1
|
Miyakawa M, Oda H, Tanaka M. Clinical research review: usefulness of bovine lactoferrin in child health. Biometals 2022; 36:473-489. [PMID: 35941293 PMCID: PMC10182119 DOI: 10.1007/s10534-022-00430-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
Abstract
Lactoferrin (LF) is abundant in human milk and plays an important role in the health of children. Bovine LF (bLF) has high homology with human LF and has been reported to have multiple biological functions. Several clinical studies have been conducted considering these properties, which reported the usefulness of bLF. This review was aimed to provide an overview of the clinical evidence in children. We searched clinical reports investigating the effects of bLF in children and identified 36 studies on the role of bLF in infections, iron metabolism, body growth, cerebral development, and fecal microbiome. Considering the accumulated evidence, bLF may contribute to the child health, particularly by suppressing or alleviating gastrointestinal and respiratory symptoms, and improving the iron status of children with anemia or those at high risk of anemia. The dose of bLF varies depending on the expected effect and target age, but may not necessarily have to be as high as human LF in human milk. Some of the beneficial effects of bLF have not been fully validated due to limited clinical evidence or being observed in the secondary analysis of some studies. Further clinical evidence would add significant value to the use of bLF in child health.
Collapse
Affiliation(s)
- Momoko Miyakawa
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry, Co., Ltd., Zama, Kanagawa, Japan
| | - Hirotsugu Oda
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry, Co., Ltd., Zama, Kanagawa, Japan.
| | - Miyuki Tanaka
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry, Co., Ltd., Zama, Kanagawa, Japan
| |
Collapse
|
2
|
Recombinant Enterococcus faecium Expressing Porcine Lactoferricin Exerts Bactericidal Effects and Protects Against Enterotoxigenic Escherichia coli in Mice. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Wang N, Jiang X, Xu X, Liu Y, Liu L, Lu A, Lu J, Luan Y. An aptamer affinity column for purification and enrichment of lactoferrin in milk. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1178:122724. [PMID: 34219038 DOI: 10.1016/j.jchromb.2021.122724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
Abstract
As an active glycoprotein with high nutritional value, lactoferrin is widely used in food and medical treatment. Therefore, it is very important to establish an accurate and efficient detection method for lactoferrin. At present, the detection of lactoferrin in milk faces many challenges, such as low separation degree and poor parallelism. To address this issue, we developed an aptamer affinity column (AAC) for purification and enrichment of lactoferrin in milk. The column was prepared by covalent conjugation of an amino-modified aptamer with NHS-activated Sepharose. The washing buffer type (0.01 mol/L phosphate buffer) and volume (10 mL) and the sodium chlorideconcentration (1 mol/L) in the elution buffer were optimized for the AAC method. The performance of the AAC was then evaluated in terms of the column capacity, specificity, stability, and reusability. The column capacity was 500 ± 13.7 μg and the column could be reused up to ten times with a large loss in performance. The AAC method combined with high-performance liquid chromatography gave excellent linearity over a wide range, good sensitivity with a limit of detection of 3 μg/mL, and acceptable recoveries for different concentrations of lactoferrin spiked in real raw milk samples from cattle. Finally, the AAC was successfully applied to analyze lactoferrin in milk. This method could be applied to routine analysis of samples for lactoferrin in testing laboratories and dairy factories.
Collapse
Affiliation(s)
- Nan Wang
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China; Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Xiaoqian Jiang
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China; Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Xiaoling Xu
- Laboratory of Animal Production, Institute of Animal Husbandry and Veterinary Medicine, Beijing 100097, China
| | - Yan Liu
- Laboratory of Animal Production, Institute of Animal Husbandry and Veterinary Medicine, Beijing 100097, China
| | - Longfei Liu
- Beijing Biotai Co., Ltd, Beijing 100097, China
| | - Anxiang Lu
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Jinghua Lu
- College of Pharmacy, Jinzhou Medical University, Jinzhou 121001, China.
| | - Yunxia Luan
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|
4
|
Chen H, Wang Z, Fan F, Shi P, Xu X, Du M, Wang C. Analysis Method of Lactoferrin Based on Uncoated Capillary Electrophoresis. EFOOD 2021. [DOI: 10.2991/efood.k.210720.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
5
|
Xiong L, Ren F, Lv J, Zhang H, Guo H. Lactoferrin attenuates high-fat diet-induced hepatic steatosis and lipid metabolic dysfunctions by suppressing hepatic lipogenesis and down-regulating inflammation in C57BL/6J mice. Food Funct 2018; 9:4328-4339. [DOI: 10.1039/c8fo00317c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lactoferrin was reported to exert modulatory effects on lipid metabolism, but the regulatory mechanisms remain unclear.
Collapse
Affiliation(s)
- Ling Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Jiayi Lv
- Key Laboratory of Functional Dairy
- Co-constructed by the Ministry of Education and Beijing Government
- China Agricultural University
- Beijing 100083
- China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| |
Collapse
|
6
|
Fan F, Shi P, Liu M, Chen H, Tu M, Lu W, Du M. Lactoferrin preserves bone homeostasis by regulating the RANKL/RANK/OPG pathway of osteoimmunology. Food Funct 2018; 9:2653-2660. [DOI: 10.1039/c8fo00303c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin preserves bone homeostasis via the osteoimmunology pathway.
Collapse
Affiliation(s)
- Fengjiao Fan
- Department of Food Science and Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
- School of Food Science and Technology
| | - Pujie Shi
- Department of Food Science and Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Meng Liu
- Department of Food Science and Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Hui Chen
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Maolin Tu
- Department of Food Science and Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Weihong Lu
- Department of Food Science and Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
| | - Ming Du
- Department of Food Science and Engineering
- Harbin Institute of Technology
- Harbin 150090
- China
- School of Food Science and Technology
| |
Collapse
|
7
|
Kanwar JR, Kanwar RK, Stathopoulos S, Haggarty NW, MacGibbon AKH, Palmano KP, Roy K, Rowan A, Krissansen GW. Comparative activities of milk components in reversing chronic colitis. J Dairy Sci 2016; 99:2488-2501. [PMID: 26805965 DOI: 10.3168/jds.2015-10122] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD) is a poorly understood chronic immune disorder for which there is no medical cure. Milk and colostrum are rich sources of bioactives with immunomodulatory properties. Here we compared the therapeutic effects of oral delivery of bovine milk-derived iron-saturated lactoferrin (Fe-bLF), angiogenin, osteopontin (OPN), colostrum whey protein, Modulen IBD (Nestle Healthsciences, Rhodes, Australia), and cis-9,trans-11 conjugated linoleic acid (CLA)-enriched milk fat in a mouse model of dextran sulfate-induced colitis. The CLA-enriched milk fat significantly increased mouse body weights after 24d of treatment, reduced epithelium damage, and downregulated the expression of proinflammatory cytokines and nitrous oxide. Modulen IBD most effectively decreased the clinical score at d 12, and Modulen IBD and OPN most effectively lowered the inflammatory score. Myeloperoxidase activity that denotes neutrophil infiltration was significantly lower in mice fed Modulen IBD, OPN, angiogenin, and Fe-bLF. A significant decrease in the numbers of T cells, natural killer cells, dendritic cells, and a significant decrease in cytokine expression were observed in mice fed the treatment diets compared with dextran sulfate administered mice. The Fe-bLF, CLA-enriched milk fat, and Modulen IBD inhibited intestinal angiogenesis. In summary, each of the milk components attenuated IBD in mice, but with differing effectiveness against specific disease parameters.
Collapse
Affiliation(s)
- J R Kanwar
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia.
| | - R K Kanwar
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand; Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | | | - N W Haggarty
- Fonterra Research Centre, Palmerston North, New Zealand
| | | | - K P Palmano
- Fonterra Research Centre, Palmerston North, New Zealand
| | - K Roy
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - A Rowan
- Fonterra Research Centre, Palmerston North, New Zealand
| | - G W Krissansen
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
8
|
Schellekens H, Nongonierma AB, Clarke G, van Oeffelen WE, FitzGerald RJ, Dinan TG, Cryan JF. Milk protein-derived peptides induce 5-HT2C-mediated satiety in vivo. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2014.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Visioli F, Strata A. Milk, dairy products, and their functional effects in humans: a narrative review of recent evidence. Adv Nutr 2014; 5:131-43. [PMID: 24618755 PMCID: PMC3951796 DOI: 10.3945/an.113.005025] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Milk is a widely consumed beverage that is essential to the diet of several millions of people worldwide because it provides important macro- and micronutrients. Milk is recognized as being useful during childhood and adolescence because of its composition; however, its relatively high saturated fat proportion raises issues of potential detrimental effects, namely on the cardiovascular system. This review evaluates the most recent literature on dairy and human health, framed within epidemiologic, experimental, and biochemical evidence. As an example, the effects of milk (notably skimmed milk) on body weight appear to be well documented, and the conclusions of the vast majority of published studies indicate that dairy consumption does not increase cardiovascular risk or the incidence of some cancers. Even though the available evidence is not conclusive, some studies suggest that milk and its derivatives might actually be beneficial to some population segments. Although future studies will help elucidate the role of milk and dairy products in human health, their use within a balanced diet should be considered in the absence of clear contraindications.
Collapse
Affiliation(s)
- Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM+CSIC, Madrid, Spain
| | | |
Collapse
|