1
|
Wang J, Shi Z, Wu Z, Wang H, Qi H, Sheng Q, Zhang S, Song J, Wang J, Zhang L, Cheng C. Molluscicidal activity and biochemical impacts of borrelidins against an aquatic invasive snail Pomacea canaliculata for crop protection. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106105. [PMID: 39277409 DOI: 10.1016/j.pestbp.2024.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
The invasive golden apple snail Pomacea canaliculata is one of the devastating threats to aquatic ecosystems and wetland agriculture worldwide. Macrolides from microbes display various advantages over other compounds in controlling snails. However, emergence of antibiotic-resistant phenotypes against certain macrolides in the field appeals for exploring more effectively molluscicidal macrolides. Here, two borrelidins, borrelidin BN1 and BN2, from the extract of a Streptomyces strain fermentation were evaluated for molluscicidal potential against P. canaliculata using both immersion and contact bioassay methods. Borrelidin BN1 (borrelidin A) presented a significant molluscicidal activity comparable to the chemical pesticide metaldehyde, and had a much lower median lethal concentration value (LC50, 522.984 μg·ml-1) than avermectin B1 at 72 h of contact-killing treatment. Snail growth was inhibited by borrelidin BN1 more than by metaldehyde at sublethal concentrations, consistent with responses of key biochemical parameters. Exposure to borrelidin BN1 decreased the activity of acetylcholinesterase (AChE), glutathione S-transferase (GST), aspartate aminotransferase (AST), alanine aminotransferase (ALT) as well as the levels of energy reserves and sex steroids in snail tissues, while increased the activity of superoxide dismutase (SOD), catalase (CAT), lactate dehydrogenase (LDH) and the level of lipid peroxidation (LPO). Further application assay confirmed that borrelidin BN1 protected crop plant Zizania latifolia from P. canaliculata damage via suppressing snail population density. These findings suggest great potential of borrelidin BN1 as a molluscicide. Additionally, its higher activity than the stereoisomeric borrelidin BN2 (borrelidin F) implied better molluscicidal borrelidins could be acquired through structural optimization.
Collapse
Affiliation(s)
- Jingyan Wang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Zhihang Shi
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Zihuan Wu
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Han Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Huan Qi
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Qiang Sheng
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Shaoyong Zhang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Junhuan Song
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Jidong Wang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Liqin Zhang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Chihang Cheng
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313000, China; Department of Biology, Lund University, Lund 223 62, Sweden.
| |
Collapse
|
2
|
He D, Li C, Su Q, Lin Y, Zou Z. Screening the Efficacy and Safety of Molluscicides from Three Leaf Extracts of Chimonanthus against the Invasive Apple Snail, Pomacea canaliculata. Molecules 2024; 29:2487. [PMID: 38893362 PMCID: PMC11173541 DOI: 10.3390/molecules29112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Pomacea canaliculata, the invasive snail, is a host of the parasitic nematode Angiostrongylus cantonensis, which has adverse effects on the agriculture system and human health. This work evaluated the molluscicidal activity of petroleum ether extracts (PEEs) from three species of Chimonanthus against the snail P. canaliculate. Pcp (PEE of C. praecox) showed the most effective molluscicide activity. Sixty-one compounds were identified by GC-MS and the main components were terpenoids and fatty acids. The half-lethal concentration (LC50) of Pcp at 24 h (0.27 mg/mL) and 48 h (0.19 mg/mL) was used to evaluate the biochemical alterations in snail tissue. These sublethal concentrations caused the levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activity to increase, while acetylcholinesterase (AChE) activity decreased. Also, under LC50 treatment, several histological changes were observed in the hepatopancreas and foot of the snail compared with the control group. Moreover, the toxic test in rice demonstrated that Pcp has low toxicity. These results suggest that Pcp could be developed as an effective molluscicide for P. canaliculata control.
Collapse
Affiliation(s)
- Deying He
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China; (D.H.); (C.L.); (Q.S.); (Y.L.)
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Nanchang 330022, China
| | - Cheng Li
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China; (D.H.); (C.L.); (Q.S.); (Y.L.)
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Nanchang 330022, China
| | - Qitao Su
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China; (D.H.); (C.L.); (Q.S.); (Y.L.)
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Nanchang 330022, China
| | - Yiying Lin
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China; (D.H.); (C.L.); (Q.S.); (Y.L.)
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Nanchang 330022, China
| | - Zhengrong Zou
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China; (D.H.); (C.L.); (Q.S.); (Y.L.)
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Nanchang 330022, China
| |
Collapse
|
3
|
Elkady EF, Ayoub HA, Ibrahim AM. Molluscicidal activity of calcium borate nanoparticles with kodom ball-flower structure on hematological, histological and biochemical parameters of Eobania vermiculata snails. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105716. [PMID: 38225073 DOI: 10.1016/j.pestbp.2023.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Land snails are the most harmful pests in agricultural fields. Eobania vermiculata is a widespread snail species that causes massive damage to all agricultural crops. Thus, the molluscicidal activity of calcium borate nanoparticles (CB-NPs) against Eobania vermiculata was evaluated and compared with metaldehyde (Gastrotox® E 5% G). The amorphous phase of CB-NPs was obtained after thermal treatment at a low temperature (500 °C) which conformed by X-ray diffraction (XRD) analysis. CB-NPs are composed of aggregated nano-sheets with an average thickness of 54 nm which enhanced their molluscicidal activity. These nano-sheets displayed meso-porous network architecture with pore diameters of 13.65 nm, and a 9.46 m2/g specific surface area. CB-NPs and metaldehyde (Gastrotox® E 5% G) exhibited molluscicidal effects on Eobania vermiculata snails with median lethal concentrations LC50 of 175.3 and 60.5 mg/l, respectively, after 72 h of exposure. The results also showed significant reductions of Eobania vermiculata snails hemocytes' mean total number, the levels of Testosterone (T) and Estrogen (E), alkaline phosphatase, acid phosphatase, albumin, and protein concentrations, succinate dehydrogenase, glucose, triglycerides and phospholipids levels, while significant increases in the phagocytic index and mortality index, both transaminases (ALT and AST) and glycogen phosphorylase concentration were observed after the exposure to LC50 of CB-NPs or metaldehyde (Gastrotox® E 5% G) compared to the control group. Therefore, CB-NPs could be used as an alternative molluscicide for controlling Eobania vermiculata, but further studies are needed to assess their effects on non-target organisms.
Collapse
Affiliation(s)
| | - Haytham A Ayoub
- Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| |
Collapse
|