risk herbicide to evolve weed resistance. However, the intensification of 2,4-D use has contributed to the emergence of 2,4-D-resistant broadleaf weeds, challenging earlier beliefs. This review explores 2,4-D tolerance in crops and evolved resistance in weeds, emphasizing an in-depth understanding of 2,4-D metabolic detoxification. Nine confirmed 2,4-D-resistant weed species, driven by rapid metabolism, highlight cytochrome P450 monooxygenases in Phase I and glycosyltransferases in Phase II as key enzymes. Resistance to 2,4-D may also involve impaired translocation associated with mutations in auxin/indole-3-acetic acid (Aux/IAA) co-receptor genes. Moreover, temperature variations affect 2,4-D efficacy, with high temperatures increasing herbicide metabolism rates and reducing weed control, while drought stress did not affect 2,4-D efficacy. Research on 2,4-D resistance has primarily focused on non-target-site resistance (NTSR) mechanisms, including 2,4-D metabolic detoxification, with limited exploration of the inheritance and genetic basis underlying these traits. Resistance to 2,4-D in weeds is typically governed by a single gene, either dominant or incompletely dominant, raising questions about gain-of-function or loss-of-function mutations that confer resistance. Future research should unravel the physiological and molecular-genetic basis of 2,4-D NTSR, exploring potential cross-resistance patterns and assessing fitness costs that may affect future evolution of auxin-resistant weeds. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joel Torra
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida - Agrotecnio CERCA Center, Lleida, Spain
| | | | | | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Dean E Riechers
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Sun P, Niu L, He P, Yu H, Chen J, Cui H, Li X. Trp-574-Leu and the novel Pro-197-His/Leu mutations contribute to penoxsulam resistance in Echinochloa crus-galli (L.) P. Beauv. FRONTIERS IN PLANT SCIENCE 2024; 15:1488976. [PMID: 39654963 PMCID: PMC11625580 DOI: 10.3389/fpls.2024.1488976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Recently, due to the widespread use of the acetolactate synthase (ALS)-inhibiting herbicide penoxsulam in paddy fields in China, Echinochloa crus-galli (L.) P. Beauv. has become a problematic grass weed that is frequently not controlled, posing a threat to weed management and rice yield. There are many reports on target-site mutations of ALS inhibiting herbicides; however, the detailed penoxsulam resistance mechanism in E. crus-galli remains to be determined. Greenhouse and laboratory studies were conducted to characterize target-site resistance mechanisms in JL-R, AH-R, and HLJ-R suspected resistant populations of E. crus-galli survived the field-recommended dose of penoxsulam. The whole-plant dose-response testing of E. crus-galli to penoxsulam confirmed the evolution of moderate-level resistance in two populations, JL-R (9.88-fold) and HLJ-R (8.66-fold), and a high-level resistance in AH-R (59.71-fold) population. ALS gene sequencing identified specific mutations in resistant populations, including Pro-197-His in ALS1 for JL-R, Trp-574-Leu in ALS1 for AH-R, and Pro-197-Leu in ALS2 for HLJ-R. In vitro ALS activity assays demonstrated a significantly higher activity in AH-R compared to the susceptible population (YN-S). Molecular docking studies revealed that Trp-574-Leu mutation primarily reduced the enzyme's ability to bind to the triazole-pyrimidine ring of penoxsulam due to decreased π-π stacking interactions, while Pro-197-His/Leu mutations impaired binding to the benzene ring by altering hydrogen bonds and hydrophobic interactions. Additionally, the Pro-197-His/Leu amino acid residue changes resulted in alterations in the shape of the active channel, impeding the efficient entry of penoxsulam into the binding site in the ALS protein. The three mutant ALS proteins expressed via the Bac-to-Bac baculovirus system exhibited notably lower activity inhibition rates than the non-mutant ALS proteins to penoxsulam, indicating all three ALS mutations reduce sensitivity to penoxsulam. This study elucidated the distinct impacts of the Pro-197-His/Leu and Trp-574-Leu mutations in E. crus-galli to penoxsulam resistance. Notably, the Trp-574-Leu mutation conferred stronger resistance to penoxsulam compared to the Pro-197-His/Leu mutations in E. crus-galli. The Pro-197-His/Leu mutations were first detected in E. crus-galli conferring penoxsulam resistance. These findings provide deeper insights into the molecular mechanisms underlying target-site resistance to penoxsulam in E. crus-galli.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangju Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Pszczolińska K, Płonka J, Perkons I, Bartkevics V, Drzewiecki S, Strzałka K, Barchanska H. Study of pesticide transformation processes in different wheat varieties and their effects on plant metabolism. PEST MANAGEMENT SCIENCE 2024; 80:4967-4979. [PMID: 38829276 DOI: 10.1002/ps.8221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND This study aims to obtain systematic understanding of the way by which pesticides are metabolized in plants and the influence of this process on plants' metabolism as this process has a key impact on plant-based food safety and quality. The research was conducted under field conditions, which enabled to capture metabolic processes taking place in plants grown under multihectare cultivation conditions. RESULTS Research was conducted on three wheat varieties cultivated under field conditions and treated by commercially available preparations (fungicides, herbicides, insecticides, and growth regulator). Plant tissues with distinctions in roots, green parts, and ears were collected periodically during spring-summer vegetation period, harvested grains were also investigated. Sample extracts were examined by chromatographic techniques coupled with tandem mass spectrometry for: dissipation kinetics study, identification of pesticide metabolites, and fingerprint-based assessment of metabolic changes. CONCLUSION Tissue type and wheat varieties influenced pesticide dissipation kinetics and resulting metabolites. Metabolic changes of plants were influenced by type of applied pesticide and its concentration in plants tissues. Despite differences in plant metabolic response to pesticide stress during cultivation, grain metabolomes of all investigated wheat varieties were statistically similar. 4-[cyclopropyl(hydroxy)methylidene]-3,5-dioxocyclo-hexanecarboxylic acid and trans-chrysantemic acid - metabolites of crop-applied trinexapac-ethyl and lambda-cyhalothrin, respectively, were identified in cereal grains. These compounds were not considered to be present in cereal grains up to now. The research was conducted under field conditions, enabling the measurement of metabolic processes taking place in plants grown under large-scale management conditions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Klaudia Pszczolińska
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, Sośnicowice, Poland
| | - Joanna Płonka
- Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Gliwice, Poland
| | - Ingus Perkons
- Institute of Food Safety, Animal Health and Environment 'BIOR', Riga, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment 'BIOR', Riga, Latvia
| | - Sławomir Drzewiecki
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, Sośnicowice, Poland
| | - Kazimierz Strzałka
- Malopolska Center of Biotechnology and Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University in Krakow, Krakow, Poland
| | - Hanna Barchanska
- Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
4
|
Weng WF, Yao X, Zhao M, Fang Z, Yang S, Ruan JJ. Novel mutations in acetolactate synthase confer high levels of resistance to tribenuron-methyl in Fagopyrum tataricum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106039. [PMID: 39277366 DOI: 10.1016/j.pestbp.2024.106039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 09/17/2024]
Abstract
Tartary buckwheat (Fagopyrum tataricum) field weeds are rich in species, with many weeds causing reduced quality, yield, and crop failure. The selection of herbicide-resistant Tartary buckwheat varieties, while applying low-toxicity and efficient herbicides as a complementary weed control system, is one way to improve Tartary buckwheat yield and quality. Therefore, the development of herbicide-resistant varieties is important for the breeding of Tartary buckwheat. In this experiment, 50 mM ethyl methyl sulfonate solution was used to treat Tartary buckwheat seeds (M1) and then planted in the field. Harvested seeds (M2) were planted in the experiment field of Guizhou University, and when seedlings had 5-7 leaves, the seedlings were sprayed with 166 mg/L tribenuron-methyl (TBM). A total of 15 resistant plants were obtained, of which three were highly resistant. Using the homologous cloning method, an acetolactate synthase (ALS) gene encoding 547 amino acids was identified in Tartary buckwheat. A GTG (valine) to GGA (glycine) mutation (V409G) occurred at position 409 of the ALS gene in the high tribenuron-methyl resistant mutant sm113. The dm36 mutant harbored a double mutation, a deletion mutation at position 405, and a GTG (valine) to GGA (glycine) mutation (V411G) at position 411. The dm110 mutant underwent a double mutation: an ATG (methionine) to AGG (arginine) mutation (M333R) at position 333 and an insertion mutation at position 372. The synthesis of Chl a, Chl b, total Chl, and Car was significantly inhibited by TBM treatment. TBM was more efficient at suppressing the growth of wild-type plants than that of mutant plants. Antioxidant enzyme activities such as ascorbate peroxidase, peroxidase, and superoxide dismutase were significantly higher in resistant plants than in wild-type after spraying with TBM; malondialdehyde content was significantly lower than in wild-type plants after spraying with TBM. Plants with a single-site mutation in the ALS gene could survive, but their growth was affected by herbicide application. In contrast, plants with dual-site mutations in the ALS gene were not affected, indicating that plants with dual-site mutations in the ALS gene showed higher levels of resistance than plants with a single-site mutation in the ALS gene.
Collapse
Affiliation(s)
- Wen-Feng Weng
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xin Yao
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Mengyu Zhao
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Zhongming Fang
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Sanwei Yang
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Jing-Jun Ruan
- College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
5
|
Chtourou M, Osuna MD, Vázquez-García JG, Lozano-Juste J, De Prado R, Torra J, Souissi T. Pro197Ser and the new Trp574Leu mutations together with enhanced metabolism contribute to cross-resistance to ALS inhibiting herbicides in Sinapis alba. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105882. [PMID: 38685248 DOI: 10.1016/j.pestbp.2024.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 05/02/2024]
Abstract
White mustard, (Sinapis alba), a problematic broadleaf weed in many Mediterranean countries in arable fields has been detected as resistant to tribenuron-methyl in Tunisia. Greenhouse and laboratory studies were conducted to characterize Target-Site Resistance (TSR) and the Non-Target Site Resistance (NTSR) mechanisms in two suspected white mustard biotypes. Herbicide dose-response experiments confirmed that the two S. alba biotypes were resistant to four dissimilar acetolactate synthase (ALS)-pinhibiting herbicide chemistries indicating the presence of cross-resistance mechanisms. The highest resistance factor (>144) was attributed to tribenuron-methyl herbicide and both R populations survived up to 64-fold the recommended field dose (18.7 g ai ha-1). In this study, the metabolism experiments with malathion (a cytochrome P450 inhibitor) showed that malathion reduced resistance to tribenuron-methyl and imazamox in both populations, indicating that P450 may be involved in the resistance. Sequence analysis of the ALS gene detected target site mutations in the two R biotypes, with amino acid substitutions Trp574Leu, the first report for the species, and Pro197Ser. Molecular docking analysis showed that ALSPro197Ser enzyme cannot properly bind to tribenuron-methyl's aromatic ring due to a reduction in the number of hydrogen bonds, while imazamox can still bind. However, Trp574Leu can weaken the binding affinity between the mutated ALS enzyme and both herbicides with the loss of crucial interactions. This investigation provides substantial evidence for the risk of evolving multiple resistance in S. alba to auxin herbicides while deciphering the TSR and NTSR mechanisms conferring cross resistance to ALS inhibitors.
Collapse
Affiliation(s)
- Myriem Chtourou
- University of Carthage, National Institute of Agronomy of Tunisia, LR14AGR02, Department of Plant Health and Environment, 1082, Tunis, Tunisia; Department of Agricultural and Forest Sciences and Engineering, ETSEAFiV, AGROTECNIO-CERCA Center, University of Lleida, Lleida, Spain
| | - Maria D Osuna
- Plant Protection Department, Extremadura Scientific and Technological Research Center (CICYTEX), Ctra. de AV, km 372, Badajoz, 06187, Guadajira, Spain
| | - José G Vázquez-García
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba 14014, Spain
| | - Jorge Lozano-Juste
- Institute for Plant Molecular and Cellular Biology (IBMCP), Polytechnic University of Valencia (UPV), Spanish National Research Council (CSIC), Valencia ES-46022, Spain
| | - Rafael De Prado
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba 14014, Spain
| | - Joel Torra
- Department of Agricultural and Forest Sciences and Engineering, ETSEAFiV, AGROTECNIO-CERCA Center, University of Lleida, Lleida, Spain.
| | - Thouraya Souissi
- University of Carthage, National Institute of Agronomy of Tunisia, LR14AGR02, Department of Plant Health and Environment, 1082, Tunis, Tunisia
| |
Collapse
|
6
|
Grzanka M, Joniec A, Rogulski J, Sobiech Ł, Idziak R, Loryś B. Impact of novel herbicide based on synthetic auxins and ALS inhibitor on weed control. Open Life Sci 2024; 19:20220868. [PMID: 38681726 PMCID: PMC11049747 DOI: 10.1515/biol-2022-0868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Delayed sowing of winter cereals or unfavorable weather conditions in autumn may make it impossible to carry out herbicide treatment in autumn. In such cases, weed control should be started in the spring. During this time, the plantation should be protected as effectively as possible because the weeds are at an advanced stage of growth. Therefore, they are less sensitive to applied herbicides. In the treatment, it is worth using a mixture of different mechanisms of action. Studies were conducted to evaluate the effectiveness of a band of tribenuron-methyl, and MCPA applied as soluble granules in spring control of dicotyledonous in winter cereals. The biological efficacy of herbicides was estimated in the 25 field experiments on winter cereals in Poland. Postemergence, a spring application of tribenuron-methyl + MCPA, effectively controls the majority of weed species present in spring: Anthemis arvensis, Brassica napus, Capsella bursa-pastoris, Centaurea cyanus, Lamium purpureum, Matricaria chamomilla, Tripleurospermum inodorum, Stellaria media and Thlaspi arvense. Satisfactory control was confirmed for Veronica persica, Viola arvensis, and Galium aparine. Tribenuron-methyl with MCPA is recommended for application to winter cereals in spring. To prevent the development of resistance in weeds, it is advantageous to combine two active substances.
Collapse
Affiliation(s)
- Monika Grzanka
- Agronomy Department, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637Poznan, Poland
| | - Andrzej Joniec
- Ciech Sarzyna S.A., ul. Chemików 1, 37-310Nowa Sarzyna, Poland
| | - Janusz Rogulski
- Ciech Sarzyna S.A., ul. Chemików 1, 37-310Nowa Sarzyna, Poland
| | - Łukasz Sobiech
- Agronomy Department, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637Poznan, Poland
| | - Robert Idziak
- Agronomy Department, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637Poznan, Poland
| | - Barbara Loryś
- Ciech Sarzyna S.A., ul. Chemików 1, 37-310Nowa Sarzyna, Poland
| |
Collapse
|
7
|
Koreki A, Michel S, Lebeaux C, Trouilh L, Délye C. Prevalence, spatial structure and evolution of resistance to acetolactate-synthase (ALS) inhibitors and 2,4-D in the major weed Papaver rhoeas (L.) assessed using a massive, country-wide sampling. PEST MANAGEMENT SCIENCE 2024; 80:637-647. [PMID: 37752099 DOI: 10.1002/ps.7791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Corn poppy (Papaver rhoeas) is the most damaging broadleaf weed in France. Massively parallel amplicon sequencing was used to investigate the prevalence, mode of evolution and spread of resistance-endowing ALS alleles in 422 populations randomly sampled throughout poppy's range in France. Bioassays were used to detect resistance to the synthetic auxin 2,4-D in 43 of these populations. RESULTS A total of 21 100 plants were analysed and 24 mutant ALS alleles carrying an amino-acid substitution involved or potentially involved in resistance were identified. The vast majority (97.6%) of the substitutions occurred at codon Pro197, where all six possible single-nucleotide non-synonymous substitutions plus four double-nucleotide substitutions were identified. Changes observed in the enzymatic properties of the mutant ALS isoforms could not explain the differences in prevalence among the corresponding alleles. Sequence read analysis showed that mutant ALS alleles had multiple, independent evolutionary origins, and could have evolved several times independently within an area of a few kilometres. Finally, 2,4-D resistance was associated with mutant ALS alleles in individual plants in one third of the populations assayed. CONCLUSION The intricate geographical mosaic of mutant ALS alleles observed is the likely result of the combination of huge population sizes, multiple independent mutation events and human-mediated spread of resistance. Our work highlights the ability of poppy populations and individual plants to accumulate different ALS alleles and as yet unknown mechanisms conferring resistance to synthetic auxins. This does not bode well for the continued use of chemical herbicides to control poppy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Lidwine Trouilh
- Plateforme GeT-Biopuces, TBI, Université de Toulouse, CNRS, INRAE, INSA, Genotoul, Toulouse, France
| | | |
Collapse
|
8
|
Han Y, Sun Y, Ma H, Wang R, Lan Y, Gao H, Huang Z. Target-site and non-target-site based resistance to clodinafop-propargyl in wild oats (Avena fatua L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105650. [PMID: 38072525 DOI: 10.1016/j.pestbp.2023.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023]
Abstract
Wild oat (Avena fatua L.) is a common and problematic weed in wheat fields in China. In recent years, farmers found it increasingly difficult to control A. fatua using acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. The purpose of this study was to identify the molecular basis of clodinafop-propargyl resistance in A. fatua. In comparison to the S1496 population, whole dose response studies revealed that the R1623 and R1625 populations were 71.71- and 67.76-fold resistant to clodinafop-propargyl, respectively. The two resistant A. fatua populations displayed high resistance to fenoxaprop-p-ethyl (APP) and low resistance to clethodim (CHD) and pinoxaden (PPZ), but they were still sensitive to the ALS inhibitors mesosulfuron-methyl and pyroxsulam. An Ile-2041-Asn mutation was identified in both resistant individual plants. The copy number and relative expression of the ACCase gene in the resistant population were not significantly different from those in the S1496 population. Under the application of 2160 g ai ha -1 of clodinafop-propargyl, the fresh weight of the R1623 population was reduced to 74.9%; however, pretreatment with the application of the cytochrome P450 inhibitor malathion and the GST inhibitor NBD-Cl reduced the fresh weight to 50.91% and 47.16%, respectively, which proved the presence of metabolic resistance. This is the first report of an Ile-2041-Asn mutation and probable metabolic resistance in A. fatua, resulting in resistance to clodinafop-propargyl.
Collapse
Affiliation(s)
- Yujun Han
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Ying Sun
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hong Ma
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Ruolin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuning Lan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haifeng Gao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Urumqi 830091, China.
| | - Zhaofeng Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Dolui D, Hasanuzzaman M, Fujita M, Adak MK. 2,4-D mediated moderation of aluminum tolerance in Salvinia molesta D. Mitch. with regards to bioexclusion and related physiological and metabolic changes. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:27-44. [PMID: 37259532 DOI: 10.1080/15226514.2023.2216311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We examined the efficacy of 2,4-dichlorophenoxy acetic acid (2,4-D; 500 µM) in enhancing the potential of Salvinia species for tolerance to aluminum (Al) toxicity (240 and 480 µM, seven days). Salvinia showed better efficacy in removal of toxicity of Al by sorption mechanism with changes of bond energy shifting on cell wall residues and surface structure. Plants recorded tolerance to Al concentration (480 µM) when pretreated with 2,4-D through adjustment of relative water content, proline content, osmotic potential, and improved the pigment fluorescence for energy utilization under Al stress. Photosynthetic activities with regards to NADP-malic enzyme and malic dehydrogenase and sugar metabolism with wall and cytosolic invertase activities were strongly correlated with compatible solutes. A less membrane peroxidation and protein carbonylation had reduced ionic loss over the membrane that was studied with reduced electrolyte leakage with 2,4-D pretreated plants. Membrane stabilization was also recorded with higher ratio of K+ to Na+, thereby suggesting roles of 2,4-D in ionic balance. Better sustenance of enzymatic antioxidation with peroxidase and glutathione metabolism reduced reactive oxygen species accumulation and save the plant for oxidative damages. Moreover, gene polymorphism for antioxidant, induced by 2,4-D varied through Al concentrations would suggest an improved biomarker for tolerance. Collectively, analysis and discussion of plant's responses assumed that auxin herbicide could be a potential phytoprotectant for Salvinia as well as improving the stability to Al toxicity and its bioremediation efficacy.
Collapse
Affiliation(s)
- Debabrata Dolui
- Department of Botany, Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, University of Kalyani, Kalyani, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Takamatsu, Japan
| | - Malay Kumar Adak
- Department of Botany, Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, University of Kalyani, Kalyani, India
| |
Collapse
|
10
|
Palma-Bautista C, Vázquez-García JG, Osuna MD, Garcia-Garcia B, Torra J, Portugal J, De Prado R. An Asp376Glu substitution in ALS gene and enhanced metabolism confers high tribenuron-methyl resistance in Sinapis alba. FRONTIERS IN PLANT SCIENCE 2022; 13:1011596. [PMID: 36438121 PMCID: PMC9692003 DOI: 10.3389/fpls.2022.1011596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/14/2022] [Indexed: 06/12/2023]
Abstract
Acetolactate synthase (ALS) inhibiting herbicides (group 2) have been widely applied for the last 20 years to control Sinapis alba in cereal crops from southern Spain. In 2008, a tribenuron-methyl (TM) resistant (R) S. alba population was first reported in a cereal field in Malaga (southern Spain). In 2018, three suspected R S. alba populations (R1, R2 and R3) to TM were collected from three different fields in Granada (southern Spain, 100 km away from Malaga). The present work aims to confirm the putative resistance of these populations to TM and explore their resistance mechanisms. Dose-response assays showed that the R1, R2 and R3 populations ranging between 57.4, 44.4 and 57.1 times more resistance to TM than the susceptible population (S). A mutation in the ALS gene (Asp376Glu) was detected in the Rs S. alba populations. 14C-metabolism studies show that metabolites and TM were changing significantly faster in the R than in the S plants. Alternative chemical control trials showed that 2,4-D and MCPA (auxin mimics), glyphosate (enolpyruvyl shikimate phosphate synthase,EPSPS, inhibitor-group 9), metribuzin (PSII inhibitors/Serine 264 Binders, -group 5) and mesotrione (hydroxyphenyl pyruvate dioxygenase, HPPD, inhibitor-group 27) presented a high control of the four populations of S. alba tested, both S and R. Based on these results, it is the first case described where the Asp376Glu mutation and P450-mediated metabolism participates in resistance to TM in S. alba. Comparing these results with those found in the S. alba population in Malaga in 2008, where the resistance was TSR type (Pro197Ser), we can suggest that despite the geographical proximity (over 100 km), the resistance in these cases was due to different evolutionary events.
Collapse
Affiliation(s)
| | | | - Maria D. Osuna
- Plant Protection Department, Scientific and Technological Research Centre of Extremadura (CICYTEX), Guadajira, Badajoz, Spain
| | - Blanca Garcia-Garcia
- Plant Protection Department, Scientific and Technological Research Centre of Extremadura (CICYTEX), Guadajira, Badajoz, Spain
| | - Joel Torra
- Department of Hortofructiculture, Botany and Gardening, Agrotecnio-CERCA Center, University of Lleida, Lleida, Spain
| | - Joao Portugal
- Biosciences Department, Polytechnic Institute of Beja, Beja, Portugal
| | - Rafael De Prado
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| |
Collapse
|