1
|
Liiver K, Imbeault S, Školnaja M, Kaart T, Kanarik M, Laugus K, De Wettinck J, Pulver A, Shimmo R, Harro J. Active vs passive novelty-related strategies: Sex differences in exploratory behaviour and monoaminergic systems. Behav Brain Res 2023; 441:114297. [PMID: 36641084 DOI: 10.1016/j.bbr.2023.114297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Sex differences are apparent in numerous behavioural characteristics. In order to compare and characterise male and female variability of exploratory behaviour, 365 male and 401 female rats were assessed in a task where a bimodal response distribution had previously been established in males. Female rats had significantly higher exploratory activity, and presented normal distribution of the behaviour, very differently from the bimodal distribution of males. No major effect of litter or oestrous cycle was detected. Several differences between male and female rats were found in monoamine metabolism measured ex vivo. Male rats had lower levels of dopamine (DA) in frontal cortex, and higher levels of 3,4-dihydroxyphenylacetic acid (DOPAC) in raphe area; higher levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in dorsal striatum but lower levels of 5-HT and 5-HIAA in locus coeruleus area, 5-HIAA levels were also lower in hippocampus as compared to females. Males had higher noradrenaline (NA) levels in hippocampus and lower normetanephrine (NMN) levels in striatum, in both brain regions male animals had lower NMN/NA ratio. No sex difference was found in accumbens. The only brain region with an interaction between sex and the expression of exploratory activity was raphe: Here 5-HT levels were lower, and DOPAC levels and DOPAC/DA and 5-HIAA/5-HT ratios higher in low exploring male but not female rats. Conclusively, female rats not only display higher levels of exploration but the population distribution of this behaviour is distinct; this may be related to differences in the monoaminergic systems between female and male animals.
Collapse
Affiliation(s)
- Kristi Liiver
- School of Natural Sciences and Health, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia
| | - Sophie Imbeault
- School of Natural Sciences and Health, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia
| | - Marianna Školnaja
- School of Natural Sciences and Health, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia; Laboratory Animal Centre, Tallinn University of Technology, Akadeemia Road 15, 12618 Tallinn, Estonia
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Karita Laugus
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Jade De Wettinck
- School of Natural Sciences and Health, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia
| | - Aleksander Pulver
- School of Natural Sciences and Health, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia
| | - Ruth Shimmo
- School of Natural Sciences and Health, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia
| | - Jaanus Harro
- School of Natural Sciences and Health, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia; Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014 Helsinki, Finland.
| |
Collapse
|
2
|
Pyrzanowska J, Joniec-Maciejak I, Blecharz-Klin K, Piechal A, Mirowska-Guzel D, Fecka I, Widy-Tyszkiewicz E. Aspalathus linearis infusion affects hole-board test behaviour and amino acid concentration in the brain. Neurosci Lett 2021; 747:135680. [PMID: 33529651 DOI: 10.1016/j.neulet.2021.135680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 11/24/2022]
Abstract
Rooibos tea, brewed using Aspalathus linearis leaves, is a popular South African herbal infusion, but its everyday intake is not fully described in terms of the neuropsychopharmacological outcomes. The cell-protective activity of A. linearis is connected with the ability of reducing glycaemia, inflammation as well as oxidative stress. It was already shown that "fermented" rooibos herbal tea (FRHT), which is rich in phenolic compounds, improves the cognitive performance of rats in the water maze and impacts dopaminergic striatal transmission. The present research was taken to extend the knowledge about the feasible behavioural and neurochemical implications of sustained oral FRHT consumption. We hypothesized that it might affect brain amino acid content and thus induce behaviour and neuroprotection. FRHTs of different leaf to water ratios (1:100, 2:100 and 4:100), analysed by chromatographic methods as regards their flavonoid characteristics, were given to rats as only liquid for 3 months. Their behaviour was evaluated in the hole-board test (HBT). Brain amino acids concentration was analysed in the striatum, hippocampus and prefrontal cortex by HPLC-ECD. The rats drinking rooibos tea presented increased motor activity defined as time spent on moving in the HBT. Their exploration measured by head-dipping and rearing was enhanced. Longer time of the testing-box central zone occupation indicated to reduction in anxiety-related behaviour. Excitatory amino acids (aspartate and glutamate) content was decreased in the striatum of animals drinking the infusions whereas taurine level was increased both in the striatum and hippocampus. In conclusion we suggest that long-term FRHT intake affects exploration and anxiety-related behaviour of the rats as well as exerts biochemical outcomes in the brain that support the neuroprotective impact of rooibos tea.
Collapse
Affiliation(s)
- Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1b, 02-097, Warsaw, Poland.
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1b, 02-097, Warsaw, Poland
| | - Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1b, 02-097, Warsaw, Poland
| | - Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1b, 02-097, Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1b, 02-097, Warsaw, Poland
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211, 50-556, Wroclaw, Poland
| | - Ewa Widy-Tyszkiewicz
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
3
|
Vaher K, Anier K, Jürgenson M, Harro J, Kalda A. Cocaine-induced changes in behaviour and DNA methylation in rats are influenced by inter-individual differences in spontaneous exploratory activity. J Psychopharmacol 2020; 34:680-692. [PMID: 32338111 DOI: 10.1177/0269881120916137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Individual differences in behavioural traits influence susceptibility to addictive disorders. Drug addiction involves changes in gene expression, proposed to occur via DNA methylation (DNAm). AIMS To investigate DNAm changes in reward-related brain structures (nucleus accumbens (NAc), lateral habenula (LHb)) in response to cocaine exposure in rats differing in spontaneous exploratory activity. METHODS Rats were observed in the exploration box and categorised as high- (HE) or low explorers (LE). Rats were administered vehicle or cocaine (12 mg/kg, i.p.) for 7 days, followed by a 14-day withdrawal period and cocaine challenge (7 mg/kg); horizontal locomotor activity was recorded. Brain tissue was dissected after 24 h; we analysed messenger RNA (mRNA) and activity levels of epigenetic DNA modifiers (DNMTs and TETs) as well as mRNA and promoter methylation levels at selected genes previously linked to addictive behaviours. RESULTS The cocaine challenge dose stimulated locomotor activity in both LE- and HE rats only when administered after a repeated cocaine schedule, suggesting development of behavioural sensitisation. Quantitative polymerase chain reaction analyses demonstrated higher basal expression of Dnmt3a, Tet2 and Tet3 in the LHb of HE- vs. LE rats, and we observed differential effects of cocaine exposure on the expression and activity of epigenetic DNA modifiers in the NAc and LHb of HE- and LE rats. Furthermore, cocaine exposure differentially altered promoter methylation levels of A2AR, Ppp1cc, and Taar7b in the NAc and LHb of HE- and LE rats. CONCLUSIONS DNAm might play a role in the HE- and LE phenotypes as well as mediate behavioural effects of LE- and HE rats in response to drugs of abuse.
Collapse
Affiliation(s)
- Kadi Vaher
- Department of Psychology, University of Tartu, Tartu, Estonia
| | - Kaili Anier
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | | | - Jaanus Harro
- Department of Psychology, University of Tartu, Tartu, Estonia
| | - Anti Kalda
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Sun M, Huang P, Wang Y, Chen W. Anticonvulsants lamotrigine and riluzole disrupt maternal behavior in postpartum female rats. Pharmacol Biochem Behav 2018; 168:43-50. [PMID: 29572014 DOI: 10.1016/j.pbb.2018.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 11/24/2022]
Abstract
Maternal behavior is a highly motivated and well-organized social behavior. Previous studies have reported that anticonvulsants are frequently used in postpartum bipolar disorder. However, the maternal disruptive effect of the anticonvulsants has not been explored. The purpose of the present study was to examine the effect of anticonvulsants lamotrigine and riluzole on maternal behavior in postpartum female rats. On postpartum Day 3, Sprague-Dawley mother rats were given a single intraperitoneal injection of vehicle, lamotrigine (15, 25, 35 mg/kg), or riluzole (2, 4, 8 mg/kg). Maternal behavior was tested 30 min before and after injection. Animals treated with lamotrigine or riluzole had a longer pup retrieval latency, retrieved fewer pups into the nest, spent less time on nursing pups, as well as on building the disturbed nest, and animals treated with riluzole spent less time on pup licking. Whereas, the drugs in the tested doses did not shorten the total duration of behavior unrelated to maternal behavior. Overall, these data indicate that lamotrigine and riluzole disrupt major components of maternal behavior in postpartum female rats, but do not inhibit the behaviors unrelated to maternal behavior, which indicates that the maternal disruptive effect is not due to nonspecific sedative effect.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Pan Huang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Yan Wang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Weihai Chen
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, China; Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
5
|
Impaired novelty acquisition and synaptic plasticity in congenital hyperammonemia caused by hepatic glutamine synthetase deficiency. Sci Rep 2017; 7:40190. [PMID: 28067279 PMCID: PMC5220341 DOI: 10.1038/srep40190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
Genetic defects in ammonia metabolism can produce irreversible damage of the developing CNS causing an impairment of cognitive and motor functions. We investigated alterations in behavior, synaptic plasticity and gene expression in the hippocampus and dorsal striatum of transgenic mice with systemic hyperammonemia resulting from conditional knockout of hepatic glutamine synthetase (LGS-ko). These mice showed reduced exploratory activity and delayed habituation to a novel environment. Field potential recordings from LGS-ko brain slices revealed significantly reduced magnitude of electrically-induced long-term potentiation (LTP) in both CA3-CA1 hippocampal and corticostriatal synaptic transmission. Corticostriatal but not hippocampal slices from LGS-ko brains demonstrated also significant alterations in long-lasting effects evoked by pharmacological activation of glutamate receptors. Real-time RT-PCR revealed distinct patterns of dysregulated gene expression in the hippocampus and striatum of LGS-ko mice: LGS-ko hippocampus showed significantly modified expression of mRNAs for mGluR1, GluN2B subunit of NMDAR, and A1 adenosine receptors while altered expression of mRNAs for D1 dopamine receptors, the M1 cholinoreceptor and the acetylcholine-synthetizing enzyme choline-acetyltransferase was observed in LGS-ko striatum. Thus, inborn systemic hyperammonemia resulted in significant deficits in novelty acquisition and disturbed synaptic plasticity in corticostriatal and hippocampal pathways involved in learning and goal-directed behavior.
Collapse
|
6
|
Middle-range exploratory activity in adult rats suggests higher resilience to chronic social defeat. Acta Neuropsychiatr 2016; 28:125-40. [PMID: 26669552 DOI: 10.1017/neu.2015.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Stressful life events play an important role in the aetiology of human mood disorders and are frequently modelled by chronic social defeat (SD) in rodents. Exploratory phenotype in rats is a stable trait that is likely related to inter-individual differences in reactivity to stress. The aim of the study was to confirm that low levels of exploratory activity (LE) are, in rodents, a risk factor for passive stress coping, and to clarify the role of medium (ME) and high (HE) exploratory disposition in the sensitivity to SD. METHODS We examined the effect of SD on male Wistar rats with LE, ME, and HE activity levels as measured in the exploration box. After SD, the rats were evaluated in social preference, elevated zero maze, and open-field tests. Brain tissue levels of monoamines were measured by high-performance liquid chromatography. RESULTS Rats submitted to SD exhibited lower weight gain, higher sucrose consumption, showed larger stress-induced hyperthermia, lower levels of homovanillic acid in the frontal cortex, and higher levels of noradrenaline in the amygdala and hippocampus. Open-field, elevated zero maze, and social preference tests revealed the interaction between stress and phenotype, as only LE-rats were further inhibited by SD. ME-rats exhibited the least reactivity to stress in terms of changes in body weight, stress-induced hyperthermia, and sucrose intake. CONCLUSION Both low and high novelty-related activity, especially the former, are associated with elevated sensitivity to social stress. This study shows that both tails of a behavioural dimension can produce stress-related vulnerability.
Collapse
|