1
|
Lee H, An G, Lim W, Song G. Flusilazole induced developmental toxicity, neurotoxicity, and cardiovascular toxicity via apoptosis and oxidative stress in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109993. [PMID: 39106914 DOI: 10.1016/j.cbpc.2024.109993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Flusilazole is a well-known triazole fungicide applied to various crops and fruits worldwide. Flusilazole residues are frequently detected in the environment, and many researchers have reported the hazardous effects of flusilazole on non-target organisms; however, the developmental toxicity of flusilazole has not been fully elucidated. In this study, we investigated flusilazole-induced developmental defects in zebrafish, which are used in toxicology studies to assess the toxic effects of chemicals on aquatic species or vertebrates. We confirmed that flusilazole exposure affected the viability and hatching rate of zebrafish larvae, and resulted in morphological defects, reduced body length, diminished eye and head sizes, and inflated pericardial edema. Apoptosis, oxidative stress, and inflammation were also observed. These factors interrupted the normal organ formation during early developmental stages, and transgenic models were used to identify organ defects. We confirmed the effects of flusilazole on the nervous system using olig2:dsRed transgenic zebrafish, and on the cardiovascular system using cmlc2:dsRed and fli1:eGFP transgenic zebrafish. Our results demonstrate the developmental toxicity of flusilazole and its mechanisms in zebrafish as well as the detrimental effects of flusilazole.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California, USA
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Lee H, Lim W, Kweon J, Park J, Kim J, Bazer FW, Song G, Ham J. Resmethrin induces implantation failure by disrupting calcium homeostasis and forcing mitochondrial defects in porcine trophectoderm and uterine luminal epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176441. [PMID: 39307359 DOI: 10.1016/j.scitotenv.2024.176441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Resmethrin, a type I pyrethroid insecticide, is frequently used globally in residential and farmland areas to control pests. Owing to the repeated administration of resmethrin, and particularly because of its lipophilic nature, residues have been detected in various environments, crops, and livestock. Previous studies have shown the adverse effects of resmethrin, including neurotoxicity and hepatotoxicity. However, the toxic effects of resmethrin on the female reproductive system have rarely been investigated. In the present study, we used two cell types, porcine trophectoderm (pTr) and porcine uterine luminal epithelial (pLE) cells, to examine the toxic effects of resmethrin on implantation and its mechanisms. Our study showed that resmethrin exposure induced apoptosis and inhibited cell cycle progression, thereby reducing the viability of both cell types. In addition, calcium homeostasis was disrupted following resmethrin treatment, and disrupted calcium homeostasis impaired the mitochondrial membrane potential and mitochondrial respiration. In addition to mitochondrial dysfunction, GRP75 and ER stress-related proteins were upregulated. Furthermore, the AKT and MAPK cascades were altered, and reactive oxygen species production and inflammation occurred after resmethrin treatment. Ultimately, through various mechanisms, resmethrin decreased the migratory abilities, and it could diminish the crosstalk between the two cell lines and lower the probability of successful implantation. Overall, we demonstrated that resmethrin interfered with the implantation process by triggering various toxic mechanisms. This study presents, for the first time, evidence regarding the mechanisms through which resmethrin exerts toxic effects on the female reproductive system, thereby raising awareness regarding the potential implications of its widespread use.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junhun Kweon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jinyoung Kim
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Jiyeon Ham
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
3
|
Sung E, Park W, Park J, Bazer FW, Song G, Lim W. Meptyldinocap induces implantation failure by forcing cell cycle arrest, mitochondrial dysfunction, and endoplasmic reticulum stress in porcine trophectoderm and endometrial luminal epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171524. [PMID: 38453072 DOI: 10.1016/j.scitotenv.2024.171524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Meptyldinocap is a dinitrophenol fungicide used to control powdery mildew. Although other dinitrophenol pesticides have been found to exhibit reproductive toxicity, studies of meptyldinocaps are scarce. This study investigated the adverse effects of meptyldinocap on porcine trophectoderm (pTr) and porcine endometrial luminal epithelial (pLE) cells, which play crucial roles in implantation. We confirmed that meptyldinocap decreased cell viability, induced apoptosis, and inhibited proliferation by decreasing proliferation-related gene expression and inducing changes in the cell cycle. Furthermore, meptyldinocap treatment caused mitochondrial dysfunction, endoplasmic reticulum stress, and disruption of calcium homeostasis. Moreover, it induces alterations in mitogen-activated protein kinase signaling cascades and reduces the migration ability, leading to implantation failure. Our findings suggest that meptyldinocap reduces the cellular functions of pTr and pLE cells, which are important for the implantation process, and interferes with interactions between the two cell lines, potentially leading to implantation failure. We also propose a mechanism by which the understudied fungicide meptyldinocap exerts its cytotoxicity.
Collapse
Affiliation(s)
- Eunho Sung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Wonhyoung Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, USA
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
4
|
Malhat F, Mahmoud M, Barakat DA, Ibrahim ED, Elgammal H, Hussien M, Saber AN. Dissipation behavior, residue distribution, and exposure risk assessment of tebufenpyrad and milbemectin acaricides in strawberries under open field conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35194-35205. [PMID: 38724845 DOI: 10.1007/s11356-024-33200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/31/2024] [Indexed: 05/30/2024]
Abstract
Strawberries are a favorite fruit for most people, but the residues of pesticides on strawberries might be risky to human health. Tebufenpyrad and milbemectin are broad-spectrum acaricides with insecticide properties authorized for use on strawberries in Egypt. As a result, it is crucial to investigate their residues in the final product to ensure customers' safety. Consequently, field trials were conducted following the Good Agricultural Practices (GAPs) to study the dissipation rate and terminal residues of tebufenpyrad and milbemectin on strawberries. Tebufenpyrad and milbemectin residues in strawberries declined due to first-order decay process, showing significant degradation (88.5% and 94.7%, respectively) after 14 days. Risk assessment study was carried out by comparing the national estimated daily intake (NEDI) to the acceptable daily intake (ADI). The results demonstrated that the dietary risk posed by the residues of tebufenpyrad and milbemectin in strawberry fruits was acceptable for consumers. It is envisaged that the current study's findings would support the safe application of tebufenpyrad and milbemectin to strawberries and perhaps other crops in Egypt and other countries with similar climatic conditions.
Collapse
Affiliation(s)
- Farag Malhat
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, 12618, Giza, Egypt
| | - Mostafa Mahmoud
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Dalia A Barakat
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - El-Desoky Ibrahim
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Hassan Elgammal
- Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods, Agricultural Research Center, Dokki, 12311, Giza, Egypt
| | - Mohamed Hussien
- Department of Chemistry, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
- Department of Pesticide Formulation, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, 12618, Giza, Egypt
| | - Ayman N Saber
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, 12618, Giza, Egypt.
| |
Collapse
|
5
|
Park J, Lee H, Kweon J, Park S, Ham J, Bazer FW, Song G. Mechanisms of female reproductive toxicity in pigs induced by exposure to environmental pollutants. Mol Cells 2024; 47:100065. [PMID: 38679414 PMCID: PMC11143778 DOI: 10.1016/j.mocell.2024.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Environmental pollutants, including endocrine disruptors, heavy metals, nanomaterials, and pesticides, have been detected in various ecosystems and are of growing global concern. The potential for toxicity to non-target organisms has consistently been raised and is being studied using various animal models. In this review, we focus on pesticides frequently detected in the environment and investigate their potential exposure to livestock. Owing to the reproductive similarities between humans and pigs, various in vitro porcine models, such as porcine oocytes, trophectoderm cells, and luminal epithelial cells, are used to verify reproductive toxicity. These cell lines are being used to study the toxic mechanisms induced by various environmental toxicants, including organophosphate insecticides, pyrethroid insecticides, dinitroaniline herbicides, and diphenyl ether herbicides, which persist in the environment and threaten livestock health. Collectively, these results indicate that these pesticides can induce female reproductive toxicity in pigs and suggest the possibility of adverse effects on other livestock species. These results also indicate possible reproductive toxicity in humans, which requires further investigation.
Collapse
Affiliation(s)
- Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junhun Kweon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Gyeongnam 52725, Republic of Korea
| | - Jiyeon Ham
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Lee H, Park W, An G, Park J, Lim W, Song G. Hexaconazole induces developmental toxicities via apoptosis, inflammation, and alterations of Akt and MAPK signaling cascades. Comp Biochem Physiol C Toxicol Pharmacol 2024; 279:109872. [PMID: 38423198 DOI: 10.1016/j.cbpc.2024.109872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Hexaconazole is a highly effective triazole fungicide that is frequently applied in various countries to elevate crop productivity. Given its long half-life and high water solubility, this fungicide is frequently detected in the environment, including water sources. Moreover, hexaconazole exerts hazardous effects on nontarget organisms. However, little is known about the toxic effects of hexaconazole on animal development. Thus, this study aimed to investigate the developmental toxicity of hexaconazole to zebrafish, a valuable animal model for toxicological studies, and elucidate the underlying mechanisms. Results showed that hexaconazole affected the viability and hatching rate of zebrafish at 96 h postfertilization. Hexaconazole-treated zebrafish showed phenotypic defects, such as reduced size of head and eyes and enlarged pericardiac edema. Moreover, hexaconazole induced apoptosis, DNA fragmentation, and inflammation in developing zebrafish. Various organ defects, including neurotoxicity, cardiovascular toxicity, and hepatotoxicity, were observed in transgenic zebrafish models olig2:dsRed, fli1:eGFP, and l-fabp:dsRed. Furthermore, hexaconazole treatment altered the Akt and MAPK signaling pathways, which possibly triggered the organ defects and other toxic mechanisms. This study demonstrated the developmental toxicity of hexaconazole to zebrafish and elucidated the underlying mechanisms.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Wonhyoung Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Hong T, Park S, An G, Bazer FW, Song G, Lim W. Norflurazon causes cell death and inhibits implantation-related genes in porcine trophectoderm and uterine luminal epithelial cells. Food Chem Toxicol 2024; 186:114559. [PMID: 38432436 DOI: 10.1016/j.fct.2024.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Norflurazon, an inhibitor of carotenoid synthesis, is a pre-emergent herbicide that prevents growth of weeds. The norflurazon is known to hamper embryo development in non-mammals. However, specific toxic effects of norflurazon on mammalian maternal and fetal cells have not been elucidated. Thus, the hypothesis of this study is that norflurazon may influence the toxic effects between maternal and fetal cells during early pregnancy in pigs. We aimed to examine the toxic effects of norflurazon in porcine trophectoderm (Tr) and uterine luminal epithelium (LE) cells. Norflurazon, administered at 0, 20, 50 or 100 μM for 48 h was used to determine its effects on cell proliferation and cell-cycle arrest. For both uterine LE and Tr cell lines, norflurazone caused mitochondrial dysfunction by inhibiting mitochondrial respiration and ATP production, and down-regulated expression of mRNAs of mitochondrial complex genes. Norflurazon increased cell death by increasing intracellular calcium and regulating PI3K and MAPK cell signaling pathways, as well as endoplasmic reticulum (ER) stress, ER-mitochondrial contact, and autophagy-related target proteins. Norflurazone also inhibited expression of genes required for implantation of blastocysts, including SMAD2, SMAD4, and SPP1. These findings indicate that norflurazon may induce implantation failure in pigs and other mammals through adverse effects on both Tr and uterine LE cells.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sunwoo Park
- Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju-si, Gyeongnam, 52725, Republic of Korea
| | - Garam An
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Lee H, An G, Park J, Lim W, Song G. Molinate induces organ defects by promoting apoptosis, inflammation, and endoplasmic reticulum stress during the developmental stage of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163768. [PMID: 37146827 DOI: 10.1016/j.scitotenv.2023.163768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Molinate is classified as a thiocarbamate herbicide and is mainly used in paddy fields to culture rice. However, the toxic effects of molinate and the associated mechanisms in the process of development have not been completely elucidated. Therefore, in the present study, we demonstrated that molinate reduced the viability of zebrafish larvae and the probability of successful hatching using zebrafish (Danio rerio), one of the remarkable in vivo models for testing the toxicity of chemicals. In addition, molinate treatment triggered the occurrence of apoptosis, inflammation, and endoplasmic reticulum (ER) stress response in zebrafish larvae. Furthermore, we identified that an abnormal cardiovascular phenotype through wild type zebrafish, neuronal defects through transgenic olig2:dsRed zebrafish, and developmental toxicity in the liver through transgenic lfabp:dsRed zebrafish. Collectively, these results provide evidence of the hazardous effects of molinate on the developmental stage of non-target organisms by elucidating the toxic mechanisms of molinate in developing zebrafish.
Collapse
Affiliation(s)
- Hojun Lee
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|