1
|
Wang J, Zhou C, Huang Z, Ji X, Cui R, Kang Y, Zhang G, Wang Y, Zhang T. Repetitive Transcranial Magnetic Stimulation-Mediated Neuroprotection in the 5xFAD Mouse Model of Alzheimer's Disease Through GABRG2 and SNAP25 Modulation. Mol Neurobiol 2025; 62:1971-1997. [PMID: 39052185 DOI: 10.1007/s12035-024-04354-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/06/2024] [Indexed: 07/27/2024]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disorder with substantial impacts on cognition and behavior. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, has been used to treat various neuropsychiatric disorders, but its efficacy in AD has not been thoroughly investigated. This study examines the neuroprotective effects of rTMS in the 5xFAD mouse model of AD, with a particular focus on its modulation of GABAergic neuronal activity via the GABRG2 and SNAP25 proteins. Transcriptomic sequencing of rTMS-treated 5xFAD mice revealed 32 genes influenced by the treatment, among which GABRG2 was identified as a critical modulatory target. Electrophysiological assessments, including whole-cell patch clamp recordings from frontal cortex neurons, demonstrated significant alterations in inhibitory synaptic currents following rTMS. Subsequent experiments involved sh-GABRG2 transduction combined with rTMS treatment (20Hz, 14 days), examining behavioral responses, GABAergic neuron functionality, cortical GABA expression, cerebrospinal fluid GABA concentrations, β-amyloid accumulation, and pro-inflammatory cytokine levels. The results indicated notable improvements in behavioral performance, enhanced functionality of GABAergic neurons, and reductions in β-amyloid deposition and neuroinflammation after rTMS treatment. Further analysis revealed that SNAP25 overexpression could counteract the negative effects of GABRG2 silencing, highlighting the crucial role of SNAP25 downstream of GABRG2 in mediating rTMS's therapeutic effects in AD. This research highlights rTMS's potential to modulate synaptic and vesicular transport mechanisms, offering a promising avenue for ameliorating symptoms of AD through neuroprotective pathways.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Chenming Zhou
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhimin Huang
- Department of Stomatology, People's Hospital, Shizhu Tujia Autonomous County, Chongqing, 409100, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Zhongshan Donglu No.361, ShijiazhuangHebei Province, 050017, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Zhongshan Donglu No.361, ShijiazhuangHebei Province, 050017, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guoliang Zhang
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Zhongshan Donglu No.361, ShijiazhuangHebei Province, 050017, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Zhongshan Donglu No.361, ShijiazhuangHebei Province, 050017, China.
| |
Collapse
|
2
|
Ming X, Lu Y, Huang H, Zheng J, Wang T, Li Z, Yu X, Xiong L. Xuanhong Dingchuan Tang suppresses bronchial asthma inflammation via the microRNA-107-3p/PTGS2/MAPK axis. Funct Integr Genomics 2024; 25:1. [PMID: 39704779 DOI: 10.1007/s10142-024-01506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
This study aimed to investigate the mechanism of Xuanhong Dingchuan Tang (XHDCT) in delaying bronchial asthma inflammation via the microRNA (miR)-107-3p/prostaglandin endoperoxide synthase 2 (PTGS2)/mitogen-activated protein kinase (MAPK) axis. Based on the network pharmacological analysis, XHDCT chemical constituents and targets of each chemical constituent were screened through the TCMSP database, and differential-expressed genes of bronchial asthma were obtained from the GEO database, which were intersected to get XHDCT potential anti-inflammatory targets. The key anti-inflammatory targets of XHDCT were acquired by protein-protein interaction (PPI) analysis of the candidate targets. Bronchial asthma mouse models were established and the pathological changes of lung tissues were observed. Serum IgE levels were tested. Total cells and eosinophils in bronchoalveolar lavage fluid (BALF) were counted. The expression of Th2-associated cytokines (interleukin (IL)-4, IL-5, and IL-13) and chemokines (monocyte chemoattractant protein-1 (MCP-1) and eotaxin) in BALF were measured. The targeting relationship between miR-107-3p and PTGS2 was tested. XHDCT delayed bronchial asthma inflammation in in-vivo asthma mouse models. A total of 155 active ingredients and their 341 targets were intersected with bronchial asthma-relevant genes, obtaining 20 potential targets of XHDCT for bronchial asthma treatment. Based on the PPI and "drug-component-target" network diagram, PTGS2 was found to be in a central position. PTGS2 was downregulated and miR-107-3p was upregulated in bronchial asthma mice after XHDCT treatment. PTGS2 overexpression activated the MAPK signaling pathway to promote inflammation in bronchial asthma mice, whereas inflammatory symptoms were reduced and the MAPK signaling pathway was inhibited after XHDCT treatment. miR-107-3p was an upstream regulatory miRNA for PTGS2. After miR-107-3p interference, the activation of the PTGS2/MAPK axis promoted inflammation in bronchial asthma mice, whereas the inflammatory symptoms were reduced after XHDCT treatment. XHDCT promotes anti-inflammatory effects in bronchial asthma via the miR-107-3p/PTGS2/MAPK axis.
Collapse
Affiliation(s)
- Xi Ming
- Department of Pediatrics and Department of Integrative Medicine on Pediatric, The First Hospital Affiliated Yunnan University of Chinese Medicine, 120 Guanghua Road, Kunming, Yunnan, 650021, China.
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China.
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| | - Yingzhu Lu
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Huihui Huang
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Jialin Zheng
- Department of Pediatrics and Department of Integrative Medicine on Pediatric, The First Hospital Affiliated Yunnan University of Chinese Medicine, 120 Guanghua Road, Kunming, Yunnan, 650021, China
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Tianzi Wang
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Zhuoqun Li
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Xingzhu Yu
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Lei Xiong
- Department of Pediatrics and Department of Integrative Medicine on Pediatric, The First Hospital Affiliated Yunnan University of Chinese Medicine, 120 Guanghua Road, Kunming, Yunnan, 650021, China.
- No.1 Clinical Medical College of Yunnan, University of Chinese Medicine, Kunming, Yunnan, 650051, China.
- Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| |
Collapse
|
3
|
Han J, Wu B, Wang D. The potential efficacy of sesquiterpenes and their derivatives in treating rheumatoid arthritis: A systematic review. Int Immunopharmacol 2024; 141:112946. [PMID: 39159562 DOI: 10.1016/j.intimp.2024.112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder primarily targeting peripheral joints. The global prevalence of RA is increasing, posing a significant challenge in patient care management. Despite therapeutic advancements, their inherent limitations highlight the need for further research on safer treatment interventions. Among potential candidates, sesquiterpenes, a subclass of plant secondary metabolites composed of three isoprene units, have exhibited remarkable efficacy in treating various inflammatory disorders, including RA. In this systematic review, we summarized the treatment evidence of sesquiterpenes and their derivatives on RA. Specific major sesquiterpenoids have been discussed in detail, as well as the possible mechanisms by which cells and chemical messengers are involved in treating RA. Our review indicated that sesquiterpenes are potential novel, bioactive compounds for RA prevention and treatment strategies.
Collapse
Affiliation(s)
- Jing Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bingrong Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dongsheng Wang
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
4
|
Xiong W, Lin X, Lin X, Wu L, Lin W. A Ketogenic Diet Affects Gut Microbiota by Regulating Gut Microbiota and Promoting Hippocampal TRHR Expression to Combat Seizures. J Mol Neurosci 2024; 74:104. [PMID: 39489848 DOI: 10.1007/s12031-024-02245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/05/2024] [Indexed: 11/05/2024]
Abstract
With the persistent challenge that epilepsy presents to therapeutic avenues, the study seeks to decipher the effects of the ketogenic diet (KD) on gut microbiota and subsequent epileptic outcomes. Mouse fecal samples from distinct KD and control diet (CD) cohorts underwent 16S rRNA sequencing. Differential genes of epileptic mice under these diets were sourced from the GEO database. The study melded in vivo and in vitro techniques to explore the nuanced interactions between KD, gut microbiota, and hippocampal TRHR dynamics. The KD regimen was found to result in a notable reduction in gut microbiota diversity when compared to the CD groups. Distinctive microbial strains, which are hypothesised to interact with epilepsy through G protein-coupled receptors, were spotlighted. In vivo, explorations affirmed that gut microbiota as central to KD's anti-epileptic efficacy. Of 211 distinguished genes, the neuroactive ligand-receptor interaction pathway was underscored, particularly emphasizing TRHR and TRH. Clinical observations revealed a surge in hippocampal TRHR and TRH expressions influenced by KD, mirroring shifts in neuronal discharges. The KD, leveraging gut microbiota alterations, amplifies hippocampal TRHR expression. This finding provides a novel intervention strategy to reduce seizures.
Collapse
Affiliation(s)
- Wenting Xiong
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Xiaohui Lin
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Xin Lin
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Luyan Wu
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
- Fujian Key Laboratory of Molecular Neurology, Fujian Province, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Wanhui Lin
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Province, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
5
|
Lin G, Tian F, Yu Q, Weng X, Yu N, Zhang F, Yi C, Ye J, Ye D. IL-17RA/CTSK axis mediates H. pylori-induced castration-resistant prostate cancer growth. Oncogene 2024; 43:3598-3616. [PMID: 39424989 DOI: 10.1038/s41388-024-03169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
In this investigation, we explored the molecular dynamics guiding the progression of castration-resistant prostate cancer (CRPC) influenced by Helicobacter pylori (H. pylori)-mediated M2 polarization of macrophages through the IL-17RA/CTSK/EMT axis. An 830-patient clinical trial categorized subjects into hormone-sensitive prostate cancer (HSPC) and CRPC groups. H. pylori infection, evaluated by ELISA, exhibited a higher incidence in CRPC patients, impacting overall survival (OS) and progression-free survival. In-depth in vitro and in vivo experiments, including 16S rDNA sequencing, immunohistochemical tests, and transcriptome analysis, unveiled that H. pylori promotes CRPC growth and metastasis by upregulating IL-17RA and CTSK, leading to enhanced EMT. Notably, M2 macrophages emerged as pivotal immune cells influencing CRPC progression. This study uncovers a novel pathway wherein H. pylori enrichment exacerbates CRPC by inducing macrophage M2 polarization, IL-17RA/CTSK expression, and EMT activation, shedding light on a previously unrecognized mechanism contributing to the growth and metastasis of CRPC.
Collapse
Affiliation(s)
- Guowen Lin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Feng Tian
- Department Of Urology, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Qiwei Yu
- Department of Urology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, 215399, China
| | - Xiaoling Weng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, China
| | - Nanhui Yu
- Department of Gastrointestinal Surgery, the Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Feng Zhang
- Department Of Urology, Shanghai Eighth People's Hospital, Shanghai, 200235, China
| | - Chen Yi
- Department of Urology, Changsha Central Hospital Affiliated to University of South China, Changsha, 410000, China
| | - Jian Ye
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Yan F, Yuan WQ, Wu SM, Yang YH, Cui DJ. Novel mechanisms of intestinal flora regulation in high-altitude hypoxia. Heliyon 2024; 10:e38220. [PMID: 39498080 PMCID: PMC11534185 DOI: 10.1016/j.heliyon.2024.e38220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
Background This study investigates the molecular mechanisms behind firmicutes-mediated macrophage (Mψ) polarization and glycolytic metabolic reprogramming through HIF-1α in response to intrinsic mucosal barrier injury induced by high-altitude hypoxia. Methods Establishing a hypoxia mouse model of high altitude, we utilized single-cell transcriptome sequencing to identify key cell types involved in regulating intestinal mucosal barrier damage caused by high-altitude hypoxia. Through proteomic analysis of colonic tissue Mψ and metabolomic analysis of Mψ metabolites, we determined crucial proteins and metabolic pathways influencing intestinal mucosal barrier damage induced by high-altitude hypoxia. Mechanistic validation was conducted using RAW264.7 Mψ in vitro by assessing cell viability with CCK-8 assay following treatment with different metabolites. The hypoxia mouse model was further validated in vivo by transplanting gut microbiota of Firmicutes. Histological examinations through H&E staining assessed colonic cell morphology and structure, while the FITC-dextran assay evaluated intestinal tissue permeability. Hypoxia probe signal intensity in mouse colonic tissue was assessed via metronidazole staining. Various experimental techniques, including flow cytometry, immunofluorescence, ELISA, Western blot, and RT-qPCR, were employed to study the impact of HIF-1α/glycolysis pathway and different gut microbiota metabolites on Mψ polarization. Results Bioinformatics analysis revealed that single-cell transcriptomics identified Mψ as a key cell type, with their polarization pattern playing a crucial role in the intestinal mucosal barrier damage induced by high-altitude hypoxia. Proteomics combined with metabolomics analysis indicated that HIF-1α and the glycolytic pathway are pivotal proteins and signaling pathways in the intestinal mucosal barrier damage caused by high-altitude hypoxia. In vitro cell experiments demonstrated that activation of the glycolytic pathway by HIF-1α led to a significant upregulation of mRNA levels of IL-1β, IL-6, and TNFα while downregulating mRNA levels of IL-10 and TGFβ, thereby promoting M1 Mψ activation and inhibiting M2 Mψ polarization. Further mechanistic validation experiments revealed that the metabolite butyric acid from Firmicutes bacteria significantly downregulated the protein expression of HIF-1α, GCK, PFK, PKM, and LDH, thus inhibiting the HIF-1α/glycolytic pathway that suppresses M1 Mψ and activates M2 Mψ, consequently alleviating the hypoxic symptoms in RAW264.7 cells. Subsequent animal experiments confirmed that Firmicutes bacteria inhibited the HIF-1α/glycolytic pathway to modulate Mψ polarization, thereby mitigating intestinal mucosal barrier damage in high-altitude hypoxic mice. Conclusion The study reveals that firmicutes, through the inhibition of the HIF-1α/glycolysis pathway, mitigate Mψ polarization, thereby alleviating intrinsic mucosal barrier injury in high-altitude hypoxia.
Collapse
Affiliation(s)
- Fang Yan
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
- Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Wen-qiang Yuan
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
- Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Shi-min Wu
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
- Zunyi Medical University, Zunyi, 563006, China
| | - Yun-han Yang
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
- Medical College of Guizhou University, Guiyang, Guizhou, China
| | - De-jun Cui
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
- Medical College of Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Zhou S, Xue W, Tan J. Design, Synthesis, and Antirheumatoid Arthritis Mechanism of TLR4 Inhibitors. ACS OMEGA 2024; 9:36232-36241. [PMID: 39220494 PMCID: PMC11359639 DOI: 10.1021/acsomega.4c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
A total of 12 carbonyl compounds were synthesized, their lipopolysaccharide induced inhibition, and activity of RAW264.7 cells was evaluated. The most active compound 3k inhibited RAW264.7 cells with IC50 value of 1.02 ± 0.08 μM. Compound 3k significantly inhibited the release of TNF-α, IL-1β, and IL-6 in supernatant for RAW264.7 cells. In vivo collagen-induced arthritis model tests administered orally, compound 3k showed effects similar to those of methotrexate in the positive control group. The preliminary mechanism study showed that compound 3k had an effect on abnormal expression for TLR4, TNF-α, NF-κB protein, and genes related to inflammation signaling pathway in RAW264.7 cells. Meanwhile, compound 3k showed a good affinity for the TLR4 receptor in molecular docking simulation. Therefore, compound 3k may be a promising lead compound for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing
Chemical Industry Vocational College, Chongqing 401228, China
- School
of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
- Chongqing
Academy of Traditional Chinese Medicine, Chongqing 400065, China
- Key
Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou 571158, China
- School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jun Tan
- School
of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| |
Collapse
|
8
|
Yang YH, Yan F, Shi PS, Yang LC, Cui DJ. HIF-1α Pathway Orchestration by LCN2: A Key Player in Hypoxia-Mediated Colitis Exacerbation. Inflammation 2024; 47:1491-1519. [PMID: 38819583 DOI: 10.1007/s10753-024-01990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 06/01/2024]
Abstract
In this study, we investigated the role of hypoxia in the development of chronic inflammatory bowel disease (IBD), focusing on its impact on the HIF-1α signaling pathway through the upregulation of lipocalin 2 (LCN2). Using a murine model of colitis induced by sodium dextran sulfate (DSS) under hypoxic conditions, transcriptome sequencing revealed LCN2 as a key gene involved in hypoxia-mediated exacerbation of colitis. Bioinformatics analysis highlighted the involvement of crucial pathways, including HIF-1α and glycolysis, in the inflammatory process. Immune infiltration analysis demonstrated the polarization of M1 macrophages in response to hypoxic stimulation. In vitro studies using RAW264.7 cells further elucidated the exacerbation of inflammation and its impact on M1 macrophage polarization under hypoxic conditions. LCN2 knockout cells reversed hypoxia-induced inflammatory responses, and the HIF-1α pathway activator dimethyloxaloylglycine (DMOG) confirmed LCN2's role in mediating inflammation via the HIF-1α-induced glycolysis pathway. In a DSS-induced colitis mouse model, oral administration of LCN2-silencing lentivirus and DMOG under hypoxic conditions validated the exacerbation of colitis. Evaluation of colonic tissues revealed altered macrophage polarization, increased levels of inflammatory factors, and activation of the HIF-1α and glycolysis pathways. In conclusion, our findings suggest that hypoxia exacerbates colitis by modulating the HIF-1α pathway through LCN2, influencing M1 macrophage polarization in glycolysis. This study contributes to a better understanding of the mechanisms underlying IBD, providing potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Yun-Han Yang
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - Fang Yan
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - Peng-Shuang Shi
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - Liu-Chan Yang
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China
| | - De-Jun Cui
- Department of Gastroenterology, Guizhou Inflammatory Bowel Disease Research Center, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, No.83 Zhongshan East Road, Guiyang, 550002, Guizhou Province, China.
| |
Collapse
|
9
|
Lu J, Shi X, Fu Q, Han Y, Zhu L, Zhou Z, Li Y, Lu N. New mechanistic understanding of osteoclast differentiation and bone resorption mediated by P2X7 receptors and PI3K-Akt-GSK3β signaling. Cell Mol Biol Lett 2024; 29:100. [PMID: 38977961 PMCID: PMC11232284 DOI: 10.1186/s11658-024-00614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE Osteoporosis is a global health issue characterized by decreased bone mass and microstructural degradation, leading to an increased risk of fractures. This study aims to explore the molecular mechanism by which P2X7 receptors influence osteoclast formation and bone resorption through the PI3K-Akt-GSK3β signaling pathway. METHODS An osteoporosis mouse model was generated through ovariectomy (OVX) in normal C57BL/6 and P2X7f/f; LysM-cre mice. Osteoclasts were isolated for transcriptomic analysis, and differentially expressed genes were selected for functional enrichment analysis. Metabolite analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and multivariate statistical analysis and pattern recognition were used to identify differential lipid metabolism markers and their distribution. Bioinformatics analyses were conducted using the Encyclopedia of Genes and Genomes database and the MetaboAnalyst database to assess potential biomarkers and create a metabolic pathway map. Osteoclast precursor cells were used for in vitro cell experiments, evaluating cell viability and proliferation using the Cell Counting Kit 8 (CCK-8) assay. Osteoclast precursor cells were induced to differentiate into osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-beta ligand (RANKL), and tartrate-resistant acid phosphatase (TRAP) staining was performed to compare differentiation morphology, size, and quantity between different groups. Western blot analysis was used to assess the expression of differentiation markers, fusion gene markers, and bone resorption ability markers in osteoclasts. Immunofluorescence staining was employed to examine the spatial distribution and quantity of osteoclast cell skeletons, P2X7 protein, and cell nuclei, while pit assay was used to evaluate osteoclast bone resorption ability. Finally, in vivo animal experiments, including micro computed tomography (micro-CT), hematoxylin and eosin (HE) staining, TRAP staining, and immunohistochemistry, were conducted to observe bone tissue morphology, osteoclast differentiation, and the phosphorylation level of the PI3K-Akt-GSK3β signaling pathway. RESULTS Transcriptomic and metabolomic data collectively reveal that the P2X7 receptor can impact the pathogenesis of osteoporosis through the PI3K-Akt-GSK3β signaling pathway. Subsequent in vitro experiments showed that cells in the Sh-P2X7 + Recilisib group exhibited increased proliferative activity (1.15 versus 0.59), higher absorbance levels (0.68 versus 0.34), and a significant increase in resorption pit area (13.94 versus 3.50). Expression levels of osteoclast differentiation-related proteins MMP-9, CK, and NFATc1 were markedly elevated (MMP-9: 1.72 versus 0.96; CK: 2.54 versus 0.95; NFATc1: 3.05 versus 0.95), along with increased fluorescent intensity of F-actin rings. In contrast, the OE-P2X7 + LY294002 group showed decreased proliferative activity (0.64 versus 1.29), reduced absorbance (0.34 versus 0.82), and a significant decrease in resorption pit area (5.01 versus 14.96), accompanied by weakened expression of MMP-9, CK, and NFATc1 (MMP-9: 1.14 versus 1.79; CK: 1.26 versus 2.75; NFATc1: 1.17 versus 2.90) and decreased F-actin fluorescent intensity. Furthermore, in vivo animal experiments demonstrated that compared with the wild type (WT) + Sham group, mice in the WT + OVX group exhibited significantly increased levels of CTX and NTX in serum (CTX: 587.17 versus 129.33; NTX: 386.00 versus 98.83), a notable decrease in calcium deposition (19.67 versus 53.83), significant reduction in bone density, increased trabecular separation, and lowered bone mineral density (BMD). When compared with the KO + OVX group, mice in the KO + OVX + recilisib group showed a substantial increase in CTX and NTX levels in serum (CTX: 503.50 versus 209.83; NTX: 339.83 versus 127.00), further reduction in calcium deposition (29.67 versus 45.33), as well as decreased bone density, increased trabecular separation, and reduced BMD. CONCLUSION P2X7 receptors positively regulate osteoclast formation and bone resorption by activating the PI3K-Akt-GSK3β signaling pathway.
Collapse
Affiliation(s)
- Jiajia Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai, 200434, China
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China
| | - Xiaojian Shi
- Department of Orthopedic Trauma, Haimen People's Hospital of Jiangsu Province, Nantong, 226100, China
| | - Qiang Fu
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China
| | - Yaguang Han
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China
| | - Lei Zhu
- Department of Orthopedic Trauma, Shanghai Changzheng Hospital, Shanghai, 200434, China
| | - Zhibin Zhou
- Department of Orthopaedics, General Hospital of Northern Theater Command, No. 83, Culture Road, Shenhe District, Shenyang, 110016, Liaoning, China.
| | - Yongchuan Li
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai, 200434, China.
| | - Nan Lu
- Department of Orthopedic Trauma, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279 Sanmen Road, Shanghai, 200434, China.
| |
Collapse
|
10
|
Li N, Yang C, Xia J, Wang W, Xiong W. Molecular mechanisms of Codonopsis pilosula in inhibiting hepatocellular carcinoma growth and metastasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155338. [PMID: 38520835 DOI: 10.1016/j.phymed.2024.155338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Liver cancer, one of the most common types of cancer worldwide, accounts for millions of cases annually. With its multi-target and wide-ranging therapeutic effects, traditional Chinese medicine has emerged as a potential approach for treating various tumors. Codonopsis pilosula, a traditional herb, is known for its anti-inflammatory and antioxidant properties. In this study, we investigated the potential molecular mechanisms of Codonopsis pilosula in regulating the inhibition of CDK1 and the modulation of PDK1/β-catenin, which are involved in hepatocellular carcinoma growth and metastasis. STUDY DESIGN/METHODS Firstly, we screened the active chemical constituents of Codonopsis pilosula and identified their respective target proteins using the Herb database. Then, we applied the GeneCards database and transcriptome sequencing analysis to screen for critical genes associated with the occurrence and development of liver cancer. The intersection of the target proteins and disease-related genes was used to determine the potential targets of Codonopsis pilosula in hepatocellular carcinoma. Protein-protein interaction analysis and GO/KEGG analysis were subsequently performed to uncover the pathways through which Codonopsis pilosula acts on liver cancer. The Huh-7 cell line, exhibiting the highest sensitivity to Codonopsis pilosula polysaccharide solution (CPP) intervention, was chosen for subsequent studies. Cell viability was evaluated using the CCK-8 assay, colony formation assay was conducted to determine cell proliferation capacity, flow cytometry was used to analyze cell cycle, TUNEL staining was performed to assess cell apoptosis, scratch assay was carried out to evaluate cell migration ability, the expression of EMT-related proteins was detected and analyzed, and cell sphere formation assay was conducted to investigate cell stemness. Finally, a liver cancer animal model was established, and different doses of CPP were administered via gavage the next day. The expression levels of CDK1, PDK1, and β-catenin in mouse liver tissues were detected and analyzed, immunohistochemistry staining was performed to assess the expression of tumor cell proliferation-related proteins Ki67 and PCNA in mouse xenografts, and TUNEL staining was carried out to evaluate cell apoptosis in mouse liver tissues. After intervention with CDK1 expression, the expression levels of CDK1, PDK1, and β-catenin proteins and mRNA in each group of cells were detected using Western blot and RT-qPCR. RESULTS Through network pharmacology analysis, transcriptome sequencing, and bioinformatics analysis, 35 target genes through which Codonopsis pilosula acts on liver cancer were identified. Among them, CDK1, with the highest degree in the PPI network, was considered an essential target protein for Codonopsis pilosula in treating liver cancer. In vitro cell experiments revealed that CPP could inhibit the expression of CDK1/PDK1/β-catenin signaling axis factors, suppress cell proliferation, decrease cell migration ability, influence the EMT process, and reduce cell stemness by inhibiting CDK1 and affecting the PDK1/β-catenin signaling axis. Similarly, in vivo experiments demonstrated that CPP could regulate the CDK1/PDK1/β-catenin signaling axis, inhibit tumor growth, and induce cell apoptosis. CONCLUSION Codonopsis pilosula may inhibit hepatocellular carcinoma growth by suppressing CDK1 and affecting the PDK1/β-catenin signaling axis, limiting cell EMT and reducing cell stemness. These findings provide insights into the potential therapeutic role of Codonopsis pilosula in liver cancer.
Collapse
Affiliation(s)
- Ning Li
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Ce Yang
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Jing Xia
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China.
| | - Wei Xiong
- Chongqing Three Gorges Medical College, Chongqing 404120, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China.
| |
Collapse
|
11
|
Lin M, Gong J, Wu L, Lin X, Zhang Y, Lin W, Huang H, Zhu C. ADCY3: the pivotal gene in classical ketogenic diet for the treatment of epilepsy. Front Cell Neurosci 2024; 18:1305867. [PMID: 38841200 PMCID: PMC11150708 DOI: 10.3389/fncel.2024.1305867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/15/2024] [Indexed: 06/07/2024] Open
Abstract
Objective Epilepsy is a common neurological disorder characterized by recurrent epilepsy episodes. As a non-pharmacological treatment, the ketogenic diet has been widely applied in treating epilepsy. However, the exact therapeutic mechanism of the ketogenic diet for epilepsy remains unclear. This study investigates the molecular mechanisms of the ketogenic diet in regulating fatty acid metabolism and activating the ADCY3-initiated cAMP signaling pathway to enhance neuronal inhibition and thereby treat epilepsy. Methods and results Meta-analysis reveals that the ketogenic diet is superior to the conventional diet in treating epilepsy. Animal experiments demonstrate that the ketogenic diet is more effective than the conventional diet in treating epilepsy, with the best results achieved using the classic ketogenic diet. Transcriptome sequencing analysis identifies six essential genes, among which ADCY3 shows increased expression in the ketogenic diet. In vivo experiments confirm that the activation of the cAMP-PKA signaling pathway by ADCY3 enhances neuronal inhibition and improves epilepsy control. Conclusion Clinical observations indicate that the ketogenic diet improves patient epilepsy episodes by regulating the ADCY3-initiated cAMP signaling pathway.
Collapse
Affiliation(s)
- Mingxing Lin
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiayin Gong
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Luyan Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuying Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wanhui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaofeng Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
12
|
Wang W, Zhou S, Jiang W, Chen G. Design, synthesis and anti-rheumatoid arthritis activity of target TLR4 inhibitors. Bioorg Med Chem 2024; 97:117539. [PMID: 38070351 DOI: 10.1016/j.bmc.2023.117539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/30/2023]
Abstract
A series of 1-(2-oxocyclohexyl)butane-1, 3-dione derivatives were designed and synthesized as TLR4 inhibitors by modifying the core structure of the lead compound ((6, 8-dioxo-1, 2, 3, 4, 6, 7, 8, 8a-octahydronaphthalen-2-yl) carbamate)). In vitro, compound 3p significantly inhibited the proliferation of rat synovial cells, inhibited the proliferation of LPS-induced RAW264.7 cells, and inhibited TLR4 activity, with IC50 values of 1.21 ± 0.09 μM, 0.73 ± 0.05 μM and 0.43 ± 0.03 μM, respectively, which was superior to the positive control methotrexate. In vivo anti-rheumatoid arthritis evaluation, compound 3p can significantly inhibit the inflammatory factors TNF-α, IL-1β and IL-6, so as to achieve the therapeutic purpose. In the preliminary mechanism study, compound 3p has obvious regulatory effects on the abnormal increase of TLR4, JAK2 and STAT3 protein and gene expression related to inflammatory signaling pathway in RAW264.7 cells. In summary, this study aims to develop more effective candidates for rheumatoid arthritis.
Collapse
Affiliation(s)
- Wenbin Wang
- Chongqing Chemical Industry Vocational College, Chongqing 401228, China; Chongqing (Changshou) Green Chemical and Material Industry Technology Research Institute, Chongqing 401228, China
| | - Shiyang Zhou
- Chongqing Chemical Industry Vocational College, Chongqing 401228, China; Chongqing (Changshou) Green Chemical and Material Industry Technology Research Institute, Chongqing 401228, China; Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou 571158, China; Chongqing Academy of Traditional Chinese Medicine, Chongqing 400065, China; Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Wenming Jiang
- Chongqing Chemical Industry Vocational College, Chongqing 401228, China; Chongqing (Changshou) Green Chemical and Material Industry Technology Research Institute, Chongqing 401228, China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
13
|
Wang K, Wu Z, Gong C, Zhao G, Zhang H. TGF-β1 Inhibits Osteoclast Differentiation and Abnormal Angiogenesis in Intervertebral Disc Degeneration: Evidence from RNA Sequencing and Animal Studies. Orthop Surg 2024; 16:167-182. [PMID: 38014468 PMCID: PMC10782258 DOI: 10.1111/os.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVE Mechanisms involved in developing intervertebral disc degeneration (IDD) are poorly understood, thus making developing effective therapies difficult. This study aimed to suggest a possible molecular mechanism, based on transcriptome sequencing-identified transforming growth factor (TGF-β), underlying the effects on bone homeostasis in IDD. METHODS A mouse model for IDD was established. Transcriptome sequencing of nucleus pulposus tissue from mice (n = 3) identified differentially expressed mRNAs and key genes impacting bone homeostasis. A protein-protein interaction network pinpointed core genes. GO and KEGG analysis revealed gene functions. Expression levels of TGF-β1, tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK) were measured. Micro-CT evaluated vertebral structures and vascular imaging. Western Blot measured expression levels of Vegf, Opn, MMP3, and MMP13. Safranin O-Fast Green and TRAP staining were performed on intervertebral discs and endplates. RESULTS Transcriptomic analysis found 1790 differentially expressed mRNAs in IDD mice. Twenty-eight genes related to bone homeostasis in IDD were identified. TGF-β1 was confirmed as the core gene. GO and KEGG showed TGF-β1 regulates osteoclast markers like CTSK and TRAP through pathways including NF-κB and MAPK. Experimental validation revealed lower TGF-β1 expression in IDD mice than controls, and increased TRAP and CTSK expression. Micro-CT showed decreased bone mass and intervertebral disc space in IDD mice. Vascular imaging showed increased vascular volume in IDD cartilaginous endplates. Western blot displayed increased VEGF and OPN levels, but decreased MMP3 and MMP13 in IDD mice. Safranin O-fast green staining revealed severe IDD degeneration. However, TGF-β1 injection improved bone parameters in IDD mice. In vitro experiments confirmed TGF-β1 inhibits bone marrow macrophages differentiation into osteoclasts. CONCLUSION From our data, we conclude that TGF-β1 repressed osteoclast differentiation and aberrant bone-associated angiogenesis in cartilage endplates (EPs) to alleviate IDD, which may be instrumental for the therapeutic targeting of IDD.
Collapse
Affiliation(s)
- Keping Wang
- Department of OrthopedicsSecond Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhouChina
- Lanzhou UniversityLanzhouChina
| | - Zuolong Wu
- Department of OrthopedicsSecond Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhouChina
- Lanzhou UniversityLanzhouChina
| | - Chaoyang Gong
- Department of OrthopedicsSecond Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhouChina
- Lanzhou UniversityLanzhouChina
| | - Guanghai Zhao
- Department of OrthopedicsSecond Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhouChina
- Lanzhou UniversityLanzhouChina
| | - Haihong Zhang
- Department of OrthopedicsSecond Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhouChina
- Lanzhou UniversityLanzhouChina
| |
Collapse
|
14
|
Shekh MR, Ahmed N, Kumar V. A Review of the Occurrence of Rheumatoid Arthritis and Potential Treatments through Medicinal Plants from an Indian Perspective. Curr Rheumatol Rev 2024; 20:241-269. [PMID: 38018201 DOI: 10.2174/0115733971268416231116184056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 11/30/2023]
Abstract
Arthritis is a medical condition that affects the joints and causes inflammation, pain, and stiffness. There are different types of arthritis, and it can affect people of all ages, even infants and the elderly. Recent studies have found that individuals with diabetes, heart disease, and obesity are more likely to experience arthritis symptoms. According to the World Health Organization, over 21% of people worldwide suffer from musculoskeletal problems. Roughly 42.19 million individuals in India, constituting around 0.31% of the populace, have been documented as having Rheumatic Arthritis (RA). Compared to other common diseases like diabetes, cancer, and AIDS, arthritis is more prevalent in the general population. Unfortunately, there is no specific cure for arthritis, and treatment plans usually involve non-pharmacological methods, surgeries, and medications that target specific symptoms. Plant-based remedies have also been shown to be effective in managing inflammation and related complications. In addition to therapies, maintaining a healthy diet, exercise, and weight management are essential for managing arthritis. This review discusses the causes, prevalence, diagnostic methods, current and prospective future treatments, and potential medicinal plants that may act as anti-inflammatory or anti-rheumatic agents. However, more research is necessary to identify the underlying mechanisms and active molecules that could improve arthritis treatment.
Collapse
Affiliation(s)
- Mohammad Raeesh Shekh
- National Innovation Foundation (NIF), India, Grambharti, Amrapur, Gandhinagar, Mahudi Road, Gandhinagar, Gujarat, India
| | - Nasir Ahmed
- Forensic Anthropology-1, Department of Forensic Medicine, YMC, Yenepoya Deemed to be University, University Road, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Vivek Kumar
- National Innovation Foundation (NIF), India, Grambharti, Amrapur, Gandhinagar, Mahudi Road, Gandhinagar, Gujarat, India
| |
Collapse
|
15
|
Zhu J, Guo S, Hu S, Chen Q. The 2210408F21Rik/miR-1968-5p/Hras axis regulates synapse-related proteins in a mouse model of depressive-like behaviors through a ceRNA mechanism. Behav Brain Res 2023; 447:114440. [PMID: 37075955 DOI: 10.1016/j.bbr.2023.114440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023]
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) has been correlated with depressive disorders, but limited data are available on the lncRNA-microRNA (miRNA/miR)-messenger RNA (mRNA) competitive endogenous RNA (ceRNA) mechanism in depression. Herein, we address this issue based on transcriptome sequencing and in vitro experiments. Mouse hippocampus tissues were obtained from chronic unpredictable mild stress (CUMS)-induced mice to screen out differentially expressed mRNAs and lncRNAs based on the transcriptome sequencing. Next, the depression-related differentially expressed genes (DEGs) were obtained, followed by Gene Ontology (GO) and Kyoto Encylopedia of Genes and Genomes (KEGG) enrichment analysis. A total of 1018 differentially expressed mRNAs, 239 differentially expressed lncRNAs, and 58 DEGs related to depression were acquired. The miRNAs targeting Harvey rat sarcoma virus oncogene (Hras) and miRNAs sponged by Hras-related lncRNA were intersected to identify the ceRNA regulatory network. In addition, the synapse-related genes related to depression were acquired by bioinformatics analysis. Hras was identified as the core gene related to depression, mainly related to neuronal excitation. We also found that 2210408F21Rik competitively bound to miR-1968-5p that targeted Hras. The effects of 2210408F21Rik/miR-1968-5p/Hras axis on neuronal excitation were verified in primary hippocampal neurons. The experimental data indicated that the downregulation of 2210408F21Rik increased the level of miR-1968-5p to diminish Hras expression, thereby affecting neuronal excitation in CUMS mice. In conclusion, the 2210408F21Rik/miR-1968-5p/Hras ceRNA network can potentially affect the expression of synapsia-related proteins and is a promising target for preventing and treating depression.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Neurology, Affiliated Hospital of Chengde Medical College, Chengde 067000, China.
| | - Sen Guo
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical College, Chengde 067000, China; Department of Spinal Cord Injury and Rehabilitation, Chengde Medical College, Chengde 067000, China
| | - Shaofu Hu
- Department of Neurology, Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Qihang Chen
- Department of Neurology, Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| |
Collapse
|
16
|
DHA Induces Cell Death through the Production of ROS and the Upregulation of CHOP in Fibroblast-like Synovial Cells from Human Rheumatoid Arthritis Patients. Int J Mol Sci 2023; 24:ijms24021734. [PMID: 36675245 PMCID: PMC9865349 DOI: 10.3390/ijms24021734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease marked by a massive proliferation of synovial cells in the joints. In this study, we investigated the pro-apoptotic effects of docosahexaenoic acid (DHA) in human fibroblast-like synovial cells from RA patients (RA-FLS). An in vitro study using MH7A cells showed that DHA treatment induced caspase-8-dependent apoptosis in a dose-dependent manner and reduced the TNF-α-mediated induction of MMP-9 and IL-1β. DHA also induced the phosphorylation of eIF2α, the expression of the ER stress markers ATF4 and C/EBP homologous protein (CHOP), and death receptor 5 (DR5). The knockdown of CHOP or DR5 increased cell viability and reduced apoptosis in DHA-treated cells. Furthermore, the knockdown of CHOP reduced DHA-mediated DR5 expression, while the overexpression of CHOP increased DR5 expression. We also found that DHA treatment induced the accumulation of reactive oxygen species (ROS), and pretreatment with the anti-oxidant Tiron effectively abrogated not only the expression of CHOP and DR5, but also DHA-induced apoptosis. Under this condition, cell viability was increased, while PARP-1 cleavage and caspase-8 activation were reduced. All the findings were reproduced in human primary synovial cells obtained from RA patients. These results suggest that the DHA-mediated induction of ROS and CHOP induced apoptosis through the upregulation of DR5 in RA-FLSs, and that CHOP could be used as a therapy for RA.
Collapse
|
17
|
Zhang Y, Liu Y, Peng F, Wei X, Hao H, Li W, Zhao Y. Cedrol from ginger alleviates rheumatoid arthritis through dynamic regulation of intestinal microenvironment. Food Funct 2022; 13:11825-11839. [PMID: 36314362 DOI: 10.1039/d2fo01983c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The imbalance of intestinal flora would induce immune inflammation. Cedrol (CE), found from ginger by our group earlier, has been proven to play an excellent role in ameliorating rheumatoid arthritis (RA) via acting on JAK3, MAPK, and NF-κB. However, there have been no studies on CE ameliorating RA through the regulation of the micro-environment. In this study, the adjuvant arthritis model (AIA) is established to evaluate the weight, arthritis score, paw swelling, bone destruction, immune organ index, inflammatory cell infiltration, cartilage erosion, and metabolic enzymes of kidneys in AIA rats after CE intervention. The results indicated CE could alleviate paw swelling, reduce arthritis score, decrease the secretion of TNF-α, IL-6, and IL-1β in serum in a dose-dependent manner, and inhibit the immune organ index of the spleen while having no significant effect on metabolic enzymes of the kidney. In addition, pathological sections of ankle and knee joints suggested CE might significantly prevent inflammatory cell infiltration, synovial hyperplasia, and joint degeneration and protect articular cartilage. Then, for the first time, 16S rRNA gene was applied to analyze the regulatory effect of CE on intestinal flora. CE could effectively improve the uniformity, diversity, and richness of intestinal flora, reduce the number of pathogenic bacteria, and increase the proportion of beneficial bacteria, and it significantly inhibited the abundance of Prevotella in RA rats, which was 12.43 times smaller than that in methotrexate. The distribution and excretion of CE in vivo were detected by GC-MS. It was found that CE would massively accumulate in the gastrointestinal tract after oral administration, which is then mainly excreted through feces. Interestingly, the research suggested that CE, which plays a role in the dynamic regulation of the intestinal micro-environment, could be used as a potential component to prevent RA.
Collapse
Affiliation(s)
- Yumeng Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China.
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, and Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Taiyuan 030000, China.
| | - Yang Liu
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, and Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Taiyuan 030000, China.
| | - Fei Peng
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xinrui Wei
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Huiqin Hao
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, and Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Taiyuan 030000, China.
| | - Wei Li
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yuqing Zhao
- Shenyang Pharmaceutical University, Shenyang 110016, China.
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| |
Collapse
|
18
|
Cui L, Weiyao J, Chenghong S, Limei L, Xinghua Z, Bo Y, Xiaozheng D, Haidong W. Rheumatoid arthritis and mitochondrial homeostasis: The crossroads of metabolism and immunity. Front Med (Lausanne) 2022; 9:1017650. [PMID: 36213670 PMCID: PMC9542797 DOI: 10.3389/fmed.2022.1017650] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease characterized by chronic symmetric synovial inflammation and erosive bone destruction. Mitochondria are the main site of cellular energy supply and play a key role in the process of energy metabolism. They possess certain self-regulatory and repair capabilities. Mitochondria maintain relative stability in number, morphology, and spatial structure through biological processes, such as biogenesis, fission, fusion, and autophagy, which are collectively called mitochondrial homeostasis. An imbalance in the mitochondrial homeostatic environment will affect immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling. These biological processes are involved in the onset and development of rheumatoid arthritis. In this review, we found that in rheumatoid arthritis, abnormal mitochondrial homeostasis can mediate various immune cell metabolic disorders, and the reprogramming of immune cell metabolism is closely related to their inflammatory activation. In turn, mitochondrial damage and homeostatic imbalance can lead to mtDNA leakage and increased mtROS production. mtDNA and mtROS are active substances mediating multiple inflammatory pathways. Several rheumatoid arthritis therapeutic agents regulate mitochondrial homeostasis and repair mitochondrial damage. Therefore, modulation of mitochondrial homeostasis would be one of the most attractive targets for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Liu Cui
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Weiyao
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Su Chenghong
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Liu Limei
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhang Xinghua
- Acupuncture and Moxibustion Department, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Yuan Bo
- Acupuncture and Pain Department, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Du Xiaozheng
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Du Xiaozheng
| | - Wang Haidong
- Rheumatoid Bone Disease Center, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
- Wang Haidong
| |
Collapse
|
19
|
Wang X, Fan D, Cao X, Ye Q, Wang Q, Zhang M, Xiao C. The Role of Reactive Oxygen Species in the Rheumatoid Arthritis-Associated Synovial Microenvironment. Antioxidants (Basel) 2022; 11:antiox11061153. [PMID: 35740050 PMCID: PMC9220354 DOI: 10.3390/antiox11061153] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that begins with a loss of tolerance to modified self-antigens and immune system abnormalities, eventually leading to synovitis and bone and cartilage degradation. Reactive oxygen species (ROS) are commonly used as destructive or modifying agents of cellular components or they act as signaling molecules in the immune system. During the development of RA, a hypoxic and inflammatory situation in the synovium maintains ROS generation, which can be sustained by increased DNA damage and malfunctioning mitochondria in a feedback loop. Oxidative stress caused by abundant ROS production has also been shown to be associated with synovitis in RA. The goal of this review is to examine the functions of ROS and related molecular mechanisms in diverse cells in the synovial microenvironment of RA. The strategies relying on regulating ROS to treat RA are also reviewed.
Collapse
Affiliation(s)
- Xing Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qinbin Ye
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Qiong Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
- Correspondence: or
| |
Collapse
|
20
|
Silver Ion-Complexation High-Speed Countercurrent Chromatography Coupled with Prep-HPLC for Separation of Sesquiterpenoids from Germacrene A Fermentation Broth. FERMENTATION 2021. [DOI: 10.3390/fermentation7040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A silver ion high-speed counter-current chromatography ([Ag+]-HSCCC) was developed to separate and purify five sesquiterpenoids from germacrene A fermentation broth. The solvent system was consisted of n-hexane-methanol-silver nitrate (3 mol/L) solution (10:9.5:0.5, v/v). By employing this chromatographic protocol, five sesquiterpenoids named β-elemene (1; 54.1 mg), germacrene A (2; 28.5 mg), γ-selinene (3; 4.6 mg), β-selinene (4; 3.4 mg), and α-selinene (5; 1.3 mg) were obtained successfully from 500 mg extracted crude sample with purities of 97.1%, 95.2%, 98.2%, 96.3% and 98.5%, respectively, combined with preparative HPLC. The results reveal that the addition of metal ion in biphasic solvent system significantly improved the HSCCC separation factor of sesquiterpenoids. Meanwhile, our study also provided an alternate approach to separate the compounds with less polarity, also geometrical isomers and various natural product classes.
Collapse
|
21
|
Zhang H, Li S, Bao J, Ge N, Hong F, Qian L. β-elemene inhibits non-small cell lung cancer cell migration and invasion by inactivating the FAK-Src pathway. Exp Ther Med 2021; 22:1095. [PMID: 34504549 PMCID: PMC8383758 DOI: 10.3892/etm.2021.10529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Despite sustained effort, the prognosis of lung cancer remains poor and the therapeutic responses are limited. Cell movement ability is a prerequisite for lung cancer metastasis, which involves focal adhesion kinase (FAK)-mediated cell migration and invasion via complex formation with Src. Hence, FAK-Src signaling might be an effective target for anti-cancer treatment. β-elemene, the major component of elemene extracted from Curcuma Rhizoma, exhibits broad-spectrum anti-tumor properties. However, the role of β-elemene in lung cancer cell motility and its possible mechanism remain unknown. Herein, the role of β-elemene in the migration and invasion of two non-small cell lung cancer (NSCLC) cell lines was investigated by performing wound-healing and Transwell assays. The mRNA expression levels of genes associated with motility, including RhoA, Rac1, Cac42, matrix metalloprotease (MMP)2 and MMP9, were examined by reverse transcription-quantitative polymerase chain reaction. To determine whether β-elemene acts through FAK-Src signaling, western blotting was performed and the levels of phosphorylated FAK and Src were detected. The results indicated that β-elemene inhibited the migration and invasion of A549 and NCI-H1299 (H1299) cells, while the motility-associated genes were de-regulated following exposure to β-elemene. Furthermore, β-elemene decreased the activity of FAK and Src. Overall, these results suggest that β-elemene potentially inhibits NSCLC through FAK-Src signaling.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
| | - Shaobing Li
- Department of Anatomy, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| | - Ning Ge
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
| | - Fu Hong
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
| | - Liting Qian
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
22
|
Zhang G, Xue C, Zeng Y. β-elemene alleviates airway stenosis via the ILK/Akt pathway modulated by MIR143HG sponging miR-1275. Cell Mol Biol Lett 2021; 26:28. [PMID: 34118875 PMCID: PMC8199800 DOI: 10.1186/s11658-021-00261-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background We have previously found that β-elemene could inhibit the viability of airway granulation fibroblasts and prevent airway hyperplastic stenosis. This study aimed to elucidate the underlying mechanism and protective efficacy of β-elemene in vitro and in vivo. Methods Microarray and bioinformatic analysis were used to identify altered pathways related to cell viability in a β-elemene-treated primary cell model and to construct a β-elemene-altered ceRNA network modulating the target pathway. Loss of function and gain of function approaches were performed to examine the role of the ceRNA axis in β-elemene's regulation of the target pathway and cell viability. Additionally, in a β-elemene-treated rabbit model of airway stenosis, endoscopic and histological examinations were used to evaluate its therapeutic efficacy and further verify its mechanism of action. Results The hyperactive ILK/Akt pathway and dysregulated LncRNA-MIR143HG, which acted as a miR-1275 ceRNA to modulate ILK expression, were suppressed in β-elemene-treated airway granulation fibroblasts; β-elemene suppressed the ILK/Akt pathway via the MIR143HG/miR-1275/ILK axis. Additionally, the cell cycle and apoptotic phenotypes of granulation fibroblasts were altered, consistent with ILK/Akt pathway activity. In vivo application of β-elemene attenuated airway granulation hyperplasia and alleviated scar stricture, and histological detections suggested that β-elemene's effects on the MIR143HG/miR-1275/ILK axis and ILK/Akt pathway were in line with in vitro findings. Conclusions MIR143HG and ILK may act as ceRNA to sponge miR-1275. The MIR143HG/miR-1275/ILK axis mediates β-elemene-induced cell cycle arrest and apoptosis of airway granulation fibroblasts by modulating the ILK/Akt pathway, thereby inhibiting airway granulation proliferation and ultimately alleviating airway stenosis. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-021-00261-0.
Collapse
Affiliation(s)
- Guoying Zhang
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, The Second Affiliated Hospital of Fujian Medical University, Zhongshan North Road No.34, Licheng District, Quanzhou, Fujian, China.,Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Cheng Xue
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, The Second Affiliated Hospital of Fujian Medical University, Zhongshan North Road No.34, Licheng District, Quanzhou, Fujian, China.,Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, The Second Affiliated Hospital of Fujian Medical University, Zhongshan North Road No.34, Licheng District, Quanzhou, Fujian, China.
| |
Collapse
|
23
|
Hong C, Zhuang H, Cai B, Chen J, Huang S, Fang T. β-Elemene Attenuates Fibrosis after Esophageal Endoscopic Submucosal Dissection via Modulating the HIF-1α/HK2/p38-MAPK Signaling Axis. ACS Biomater Sci Eng 2021; 7:3399-3408. [PMID: 34109793 DOI: 10.1021/acsbiomaterials.1c00047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Esophageal fibrosis and stricture after endoscopic submucosal dissection (ESD) are serious postoperative complications. Previous evidence has highlighted an anticancer role of β-elemene in esophageal squamous cell carcinoma. This study put forward a hypothesis on the inhibitory effect of β-elemene on esophageal fibrosis after ESD and aimed to elaborate the underlying mechanisms. Our initial network pharmacology analyses determined hypoxia-inducible factor-1alpha (HIF-1α), hexokinase 2 (HK2), and p38MAPK in association with the effect of β-elemene. We validated that the levels of HIF-1α, HK2, and p-p38MAPK were elevated in esophageal granulation tissue after ESD and corresponding fibroblasts. Esophageal fibroblasts were treated with β-elemene of gradient concentrations. The results indicated that β-elemene repressed the proliferation of esophageal fibroblasts and the levels of fibrosis-related factors. Further, β-elemene inhibited HIF-1α expression leading to restricted proliferation and augmented apoptosis of fibroblasts. HIF-1α induced p38MAPK phosphorylation by activating the HK2 transcription and consequently accelerated fibroblast proliferation. Together, β-elemene diminished HIF-1α expression and impaired the HK2-mediated p38MAPK phosphorylation, thereby repressing the esophageal fibrosis.
Collapse
Affiliation(s)
- Caifa Hong
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Huie Zhuang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Baorang Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Jiangmu Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Sifu Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
24
|
Hu D, Gao J, Yang X, Liang Y. A Comprehensive Mini-Review of Curcumae Radix: Ethnopharmacology, Phytochemistry, and Pharmacology. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211020628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Curcumae Radix is an efficacious ingredient with various medicinal properties empirically used in traditional Chinese medicine (TCM) formula for the treatment of cancer, depression, chest pain, dysmenorrhea, epilepsy, and jaundice. However, either phytochemical or pharmacological information of Curcumae Radix underlying its traditionally medicinal uses is rarely summarized and systematically analyzed. To provide evidence for clinical trials, a comprehensive literature review has been prepared of the phytochemicals, and ethnopharmacological and pharmacological mechanisms of this herb. The review approach consisted of searching several web-based scientific databases, including PubMed, Web of Science, and Elsevier. The keywords included “Curcumae Radix,” “ Curcuma wenyujin,” “ Curcuma longa,” “ Curcuma kwangsiensis,” and “ Curcuma phaeocaulis.” Based on the proposed criteria, 57 articles were evaluated in detail. The accumulated data indicate that Curcumae Radix contains a number of bioactive phytochemicals, mainly sesquiterpenes, diarylheptanoids, and diarylpentanoids, which account for a variety of medicinal values, such as anticancer, anti-inflammation, anti-hepatic fibrosis, and antioxidant. A wide range of apoptotic proteins, cell adhesion molecules, inflammatory cytokines, and enzymic and nonenzymic antioxidants could be modulated by either Curcumae Radix or its bioactive compounds, thus underpinning a fundamental understanding for the pharmacological effects of this herb. This review highlights the therapeutic potential of Curcumae Radix to progress the development of versatile adjuvants or therapeutic agents in the future.
Collapse
Affiliation(s)
- Dongyi Hu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Henan, China
| | - Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Henan, China
| | - Xiao Yang
- School of Clinical Medicine, Henan University of Science and Technology, Henan, China
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Institute of Mental Health, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| |
Collapse
|
25
|
Meng M, Yue Z, Chang L, Liu Y, Hu J, Song Z, Tang Z, Zhou R, Wang C. Anti-Rheumatoid Arthritic Effects of Paris Saponin VII in Human Rheumatoid Arthritis Fibroblast-Like Synoviocytes and Adjuvant-Induced Arthritis in Rats. Front Pharmacol 2021; 12:683698. [PMID: 34122110 PMCID: PMC8194347 DOI: 10.3389/fphar.2021.683698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/14/2021] [Indexed: 12/29/2022] Open
Abstract
In the pathogenesis of rheumatoid arthritis (RA), rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) have tumor-like characteristics, mainly manifested by hyperproliferation and resistance to apoptosis and then it will erode the bone and cartilage, eventually leading to joint destruction. Paris saponin VII (PS VII) is an active compound derived from a traditional herbal medicine named Trillium tschonoskii Maxim, which has anti-tumor, analgesic, and immunomodulatory effects. However, its anti-RA effect has not yet been reported. This study was to investigate the effect of PS VII on two rheumatoid arthritis fibroblast-like synoviocytes lines (RA-FLS and MH7A) and adjuvant-induced arthritis (AIA) in rats. In vitro, the effects of PS VII on the proliferation, cell cycle, and apoptosis of RA-FLS and MH7A cells were detected by MTT, flow cytometry, and western blot analysis. In vivo, the effect of PS VII on the weight of the rat, paw swelling, ankle joint diameter, arthritis index, serum inflammatory cytokines (TNF-α, IL-6, and IL-1β), histopathological assessment and apoptosis proteins in the synovial tissues were evaluated in AIA rats. The in vitro studies showed that PS VII inhibited the proliferation of RA-FLS and MH7A cells, induced S phase arrest and triggered cell apoptosis mainly through the mitochondrial apoptotic pathway and the regulation of JNK and p38 MAPK pathways. The in vivo studies revealed that PS VII could improve ameliorate body weight, paw swelling, ankle joint diameter, reduce the spleen and thymus index, suppress the production of TNF-α, IL-6 and IL-1β, improve histopathological changes and regulate the expressions of apoptosis proteins in AIA Rats. In conclusion, PS VII could inhibit the proliferation and trigger apoptosis of RA-FLS and MH7A cells by regulating the mitochondrial apoptosis pathway and the JNK and p38 MAPK pathways, and alleviate the symptoms of RA, signifying it to be one of the potential anti-RA therapeutics.
Collapse
Affiliation(s)
- Mei Meng
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China.,Country School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhenggang Yue
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lu Chang
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China.,Country School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yanru Liu
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jinhang Hu
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhongxing Song
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhishu Tang
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Rui Zhou
- State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Changli Wang
- Country School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
26
|
Zhao X, Kim YR, Min Y, Zhao Y, Do K, Son YO. Natural Plant Extracts and Compounds for Rheumatoid Arthritis Therapy. ACTA ACUST UNITED AC 2021; 57:medicina57030266. [PMID: 33803959 PMCID: PMC8001474 DOI: 10.3390/medicina57030266] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023]
Abstract
Natural plant extracts and compounds (NPECs), which originate from herbs or plants, have been used in the clinical treatment of rheumatoid arthritis (RA) for many years. Over the years, many scientists have carried out a series of studies on the treatment of RA by NPEC. They found a high quantity of active NPECs with broad application prospects. In view of various complex functions of these NPECs, exploring their potential as medicines for RA treatment will be beneficial for RA patients. Thus, to help advance the development of high-quality NPECs for RA, we herein aimed to review the research progress of NPECs in the treatment of RA in recent years. Our findings showed that, from the pharmacological perspective, natural plant extracts or mixed herbal compounds effectively regulate the immune system to alleviate RA by inhibiting pro-inflammatory cytokines. Further, individualized medication can be applied according to each patient's physical condition. However, the pathogenesis of RA and its immune mechanism has not been fully understood and requires further studies.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (X.Z.); (Y.M.)
| | - Young-Rok Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 63243, Korea;
| | - Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (X.Z.); (Y.M.)
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Kyoungtag Do
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 63243, Korea;
- Correspondence: (K.D.); (Y.-O.S.); Tel.: +82-64-754-3334 (K.D.); +82-64-754-3331 (Y.-O.S.)
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Korea; (X.Z.); (Y.M.)
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju 63243, Korea;
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju 63243, Korea
- Practical Translational Research Center, Jeju National University, Jeju 63243, Korea
- Correspondence: (K.D.); (Y.-O.S.); Tel.: +82-64-754-3334 (K.D.); +82-64-754-3331 (Y.-O.S.)
| |
Collapse
|
27
|
Zhou S, Zou H, Huang G, Chen G, Zhou X, Huang S. Design, synthesis and anti-rheumatoid arthritis evaluation of double-ring conjugated enones. Bioorg Chem 2021; 109:104701. [PMID: 33601137 DOI: 10.1016/j.bioorg.2021.104701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022]
Abstract
Four series of double-ring conjugated enones were designed, synthesized and studied for the inhibition of synovial cell activity through the modification of Dysodensiol K core structure, double-ring, double-bond and double-carbonyl groups. For in vitro synovial cell assay of rats, compound 151 and 168 exhibited good inhibitory activities, with IC50 values of 2.71 ± 0.18 and 2.68 ± 0.16 μM respectively. At the same time, the LDH release and LD50 test results revealed that the target compounds were low cytotoxicity and acute toxicity. For in vivo CIA model test through the oral administration, compounds 151 and 168 were exhibited similar effect to positive control group methotrexate.
Collapse
Affiliation(s)
- Shiyang Zhou
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571127, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China; College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Huiying Zou
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571127, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| | - Gangliang Huang
- College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571127, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China.
| | - Xueming Zhou
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571127, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| | - Shuheng Huang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
28
|
Integrating Network Pharmacology with Molecular Docking to Unravel the Active Compounds and Potential Mechanism of Simiao Pill Treating Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5786053. [PMID: 33204288 PMCID: PMC7657688 DOI: 10.1155/2020/5786053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/05/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022]
Abstract
Objective To explore the main components and unravel the potential mechanism of simiao pill (SM) on rheumatoid arthritis (RA) based on network pharmacological analysis and molecular docking. Methods Related compounds were obtained from TCMSP and BATMAN-TCM database. Oral bioavailability and drug-likeness were then screened by using absorption, distribution, metabolism, and excretion (ADME) criteria. Additionally, target genes related to RA were acquired from GeneCards and OMIM database. Correlations about SM-RA, compounds-targets, and pathways-targets-compounds were visualized through Cytoscape 3.7.1. The protein-protein interaction (PPI) network was constructed by STRING. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed via R packages. Molecular docking analysis was constructed by the Molecular Operating Environment (MOE). Results A total of 72 potential compounds and 77 associated targets of SM were identified. The compounds-targets network analysis indicated that the 6 compounds, including quercetin, kaempferol, baicalein, wogonin, beta-sitosterol, and eugenol, were linked to ≥10 target genes, and the 10 target genes (PTGS1, ESR1, AR, PGR, CHRM3, PPARG, CHRM2, BCL2, CASP3, and RELA) were core target genes in the network. Enrichment analysis indicated that PI3K-Akt, TNF, and IL-17 signaling pathway may be a critical signaling pathway in the network pharmacology. Molecular docking showed that quercetin, kaempferol, baicalein, and wogonin have good binding activity with IL6, VEGFA, EGFR, and NFKBIA targets. Conclusion The integrative investigation based on bioinformatics/network topology strategy may elaborate on the multicomponent synergy mechanisms of SM against RA and provide the way out to develop new combination medicines for RA.
Collapse
|
29
|
Rui X, Yang Y, Chen Q, Wu J, Chen J, Zhang Q, Ren R, Yin D. Imperative and effective reversion of synovial hyperplasia and cartilage destruction in rheumatoid arthritis through multiple synergistic effects of O 2 and Ca 2. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111058. [PMID: 32993999 DOI: 10.1016/j.msec.2020.111058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 01/06/2023]
Abstract
Abnormal synovial hyperplasia and cartilage destruction in a joint cavity are the key causes affecting the pain and disability in rheumatoid arthritis (RA) and, unfortunately, there exists no effective treatment for them. This investigation reports an effective reversion of the above pathological characteristics in RA owing to the use of a prolonged O2/Ca2+-supporting phototherapy hydrogel. The performed in vitro and in vivo experiments exhibit that the prolonged O2-supporting not only promotes the direct cell-killing effects of singlet oxygen, but also persistently blocks the pathological feedback between the abnormal proliferation of fibroblast-like synoviocyte and the local oxygen depletion. Furthermore, the Ca2+, which is the other decomposition product of the O2 donor, induces mitochondrial Ca2+ overload and endoplasmic reticulum Ca2+ disorder and triggers Ca2+-associated apoptosis and immunogenic cell death. In addition to these multiple synergistic effects on synovial hyperplasia, the prolonged Ca2+ support can also induce the regeneration of cartilage in RA affected joints. The present study may thus provide an effective therapeutic strategy for the prevention and reversion of joint lesions and the accompanying arthralgia and deformity in RA.
Collapse
Affiliation(s)
- Xue Rui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, PR China; Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui Province 230012, PR China; Key Laboratory of Xin' an Medicine, Ministry of Education, Hefei 230012, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Qingqing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Jingjing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Jing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Qingqing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Rongrong Ren
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, PR China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei 230012, PR China; Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, Anhui Province 230012, PR China; Key Laboratory of Xin' an Medicine, Ministry of Education, Hefei 230012, PR China.
| |
Collapse
|
30
|
Liu C, Guo X, Bai S, Zeng G, Wang H. lncRNA CASC2 downregulation participates in rheumatoid arthritis, and CASC2 overexpression promotes the apoptosis of fibroblast‑like synoviocytes by downregulating IL‑17. Mol Med Rep 2020; 21:2131-2137. [PMID: 32186765 PMCID: PMC7115202 DOI: 10.3892/mmr.2020.11018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/04/2019] [Indexed: 12/29/2022] Open
Abstract
lncRNA cancer susceptibility candidate 2 (CASC2) is a recently identified oncogenic lncRNA in different types of cancers. Our preliminary microarray data showed that lncRNA CASC2 was downregulated in the plasma of patients with rheumatoid arthritis (RA), indicating the involvement of this lncRNA in RA. In the present study, lncRNA CASC2 and IL-17 in plasma were detected by reverse transcription--quantitative PCR and ELISA, respectively. Diagnostic analyses were performed using receiver operating characteristic curves. Flow cytometry was performed to evaluate cell apoptosis. The effects of lncRNA CASC2 on IL-17 expression were determined via western blotting. lncRNA CASC2 was found to be downregulated, while IL-17 was upregulated in the plasma of RA patients when compared with these levels in the plasma of healthy controls. Plasma levels of lncRNA CASC2 and IL-17 were significantly and inversely correlated in both RA patients and healthy controls. Altered plasma levels of lncRNA CASC2 and IL-17 were able to differentiate RA patients from healthy controls. Overexpression of lncRNA CASC2 promoted, while treatment with IL-17 inhibited the apoptosis of human fibroblast-like synoviocytes (HFLSs) isolated from RA patients. Overexpression of lncRNA CASC2 inhibited IL-17 expression in HFLS, while treatment with IL-17 did not significantly affect the expression of lncRNA CASC2. Therefore, downregulation of lncRNA CASC2 is involved in RA and lncRNA CASC2 overexpression may promote the apoptosis of HFLS by downregulating IL-17.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Orthopedics, First People's Hospital of Tianmen City, Tianmen, Hubei 431700, P.R. China
| | - Xiaojun Guo
- Department of Orthopedics, First People's Hospital of Tianmen City, Tianmen, Hubei 431700, P.R. China
| | - Sunpeng Bai
- Department of Orthopedics, First People's Hospital of Tianmen City, Tianmen, Hubei 431700, P.R. China
| | - Guangjun Zeng
- Department of Orthopedics, First People's Hospital of Tianmen City, Tianmen, Hubei 431700, P.R. China
| | - Hao Wang
- Department of Orthopedics, First People's Hospital of Tianmen City, Tianmen, Hubei 431700, P.R. China
| |
Collapse
|
31
|
Cai L, Li CM, Chen WN, Qiu YY, Guo YL, Li R. Penta-acetyl geniposide induces apoptosis of fibroblast-like synoviocytes from adjuvant-induced arthritis rats in vitro, associated with inhibition of NF-κB activation. Pharmacol Rep 2019; 71:1006-1013. [PMID: 31563017 DOI: 10.1016/j.pharep.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Approaches promoting fibroblast-like synoviocytes (FLS) apoptosis are considered as a meaningful strategy for rheumatoid arthritis (RA) treatment. We have previously reported the anti-arthritic effect of penta-acetyl geniposide ((Ac)5GP, an active derivative of geniposide) on adjuvant-induced arthritis (AIA) rats in vivo. The present study aimed to investigate the pro-apoptotic effect of (Ac)5GP on AIA FLS in vitro and the underlying molecular mechanisms. METHODS Rat AIA was induced by complete Freund's adjuvant, and FLS were primary-cultured from synovial tissues. AIA FLS were treated with (Ac)5GP (50, 100 and 200 μM) for 48 h and cell proliferation and apoptosis were respectively examined. The involvement of apoptosis-related proteins (Bax, Bcl-2 and caspase 3) and nuclear factor kappa B (NF-κB) signaling pathway was checked. RESULTS (Ac)5GP inhibited the viability of AIA FLS and reduced the percentage of Ki67-positive cells in AIA FLS. Particularly, (Ac)5GP promoted AIA FLS apoptosis in vitro by inducing apoptotic nuclear morphology, facilitating DNA ladder formation and increasing percentages of both early and late apoptotic cells. (Ac)5GP treatment on AIA FLS decreased Bcl-2 protein level whereas increased the levels of Bax and caspase 3 proteins. Moreover, (Ac)5GP reduced the degradation and phosphorylation of IκBα, down-regulated NF-κB p65 protein level in nucleus and inhibited NF-κB p65 nuclear translocation. CONCLUSIONS (Ac)5GP had a potent pro-apoptotic effect on AIA FLS in vitro, which is associated with regulating apoptosis-related proteins and inhibiting NF-κB activation.
Collapse
Affiliation(s)
- Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui Province, China
| | - Chun-Mei Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Wei-Na Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Yuan-Ye Qiu
- School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Yan-Li Guo
- Anhui Provincial Institute of Food and Drug Inspection, Hefei, Anhui Province, China
| | - Rong Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China; School of Pharmacy, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
32
|
Zhang Q, Liu J, Zhang M, Wei S, Li R, Gao Y, Peng W, Wu C. Apoptosis Induction of Fibroblast-Like Synoviocytes Is an Important Molecular-Mechanism for Herbal Medicine along with its Active Components in Treating Rheumatoid Arthritis. Biomolecules 2019; 9:biom9120795. [PMID: 31795133 PMCID: PMC6995542 DOI: 10.3390/biom9120795] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 01/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a known chronic autoimmune disease can cause joint deformity and even loss of joint function. Fibroblast-like synoviocytes (FLS), one of the main cell types in synovial tissues of RA patients, are key effector cells in the development of RA and are considered as promising therapeutic targets for treating RA. Herbal medicines are precious resources for finding novel agents for treating various diseases including RA. It is reported that induction of apoptosis in FLS is an important mechanism for the herbal medicines to treat RA. Consequently, this paper reviewed the current available references on pro-apoptotic effects of herbal medicines on FLS and summarized the related possible signal pathways. Taken together, the main related signal pathways are concluded as death receptors mediated apoptotic pathway, mitochondrial dependent apoptotic pathway, NF-κB mediated apoptotic pathways, mitogen-activated protein kinase (MAPK) mediated apoptotic pathway, endoplasmic reticulum stress (ERS) mediated apoptotic pathway, PI3K-Akt mediated apoptotic pathway, and other reported pathways such as janus kinase/signal transducers and activators of transcription (JAK-STAT) signal pathway. Understanding the apoptosis induction pathways in FLS of these herbal medicines will not only help clear molecular mechanisms of herbal medicines for treating RA but also be beneficial for finding novel candidate therapeutic drugs from natural herbal medicines. Thus, we expect the present review will highlight the importance of herbal medicines and its components for treating RA via induction of apoptosis in FLS, and provide some directions for the future development of these mentioned herbal medicines as anti-RA drugs in clinical.
Collapse
Affiliation(s)
- Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Mengmeng Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Shujun Wei
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.W.); (Y.G.)
| | - Ruolan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
| | - Yongxiang Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (S.W.); (Y.G.)
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
- Correspondence: (W.P.); (C.W.); Tel.: +86-028-61801001 (W.P. & C.W.)
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (J.L.); (M.Z.); (R.L.)
- Correspondence: (W.P.); (C.W.); Tel.: +86-028-61801001 (W.P. & C.W.)
| |
Collapse
|
33
|
Cao M, Long M, Chen Q, Lu Y, Luo Q, Zhao Y, Lu A, Ge C, Zhu L, Chen Z. Development of β-elemene and Cisplatin Co-Loaded Liposomes for Effective Lung Cancer Therapy and Evaluation in Patient-Derived Tumor Xenografts. Pharm Res 2019; 36:121. [PMID: 31214786 DOI: 10.1007/s11095-019-2656-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/09/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE β-elemene and cisplatin combined chemotherapy currently is one of the most important settings available for lung cancer therapy in China. However, the clinical outcome is limited by their pharmacokinetic drawbacks. On the other hand, most of nanomedicines have failed in clinical development due to the huge differences between heterogeneous clinical tumor tissues and homogenous cell-derived xenografts. In this work, we fabricated a β-elemene and cisplatin co-loaded liposomal system to effectively treat lung cancer. METHOD In vitro cytotoxicity of co-loaded liposomes was studied by MTT, trypan and Hoechst/PI staining, and western blot in A549, A549/DDP, and LCC cells. In vivo antitumor efficacy was evaluated in cell-derived and clinically relevant patient-derived xenografts. RESULTS Co-loaded liposomes were more cytotoxic to cancer cells, especially than the combination of single-loaded liposomes, benefiting from their simultaneous drug internalization and release. As a result, they exhibited desirable therapeutic outcome in both cell-derived and patient-derived xenografts. CONCLUSION β-elemene and cisplatin co-loaded liposomes are a clinically promising candidate for effective lung cancer therapy.
Collapse
Affiliation(s)
- Mingxiang Cao
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Mengmeng Long
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Qiuping Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yapeng Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Qianqian Luo
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Yue Zhao
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Ailing Lu
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Cunwang Ge
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China
| | - Zhongping Chen
- Institute of Special Environmental Medicine, Nantong University, Nantong, People's Republic of China. .,Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
34
|
Xue C, Lin X, Zhang J, Zeng Y, Chen X. β‐Elemene suppresses the proliferation of human airway granulation fibroblasts via attenuation of TGF‐β/Smad signaling pathway. J Cell Biochem 2019; 120:16553-16566. [PMID: 31104326 DOI: 10.1002/jcb.28915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Cheng Xue
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
- Department of Pulmonary Medicine The First Affiliated Hospital of Xiamen University Xiamen Fujian China
| | - Xiao‐Ping Lin
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
| | - Jia‐Min Zhang
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
| | - Yi‐Ming Zeng
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
| | - Xiao‐Yang Chen
- Department of Pulmonary and Critical Care Medicine Second Affiliated Hospital of Fujian Medical University, Respiratory Medicine Center of Fujian Province Quanzhou Fujian China
| |
Collapse
|
35
|
Zhai KF, Duan H, Cui CY, Cao YY, Si JL, Yang HJ, Wang YC, Cao WG, Gao GZ, Wei ZJ. Liquiritin from Glycyrrhiza uralensis Attenuating Rheumatoid Arthritis via Reducing Inflammation, Suppressing Angiogenesis, and Inhibiting MAPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2856-2864. [PMID: 30785275 DOI: 10.1021/acs.jafc.9b00185] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Among the various treatments, induction of synoviocyte apoptosis by natural products during a rheumatoid arthritis (RA) pathological condition can be considered to have vast potential. However, it is unclear that liquiritin, a kind of natural flavonoid extracted from the roots of Glycyrrhiza uralensis, induced the apoptosis of the synovial membrane and its molecular mechanism. In this study, interleukin-1β (IL-1β)-RA-FLS cells were incubated with different concentrations of liquiritin. An MTT assay, Hoechst 33342 staining, JC-1 staining, and Western blot were used to check the viability, cell apoptosis, mitochondrial membrane potential changes, and the expression of related proteins, respectively. In vivo, a TUNEL assay and HE staining of tissue were used for histopathological evaluation. Our results showed that liquiritin significantly inhibited the proliferation of IL-1β-induced-RA-FLS, promoted nuclear DNA fragmentation, and changed the mitochondrial membrane potential to accelerate cell apoptosis. Liquiritin downregulated the ratio of Bcl-2/Bax and inhibited the VEGF expression and phosphorylation of JNK and P38. Moreover, liquiritin improved the clinical score of rheumatism, inflammatory infiltration, and angiogenesis and induced apoptosis of the synovial tissue in vivo. Hence, liquiritin ameliorates RA by reducing inflammation, blocking MAPK signaling, and restraining angiogenesis.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/physiopathology
- Cell Proliferation/drug effects
- Drugs, Chinese Herbal/administration & dosage
- Flavanones/administration & dosage
- Glucosides/administration & dosage
- Glycyrrhiza uralensis/chemistry
- Humans
- Interleukin-1beta/genetics
- Interleukin-1beta/immunology
- MAP Kinase Signaling System/drug effects
- Male
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/physiopathology
- Phosphorylation/drug effects
- Rats
- Rats, Wistar
- Synovial Membrane/drug effects
- Synovial Membrane/immunology
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/immunology
Collapse
Affiliation(s)
- Ke-Feng Zhai
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
- Department of Clinical Laboratory, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 , People's Republic of China
| | - Hong Duan
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
| | - Cai-Yue Cui
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
| | - Yu-Yao Cao
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Jia-Li Si
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
| | - Hui-Jiao Yang
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
| | - Yong-Chao Wang
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
| | - Wen-Gen Cao
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
| | - Gui-Zhen Gao
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| |
Collapse
|
36
|
Yao Y, Yu H, Liu Y, Xu Q, Li X, Meng X, Huang C, Li J. PSTPIP2 Inhibits the Inflammatory Response and Proliferation of Fibroblast-Like Synoviocytes in vitro. Front Pharmacol 2018; 9:1432. [PMID: 30564127 PMCID: PMC6289071 DOI: 10.3389/fphar.2018.01432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/19/2018] [Indexed: 11/23/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease and its pathogenesis remains unclear. Fibroblast-like synoviocytes (FLSs) play an important role in the pathogenesis of RA. Proline-serine-threonine phosphatase interacting protein 2 (PSTPIP2) is an adaptor protein, which is associated with auto-inflammatory disease. In this study, we selected adjuvant-induced arthritis (AIA) as animal model to study the role of PSTPIP2 in FLSs. We found that the expression of PSTPIP2 was significantly down-regulated in synovial tissues and FLSs of AIA rat compared with normal group. And overexpression of PSTPIP2 could inhibit the proliferation and inflammatory response of FLSs. Moreover, the proliferation and inflammatory response of FLSs were promoted with PSTPIP2 silencing treatment. In terms of mechanism, we found that the expression of PSTPIP2 was closely related to NF-κB signaling pathway. Overall, our results suggested that PSTPIP2 inhibits the proliferation and inflammatory response of FLSs, which might be closely related to NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yao Yao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Haixia Yu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yaru Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Qingqing Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaofeng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
37
|
Cai B, Ma L, Nong S, Wu Y, Guo X, Pu J. β-elemene induced anticancer effect in bladder cancer through upregulation of PTEN and suppression of AKT phosphorylation. Oncol Lett 2018; 16:6019-6025. [PMID: 30333873 DOI: 10.3892/ol.2018.9401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/29/2018] [Indexed: 12/25/2022] Open
Abstract
Human bladder cancer is one of the most aggressive tumours known and has shown resistance to traditional chemotherapy, which depends heavily on DNA-damaging drugs. β-elemene is one of the least cytotoxic antitumor agents that are extracted from Curcuma aromatica salisb and it exhibits antitumor effects in many carcinomas. β-elemene has attracted the attention of clinicians and scientists worldwide due to its few side effects and limited effect on the bone marrow. However, the antitumor mechanism of β-elemene remains largely unstudied. In the present study, the expression of the AKT serine/threonine kinase (AKT) signaling pathway in bladder cancer and normal bladder tissue was investigated, and the influence of β-elemene on bladder cancer cells and the mechanisms involved were assessed. The results showed that phosphatase and tensin homolog deleted on chromosome ten (PTEN) was downregulated and phosphorylated-AKT (pAKT) was overexpressed in human bladder cancer. β-elemene significantly suppressed the viability of bladder cancer cells, while leaving normal bladder cells unaffected. In addition, there was an increased number of apoptotic bladder cancer cells following β-elemene treatment, and a significant reduction in cell invasion and migration. Subsequent western blot analyses revealed that bladder cancer cells treated with β-elemene had increased PTEN expression and decreased expression of pAKT. Taken together, these results suggest that β-elemene has an antitumor effect in bladder cancer cells through the upregulation of PTEN and suppression of AKT phosphorylation.
Collapse
Affiliation(s)
- Bo Cai
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Urology, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215001, P.R. China
| | - Limin Ma
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shaojun Nong
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - You Wu
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xin Guo
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jinxian Pu
- Department of Urology, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215001, P.R. China
| |
Collapse
|
38
|
β-Elemene inhibits the proliferation of primary human airway granulation fibroblasts by down-regulating canonical Wnt/β-catenin pathway. Biosci Rep 2018; 38:BSR20171386. [PMID: 29358311 PMCID: PMC5835718 DOI: 10.1042/bsr20171386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
Benign airway stenosis is a clinical challenge because of recurrent granulation tissues. Our previous study proved that a Chinese drug, β-elemene, could effectively inhibit the growth of fibroblasts cultured from hyperplastic human airway granulation tissues, which could slow down the progression of this disease. The purpose of the present study is to find out the mechanism for this effect. We cultured fibroblasts from normal human airway tissues and human airway granulation tissues. These cells were cultured with 160 μg/ml normal saline (NS), different doses of β-elemene, or 10 ng/ml canonical Wnt/β-catenin pathway inhibitor (Dickkopf-1, DKK-1). The proliferation rate of cells and the expression of six molecules involved in canonical Wnt/β-catenin pathway, Wnt3a, glycogen synthase kinase-3β (GSK-3β), β-catenin, α-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-β), and Collagen I (Col-I), were measured. At last, we used canonical Wnt/β-catenin pathway activator (LiCl) to further ascertain the mechanism of β-elemene. Canonical Wnt/β-catenin pathway is activated in human airway granulation fibroblasts. β-Elemene didn't affect normal human airway fibroblasts; however, it had a dose-responsive inhibitive effect on the proliferation and expression of Wnt3a, non-active GSK-3β, β-catenin, α-SMA, TGF-β, and Col-I of human airway granulation fibroblasts. More importantly, it had the same effect on the expression and nuclear translocation of active β-catenin. All these effects were similar to 10 ng/ml DKK-1 and could be attenuated by 10 mM LiCl. Thus, β-elemene inhibits the proliferation of primary human airway granulation fibroblasts by down-regulating canonical Wnt/β-catenin pathway. This pathway is possibly a promising target to treat benign tracheobronchial stenosis.
Collapse
|
39
|
Deng R, Li F, Wu H, Wang WY, Dai L, Zhang ZR, Fu J. Anti-inflammatory Mechanism of Geniposide: Inhibiting the Hyperpermeability of Fibroblast-Like Synoviocytes via the RhoA/p38MAPK/NF-κB/F-Actin Signal Pathway. Front Pharmacol 2018; 9:105. [PMID: 29497378 PMCID: PMC5818421 DOI: 10.3389/fphar.2018.00105] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/30/2018] [Indexed: 01/22/2023] Open
Abstract
Geniposide (GE) is the extraction and purification of iridoid glycosides from the Gardenia jasminoides Ellis, which is a promising anti-inflammatory drug, but its mechanism of actions on rheumatoid arthritis (RA) has not been clarified. This study investigated the molecular mechanism behind GE reduced the high permeability of fibroblast-like synoviocytes (FLSs) derived from SD rats with adjuvant arthritis (AA), with the aims of observing the action of GE in AA rats and exploring new therapeutic strategies for RA treatment. The CCK-8 method was used to detect FLSs proliferation. The pro-inflammatory cytokines levels and anti-inflammatory cytokines levels in FLSs were determined by ELISA kits. FLSs permeability assay was performed on Transwell. Immunofluorescence was used to assay the arrangement and morphology of F-actin. The expression of the key molecules related to FLSs permeability (RhoA, p-p38MAPK, NF-κB p-p65 and F-actin) was detected by western blotting. After treatment with lipopolysaccharide (LPS), the proliferation and the permeability of the cells increased significantly (all P < 0.05). The expression of RhoA, p-p38MAPK, NF-κB p-p65 and F-actin in FLSs was higher compared with the control group, and F-actin was redistributed, with the formation of additional stress fibers. But, these conditions were moderated after treatment with GE. We demonstrated that the treatment of different concentrations of GE (25, 50, and 100 μg/mL) had a significant inhibitory effect on the proliferation and permeability of FLSs in vitro. Furthermore, the levels of interleukin (IL)-1β and IL-17 secreted by FLSs were decreased in different doses of GE groups, and the levels of anti-inflammatory cytokines (IL-4, TGF-β1) were increased. Under treatment with GE, low expression of RhoA downregulated expression of p-p38MAPK, NF-κB p-p65, and F-actin while compared with control group, and restored the hyperpermeability of FLSs due to LPS treatment. Taken together, GE might play its anti-inflammatory and immunoregulatory effects via regulating the relative equilibrium of pro-inflammatory cytokines and anti-inflammatory cytokines. GE attenuated the hyperpermeability of FLSs. The down-regulation of the conduction of RhoA/p38MAPK/NF-κB/F-actin signal may play a critical role in the mechanisms of GE on RA. GE could be an effective therapeutic agent for the treatment of RA.
Collapse
Affiliation(s)
- Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Feng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wen-Yu Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Li Dai
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zheng-Rong Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Fu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
40
|
Wang Y, Xia C, Lun Z, Lv Y, Chen W, Li T. Crosstalk between p38 MAPK and caspase-9 regulates mitochondria-mediated apoptosis induced by tetra-α-(4-carboxyphenoxy) phthalocyanine zinc photodynamic therapy in LoVo cells. Oncol Rep 2017; 39:61-70. [PMID: 29115534 PMCID: PMC5783605 DOI: 10.3892/or.2017.6071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/11/2017] [Indexed: 01/16/2023] Open
Abstract
Photodynamic therapy (PDT) is considered to be an advancing antitumor technology. PDT using hydrophilic/lipophilic tetra-α-(4-carboxyphenoxy) phthalocyanine zinc (TαPcZn-PDT) has exhibited antitumor activity in Bel-7402 hepatocellular cancer cells. However, the manner in which p38 MAPK and caspase-9 are involved in the regulation of mitochondria-mediated apoptosis in the TαPcZn-PDT-treated LoVo human colon carcinoma cells remains unclear. Therefore, in the present study, a siRNA targeting p38 MAPK (siRNA-p38 MAPK) and the caspase-9 specific inhibitor z-LEHD-fmk were used to examine the crosstalk between p38 MAPK and caspase-9 during mitochondria-mediated apoptosis in the TαPcZn-PDT-treated LoVo cells. The findings revealed that the TαPcZn-PDT treatment of LoVo cells resulted in the induction of apoptosis, the formation of p38 MAPK/caspase-9 complexes, the activation of p38 MAPK, caspase-9, caspase-3 and Bid, the downregulation of Bcl-2, the reduction of mitochondrial membrane potential (ΔΨm), the upregulation of Bax and the release of apoptosis-inducing factor (AIF) and cytochrome c (Cyto c). By contrast, siRNA-p38 MAPK or z-LEHD-fmk both attenuated the effects of TαPcZn-PDT in the LoVo cells. Furthermore, the results revealed that siRNA-p38 MAPK had more significant inhibitory effects on apoptosis and mitochondria compared with the effects of z-LEHD-fmk in TαPcZn-PDT-treated LoVo cells. These findings indicated that p38 MAPK plays the major regulatory role in the crosstalk between p38 MAPK and caspase-9 and that direct interaction between p38 MAPK and caspase-9 may regulate mitochondria-mediated apoptosis in the TαPcZn-PDT-treated LoVo cells.
Collapse
Affiliation(s)
- Yu Wang
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Chunhui Xia
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Zhiqiang Lun
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yanxin Lv
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Wei Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Tao Li
- Department of Basic Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
41
|
Russo EB, Marcu J. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. ADVANCES IN PHARMACOLOGY 2017; 80:67-134. [PMID: 28826544 DOI: 10.1016/bs.apha.2017.03.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The golden age of cannabis pharmacology began in the 1960s as Raphael Mechoulam and his colleagues in Israel isolated and synthesized cannabidiol, tetrahydrocannabinol, and other phytocannabinoids. Initially, THC garnered most research interest with sporadic attention to cannabidiol, which has only rekindled in the last 15 years through a demonstration of its remarkably versatile pharmacology and synergy with THC. Gradually a cognizance of the potential of other phytocannabinoids has developed. Contemporaneous assessment of cannabis pharmacology must be even far more inclusive. Medical and recreational consumers alike have long believed in unique attributes of certain cannabis chemovars despite their similarity in cannabinoid profiles. This has focused additional research on the pharmacological contributions of mono- and sesquiterpenoids to the effects of cannabis flower preparations. Investigation reveals these aromatic compounds to contribute modulatory and therapeutic roles in the cannabis entourage far beyond expectations considering their modest concentrations in the plant. Synergistic relationships of the terpenoids to cannabinoids will be highlighted and include many complementary roles to boost therapeutic efficacy in treatment of pain, psychiatric disorders, cancer, and numerous other areas. Additional parts of the cannabis plant provide a wide and distinct variety of other compounds of pharmacological interest, including the triterpenoid friedelin from the roots, canniprene from the fan leaves, cannabisin from seed coats, and cannflavin A from seed sprouts. This chapter will explore the unique attributes of these agents and demonstrate how cannabis may yet fulfil its potential as Mechoulam's professed "pharmacological treasure trove."
Collapse
Affiliation(s)
| | - Jahan Marcu
- Americans for Safe Access, Patient Focused Certification, Washington, DC, United States
| |
Collapse
|
42
|
Ma C, Lv Q, Teng S, Yu Y, Niu K, Yi C. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis. Int J Rheum Dis 2017; 20:971-979. [PMID: 28440025 DOI: 10.1111/1756-185x.13063] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. METHODS Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. RESULTS A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. CONCLUSION Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA.
Collapse
Affiliation(s)
- Chunhui Ma
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Lv
- Department of Radiology, Tong Ji Hospital, Tong Ji University, Shanghai, China
| | - Songsong Teng
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinxian Yu
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kerun Niu
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chengqin Yi
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Phytomedicine in Joint Disorders. Nutrients 2017; 9:nu9010070. [PMID: 28275210 PMCID: PMC5295114 DOI: 10.3390/nu9010070] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/24/2023] Open
Abstract
Chronic joint inflammatory disorders such as osteoarthritis and rheumatoid arthritis have in common an upsurge of inflammation, and oxidative stress, resulting in progressive histological alterations and disabling symptoms. Currently used conventional medication (ranging from pain-killers to biological agents) is potent, but frequently associated with serious, even life-threatening side effects. Used for millennia in traditional herbalism, medicinal plants are a promising alternative, with lower rate of adverse events and efficiency frequently comparable with that of conventional drugs. Nevertheless, their mechanism of action is in many cases elusive and/or uncertain. Even though many of them have been proven effective in studies done in vitro or on animal models, there is a scarcity of human clinical evidence. The purpose of this review is to summarize the available scientific information on the following joint-friendly medicinal plants, which have been tested in human studies: Arnica montana, Boswellia spp., Curcuma spp., Equisetum arvense, Harpagophytum procumbens, Salix spp., Sesamum indicum, Symphytum officinalis, Zingiber officinalis, Panax notoginseng, and Whitania somnifera.
Collapse
|
44
|
Liu Y, Sun Z, Xu D, Liu J, Li X, Wu X, Zhang Y, Wang Q, Huang C, Meng X, Li J. Hesperidin derivative-11 inhibits fibroblast-like synoviocytes proliferation by activating Secreted frizzled-related protein 2 in adjuvant arthritis rats. Eur J Pharmacol 2017; 794:173-183. [DOI: 10.1016/j.ejphar.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/17/2022]
|
45
|
Kpoviessi S, Agbani P, Gbaguidi F, Gbénou J, Sinsin BA, Accrombessi G, Bero J, Moudachirou M, Quetin-Leclercq J. Seasonal variations of volatile constituents of Hemizygia bracteosa (Benth.) Briq. aerial parts from Benin. CR CHIM 2016. [DOI: 10.1016/j.crci.2016.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|