1
|
Sun L, Wang X, Zou Y, He Y, Liang C, Li J, Li P, Zhang J. Cold stress induces colitis-like phenotypes in mice by altering gut microbiota and metabolites. Front Microbiol 2023; 14:1134246. [PMID: 37113236 PMCID: PMC10126409 DOI: 10.3389/fmicb.2023.1134246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction The modernized lifestyle has been paralleled by an epidemic of inflammatory bowel disease (IBD). Excessive consumption of cold beverages is especially common among the modern humans. However, whether cold stress contributes directly to the gut barrier and gut-brain axis is not clear. Methods We conducted a cold stress model induced by cold water. The mice were treated with 14 consecutive days of intragastric cold or common water administration. We observed changes in gut transit and gut barrier in the colon. We also employed RNA sequencing-based transcriptomic analysis to identify the genes potentially driving gut injury, and simultaneously examined the gut microbiota and metabolites in the feces. Results We found that cold stress disturbed the intestinal function and increased gut permeability. A set of core genes related to immune responses were consistently overexpressed in the cold stress group. Additionally, cold stress induced decreased bacterial diversity, ecological network, and increased pathogens mainly belonging to Proteobacteria. The dopamine signaling pathway-related metabolites were largely reduced in the cold stress group. Conclusion This study revealed that cold stress could trigger an IBD-like phenotype in mice, implying that cold stress is a possible risk factor for IBD development.
Collapse
Affiliation(s)
- Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China
| | - Xueying Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China
| | - Yuankang Zou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Yixuan He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China
| | - Changting Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China
| | - Juan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China
| | - Pu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shanxi, China
- Pu Li,
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
- *Correspondence: Jianbin Zhang,
| |
Collapse
|
2
|
Szymaszkiewicz A, Talar M, Włodarczyk J, Świerczyński M, Bartoszek A, Krajewska J, Mokrowiecka A, Małecka-Wojciesko E, Fichna J, Zielińska M. The Involvement of the Endogenous Opioid System in the Gastrointestinal Aging in Mice and Humans. Int J Mol Sci 2022; 23:ijms23073565. [PMID: 35408926 PMCID: PMC8998735 DOI: 10.3390/ijms23073565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
Nearly 20% of elderly patients suffer from constipation, but the age-related changes in the gastrointestinal (GI) tract remain insufficiently elucidated. In this study, the alterations within the endogenous opioid system (EOS) as a potential cause of constipation in the elderly were evaluated. The GI functions were assessed in vitro and in vivo and compared between 6-, 12- and 18-month old mice. Moreover, the effect of opioid receptor (MOP, DOP, KOP) agonists on the mouse GI tract functions and the EOS components expression in mouse tissues and colonic biopsies from patients with functional constipation were determined. In the oldest mice, the GI peristalsis was significantly impaired as compared to the younger groups. The tissue response to MOP and DOP, but not KOP, agonists weakened with age in vitro; for DOP, it was confirmed in vivo. In the mouse upper GI tract, Oprm1, Oprd1, Oprk1 expression decreased with age; in the colon, Oprm1 expression increased. There were no differences in the expression of these genes in the colonic biopsies from patients >50 years old as compared to the younger group. In conclusion, the age-related impairment of the GI peristalsis may result from reduced MOP and DOP response to the activation with opioid agonists or the alterations in the EOS expression.
Collapse
Affiliation(s)
- Agata Szymaszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Marcin Talar
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Jakub Włodarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Mikołaj Świerczyński
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Julia Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Anna Mokrowiecka
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland; (A.M.); (E.M.-W.)
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland; (A.M.); (E.M.-W.)
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (A.S.); (M.T.); (J.W.); (M.Ś.); (A.B.); (J.K.); (J.F.)
- Correspondence: ; Tel.: +42-272-57-07
| |
Collapse
|
3
|
Lashgari NA, Roudsari NM, Zandi N, Pazoki B, Rezaei A, Hashemi M, Momtaz S, Rahimi R, Shayan M, Dehpour AR, Abdolghaffari AH. Current overview of opioids in progression of inflammatory bowel disease; pharmacological and clinical considerations. Mol Biol Rep 2021; 48:855-874. [PMID: 33394234 DOI: 10.1007/s11033-020-06095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023]
Abstract
Inflammatory bowel diseases (IBD) belong to a subgroup of persistent, long-term, progressive, and relapsing inflammatory conditions. IBD may spontaneously develop in the colon, resulting in tumor lesions in inflamed regions of the intestine, such as invasive carcinoma. The benefit of opioids for IBD treatment is still questionable, thereby we investigated databases to provide an overview in this context. This review demonstrates the controversial role of opioids in IBD therapy, their physiological and pharmacological functions in attenuating the IBD symptoms, and in improving inflammatory, oxidative stress, and the quality of life factors in IBD subjects. Data were extracted from clinical, in vitro, and in vivo studies in English, between 1995 and 2019, from PubMed, Google Scholar, Scopus, and Cochrane library. Based on recent reports, there are promising opportunities to target the opioid system and control the IBD symptoms. This study suggests a novel approach for future treatment of functional and inflammatory disorders such as IBD.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nadia Zandi
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Atiyeh Rezaei
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnoosh Hashemi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. .,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran. .,Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran. .,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
4
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
5
|
Szymaszkiewicz A, Włodarczyk J, Wasilewski A, Di Marzo V, Storr M, Fichna J, Zielińska M. Desensitization of transient receptor potential vanilloid type-1 (TRPV1) channel as promising therapy of irritable bowel syndrome: characterization of the action of palvanil in the mouse gastrointestinal tract. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1357-1364. [PMID: 32002574 PMCID: PMC7351811 DOI: 10.1007/s00210-020-01829-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
TRPV1 are involved in the control of the gastrointestinal (GI) functions and pain sensation. Their activation induces pain but it is followed by desensitization, which in turn causes analgesia. The studies from the last two decades indicate that TRPV1 are involved in visceral hypersensitivity in the GI tract and pathogenesis of irritable bowel syndrome (IBS). Therefore, the aim of this study is to assess the action of fast desensitizing agonist of TRPV1, palvanil (N-palmitoyl-vanillamine), in the murine GI tract and on nociception to evaluate its potential application in the therapy of IBS. The effect of palvanil on smooth muscle contractility was evaluated using organ baths. The impact of palvanil on intestinal secretion was assessed in Ussing chambers. In vivo, the action of palvanil (0.1–1 mg/kg) was assessed in whole GI transit, fecal pellet output, and colonic bead expulsion tests. The antinociceptive potency of palvanil was tested in the mustard oil-induced pain test. Palvanil inhibited colonic contractions (evoked by electrical field stimulation, EFS) and decreased the ion transport in the colon stimulated with forskolin. It did not affect secretion in experiments with veratridine. In vivo, palvanil prolonged whole GI transit at all doses tested. At the lower dose tested, it accelerated colonic motility during first 60 min following injection. By contrast, at the dose of 1 mg/kg, colonic motility was inhibited. Palvanil induced antinociceptive action at all tested doses in mustard oil-induced pain test. TRPV1 fast-desensitizing compounds, i.e., palvanil, may be promising agents in the therapy of IBS since it modulates intestinal motility and reduces visceral pain.
Collapse
Affiliation(s)
- Agata Szymaszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Jakub Włodarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Andrzej Wasilewski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada
| | - Martin Storr
- Walter Brendel Center of Experimental Medicine, Ludwig Maximilians University, Munich, Germany.,Center of Endoscopy, Starnberg, Germany
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215, Lodz, Poland.
| |
Collapse
|
6
|
Gach-Janczak K, Piekielna-Ciesielska J, Adamska-Bartłomiejczyk A, Wtorek K, Ferrari F, Calo' G, Szymaszkiewicz A, Piasecka-Zelga J, Janecka A. In vitro and in vivo activity of cyclopeptide Dmt-c[d-Lys-Phe-Asp]NH 2, a mu opioid receptor agonist biased toward β-arrestin. Peptides 2018; 105:51-57. [PMID: 29684591 DOI: 10.1016/j.peptides.2018.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
Morphine and related drugs, which are the most effective analgesics for the relief of severe pain, act through activating opioid receptors. The endogenous ligands of these receptors are opioid peptides which cannot be used as antinociceptive agents due to their low bioactivity and stability in biological fluids. The major goal of opioid research is to understand the mechanism of action of opioid receptor agonists in order to improve therapeutic utility of opioids. Analgesic effects of morphine are mediated mostly through activation of the mu opioid receptor. However, in the search for safer and more effective drug candidates, analogs with mixed opioid receptor profile gained a lot of interest. Recently, the concept of biased agonists able to differentially activate GPCR downstream pathways, became a new approach in the design of novel drug candidates. It is hypothesized that compounds promoting G-protein signaling may produce analgesia while β-arrestin recruitment may be responsible for opioid side effects. In this report we showed that replacement of the tyrosine residue in the mu-selective ligand Tyr-c[d-Lys-Phe-Asp]NH2 with 2',6'-dimethyltyrosine (Dmt) produced a cyclopeptide Dmt-c[d-Lys-Phe-Asp]NH2 with mu/delta opioid receptor agonist profile. This analog showed improved antinociception in the hot-plate test, probably due to the simultaneous activation of mu and delta receptors but also significantly inhibited the gastrointestinal transit. Using the bioluminescence resonance energy transfer (BRET) assay it was shown that this analog was a mu receptor agonist biased toward β-arrestin. β-Arrestin-dependent signaling is most likely responsible for the observed inhibition of gastrointestinal motility exerted by the novel cyclopeptide.
Collapse
Affiliation(s)
| | | | | | - Karol Wtorek
- Department of Biomolecular Chemistry, Medical University, Lodz, Poland
| | - Federica Ferrari
- Department of Medical Sciences, Section of Pharmacology and Italian Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - Girolamo Calo'
- Department of Medical Sciences, Section of Pharmacology and Italian Institute of Neuroscience, University of Ferrara, 44121 Ferrara, Italy
| | - Agata Szymaszkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Poland
| | - Joanna Piasecka-Zelga
- Institute of Occupational Medicine, Research Laboratory for Medicine and Veterinary Products in the GMP Head of Research Laboratory for Medicine and Veterinary Products, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University, Lodz, Poland.
| |
Collapse
|
7
|
Jiang J, Jin W, Peng Y, Liang X, Li S, Wei L, Lei Z, Li L, Chang M. The role of Cortistatin-14 in the gastrointestinal motility in mice. Pharmacol Rep 2018; 70:355-363. [DOI: 10.1016/j.pharep.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/24/2017] [Accepted: 09/15/2017] [Indexed: 11/28/2022]
|
8
|
Bharucha AE, Wouters MM, Tack J. Existing and emerging therapies for managing constipation and diarrhea. Curr Opin Pharmacol 2017; 37:158-166. [PMID: 29172123 PMCID: PMC5725238 DOI: 10.1016/j.coph.2017.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
Functional bowel disorders (i.e., constipation and diarrhea) are characterized by abdominal pain, bloating, distention, and/or bowel habit abnormalities in the absence of obvious anatomic or physiologic abnormalities on routine diagnostic tests. These symptoms are attributable to gastrointestinal sensorimotor dysfunctions resulting from peripheral and/or central mechanisms. Available drugs target the underlying bowel disturbance (i.e., constipation, diarrhea, or both), supplemented when necessary by management of pain. Osmotic and stimulant laxatives, secretagogues, and serotonin 5-HT4 receptor agonists are approved for treating constipation. Loperamide, anticholinergic agents, rifaximin, bile-acid binding agents, eluxadoline, and clonidine are used to treat diarrhea. Several exciting new compounds, some of which have been evaluated in humans, are currently under development.
Collapse
Affiliation(s)
- Adil E Bharucha
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic and Mayo Foundation, Rochester, MN, USA.
| | - Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|