1
|
Kołodziejczyk AM, Grala MM, Zimon A, Białkowska K, Walkowiak B, Komorowski P. Investigation of HUVEC response to exposure to PAMAM dendrimers – changes in cell elasticity and vesicles release. Nanotoxicology 2022; 16:375-392. [DOI: 10.1080/17435390.2022.2097138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Agnieszka Maria Kołodziejczyk
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland
| | | | - Aleksandra Zimon
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
| | - Kamila Białkowska
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Bogdan Walkowiak
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| | - Piotr Komorowski
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd., Lodz, Poland
- Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
2
|
Rizg WY, Hosny KM, Eshmawi BA, Alamoudi AJ, Safhi AY, Murshid SSA, Sabei FY, Al Fatease A. Tailoring of Geranium Oil-Based Nanoemulsion Loaded with Pravastatin as a Nanoplatform for Wound Healing. Polymers (Basel) 2022; 14:polym14091912. [PMID: 35567079 PMCID: PMC9105023 DOI: 10.3390/polym14091912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
The healing of a burn wound is a complex process that includes the re-formation of injured tissues and the control of infection to minimize discomfort, scarring, and inconvenience. The current investigation’s objective was to develop and optimize a geranium oil–based self-nanoemulsifying drug delivery system loaded with pravastatin (Gr-PV-NE). The geranium oil and pravastatin were both used due to their valuable anti-inflammatory and antibacterial activities. The Box–Behnken design was chosen for the development and optimization of the Gr-PV-NE. The fabricated formulations were assessed for their droplet size and their effects on the burn wound diameter in experimental animals. Further, the optimal formulation was examined for its wound healing properties, antimicrobial activities, and ex-vivo permeation characteristics. The produced nanoemulsion had a droplet size of 61 to 138 nm. The experimental design affirmed the important synergistic influence of the geranium oil and pravastatin for the healing of burn wounds; it showed enhanced wound closure and improved anti-inflammatory and antimicrobial actions. The optimal formulation led to a 4-fold decrease in the mean burn wound diameter, a 3.81-fold lowering of the interleukin-6 serum level compared to negative control, a 4-fold increase in the inhibition zone against Staphylococcus aureus compared to NE with Gr oil, and a 7.6-fold increase in the skin permeation of pravastatin compared to PV dispersion. Therefore, the devised nanoemulsions containing the combination of geranium oil and pravastatin could be considered a fruitful paradigm for the treatment of severe burn wounds.
Collapse
Affiliation(s)
- Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (B.A.E.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-561-682-377
| | - Bayan A. Eshmawi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.Y.R.); (B.A.E.)
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Awaji Y. Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia; (A.Y.S.); (F.Y.S.)
| | - Samar S. A. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Fahad Y. Sabei
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan 82817, Saudi Arabia; (A.Y.S.); (F.Y.S.)
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| |
Collapse
|
3
|
Wnętrzak A, Kubisiak A, Filiczkowska A, Gonet-Surówka A, Chachaj-Brekiesz A, Targosz-Korecka M, Dynarowicz-Latka P. Can oxysterols work in anti-glioblastoma therapy? Model studies complemented with biological experiments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183773. [PMID: 34517001 DOI: 10.1016/j.bbamem.2021.183773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/15/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Despite the progress made in recent years in the field of oncology, the results of glioblastoma treatment remain unsatisfactory. In this paper, cholesterol derivatives - oxysterols - have been investigated in the context of their anti-cancer activity. First, the influence of three oxysterols (7-K, 7β-OH and 25-OH), differing in their chemical structure, on the properties of a model membrane imitating glioblastoma multiforme (GBM) cells was investigated. For this purpose, the Langmuir monolayer technique was applied. The obtained results clearly show that oxysterols modify the structure of the membrane by its stiffening, with the 7-K effect being the most pronounced. Next, the influence of 7-K on the nanomechanical properties of glioblastoma cells (U-251 line) was verified with AFM. It has been shown that 7-K has a dose-dependent cytotoxic effect on glioblastoma cells leading to the induction of apoptosis as confirmed by viability tests. Interestingly, significant changes in membrane structure, characteristic for phospholipidosis, has also been observed. Based on our results we believe that oxysterol-induced apoptosis and phospholipidosis are related and may share common signaling pathways. Dysregulation of lipids in phospholipidosis inhibit cell proliferation and may play key roles in the induction of apoptosis by oxysterols. Moreover, anticancer activity of these compounds may be related to the immobilization of cancer cells as a result of stiffening effect caused by oxysterols. Therefore, we believe that oxysterols are good candidates as new therapeutic molecules as an alternative to the aggressive treatment of GBM currently in use.
Collapse
Affiliation(s)
- Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Agata Kubisiak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Anna Filiczkowska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | | | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marta Targosz-Korecka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | | |
Collapse
|
4
|
Kolodziejczyk AM, Sokolowska P, Zimon A, Grala M, Rosowski M, Siatkowska M, Komorowski P, Walkowiak B. Dysfunction of endothelial cells exposed to nanomaterials assessed by atomic force spectroscopy. Micron 2021; 145:103062. [PMID: 33770641 DOI: 10.1016/j.micron.2021.103062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022]
Abstract
The study of the impact of nanomaterials on endothelial cell elasticity with the atomic force spectroscopy (AFS) can be a significant model for assessing nanomaterials toxic effects in vitro. The mechanical properties of cells exposed to nanostructures can provide information not only about cellular nano and micro-structure, but also about cell physiology. The toxicity of nanostructures is an important issue which must be carefully considered when the optimal nanomaterial is defined. There are no universal properties characterizing such a nanomaterial, i.e. depending on the intended use, the requirements can be diverse. For example, for biomedical use a nanomaterial should not negatively affect the cells or should cause the expected therapeutic or diagnostic effects in justified cases. The present study was devoted to the effects of silver nanoparticles (SNPs), multi-walled carbon nanotubes (MWCNTs) and poly(amidoamine) (PAMAM) dendrimers of 4th generation on functioning of endothelial cells. Immortalized endothelial cells were exposed for 24 h to the tested nanomaterials used in concentrations reducing cellular viability to the levels of 90 % and 75 %. The innovative nature of our work is the comparison of cell elasticity performed with various AFS probes, which enabled detection of local and global elasticity alteration caused by the nanostructures. The obtained results demonstrated changes in elasticity of endothelial cell induced by the nanostructures, which were closely correlated with the level of cellular viability, forming of actin stress fibres and elevated levels of reactive oxygen species. Trend of changes in local and global elasticity of cells exposed to nanostructures was similar, but the magnitude of the response was dependent on the selected probe. SNPs and MWCNTs evoked cells stiffening, which was correlated with changes in production levels of reactive oxygen species (ROS) and the cytoskeletal alteration. Softening of cells exposed to PAMAM dendrimers correlated with increased number of apoptotic cells and ROS production levels. Based on the obtained results we conclude, that the structure and the type of nanostructure (nanoparticle) is essential for their localization inside the cells and for the toxic effect on the endothelial cells.
Collapse
Affiliation(s)
| | - Paulina Sokolowska
- Bionanopark Ltd, Dubois 114/116, 93-465, Lodz, Poland; Department of Pharmacology and Toxicology, Medical University of Lodz, Zeligowskiego 7 /9, 90-752, Lodz, Poland
| | | | | | | | | | - Piotr Komorowski
- Bionanopark Ltd, Dubois 114/116, 93-465, Lodz, Poland; Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924, Lodz, Poland
| | - Bogdan Walkowiak
- Bionanopark Ltd, Dubois 114/116, 93-465, Lodz, Poland; Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924, Lodz, Poland
| |
Collapse
|
5
|
Zhang QZ, Li ZY, Zhang L, Lv N, Pan Q, Ke CY, Zhang XL. Synthesis of [(3S,5R)-3-Hydroxy-5-methylpiperidin-1-yl](2-methylpyridin-3-yl)methanone. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020120246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Hosny KM, Alhakamy NA, Sindi AM, Khallaf RA. Coconut Oil Nanoemulsion Loaded with a Statin Hypolipidemic Drug for Management of Burns: Formulation and In Vivo Evaluation. Pharmaceutics 2020; 12:pharmaceutics12111061. [PMID: 33171816 PMCID: PMC7695003 DOI: 10.3390/pharmaceutics12111061] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Burn wound healing is a complex process that involves the repair of injured tissues and the control of infection to diminish the scar formation, pain, and discomfort associated with such injuries. The aim of this research was to formulate and optimize a self-nanoemulsion drug delivery system based on the use of coconut oil and loaded with simvastatin. Coconut oil possesses antiinflammatory and antibacterial activity, and simvastatin has interesting properties for promoting the wound-healing process because it increases the production of the vascular endothelial growth factor at the site of injury. The Box–Behnken design was employed for the optimization of the coconut oil–simvastatin self-nanoemulsion drug delivery system. The prepared formulations were characterized according to globular size and their activity in the healing of burn wounds by assessing the mean wound diameter and level of interlukin-6 in experimental animals. Additionally, the antimicrobial activity of the prepared formulations was assessed. The nanoemulsion was considered adequately formed when it had droplets of between 65 and 195 nm. The statistical design proved the important synergistic effect of coconut oil and simvastatin for burn wound management in their synergistic potentiation of wound closure and their anti-inflammatory and antimicrobial effects. The optimum formulation achieved up to a 5.3-fold decrease in the mean burn wound diameter, a 4.25-fold decrease in interleukin-6 levels, and a 6-fold increase in the inhibition zone against Staphylococcus aureus when compared with different control formulations. Therefore, the designed nanoemulsions containing a combination of coconut oil and simvastatin could be considered promising platforms for the treatment of chronic and burn wounds.
Collapse
Affiliation(s)
- Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
- Correspondence:
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amal M. Sindi
- Oral Diagnostic Science Department, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rasha A. Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
| |
Collapse
|
7
|
Simvastatin Effects on Inflammation and Platelet Activation Markers in Hypercholesterolemia. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6508709. [PMID: 30402489 PMCID: PMC6191949 DOI: 10.1155/2018/6508709] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/16/2018] [Indexed: 12/19/2022]
Abstract
Background Beside the lipid-lowering effect, statins slow the progression of atherosclerosis by exerting anti-inflammatory and platelet inhibiting effects. We investigated whether platelet inhibition by simvastatin correlates with the statin effects on lipid lowering, inflammation, oxidative stress, and endothelial and platelet activation. Methods In hypercholesterolemic patients allocated to diet (n=20) or a 2-month treatment with diet plus 40 mg simvastatin (n=25), we evaluated platelet aggregating responses to ADP, collagen, and arachidonic acid (AA), the effect of aspirin on AA-induced aggregation, pro- and anti-inflammatory and atherogenic mediators (IL-1β, -5, -6, -7, -8, -9, -10, -12, and -13, IFN-γ, IP-10, Eotaxin, and sRAGE), markers of endothelium (sE-selectin, VEGF, and MCP-1) and platelet activation (sP-selectin, sCD-40L, RANTES, and PDGF-bb), and oxidative stress (8-OH-2'-deoxyguanosine). Results After treatment, beside the improvement of lipid profile, we observed the following: a reduction of platelet aggregation to ADP (p=0.0001), collagen (p=0.0001), AA (p=0.003); an increased antiaggregating effect of aspirin in the presence of AA (p=0.0001); a reduction of circulating levels of IL-6 (p=0.0034), IL-13 (p<0.0001), IFN-γ (p<0.0001), VEGF (p<0.0001), sE-selectin (p<0.0001), sCD-40L (p<0.0001), sP-selectin (p=0.003), and 8-OH-2'-deoxyguanosine (p<0.0001); an increase of IL-10 and sRAGEs (p=0.0001 for both). LDL-cholesterol levels (i) positively correlated with IL-6, IFN-γ, E-selectin, sCD-40L, 8-OH-2'-deoxyguanosine, platelet aggregation to ADP, collagen, AA, and aspirin IC-50 and (ii) negatively correlated with IL-10 and sRAGE. In multiple regression analyses, LDL-cholesterol was the strongest predictor for most parameters of platelet reactivity. Conclusion In primary hypercholesterolemia, simvastatin treatment reduced platelet activation and subclinical inflammation and improved endothelial dysfunction. LDL-cholesterol levels were the major correlate of platelet reactivity; however, other effects of statins may contribute to reducing the progression of atherosclerosis.
Collapse
|
8
|
Kolodziejczyk A, Jakubowska A, Kucinska M, Wasiak T, Komorowski P, Makowski K, Walkowiak B. Sensing of silver nanoparticles on/in endothelial cells using atomic force spectroscopy. J Mol Recognit 2018; 31:e2723. [DOI: 10.1002/jmr.2723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 01/13/2023]
Affiliation(s)
| | | | - Magdalena Kucinska
- Nanomaterial Structural Research Laboratory, Bionanopark Ltd; Łódź Poland
| | - Tomasz Wasiak
- Department of Molecular Biology; Faculty of Biomedical Sciences and Postgraduated Training, Medical University of Lodz; Łódź Poland
| | - Piotr Komorowski
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd; Łódź Poland
- Division of Biophysics; Institute of Materials Science, Lodz University of Technology; Łódź Poland
| | - Krzysztof Makowski
- Division of Biophysics; Institute of Materials Science, Lodz University of Technology; Łódź Poland
- Industrial Biotechnology Laboratory, Bionanopark Ldt.; Łódź Poland
| | - Bogdan Walkowiak
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd; Łódź Poland
- Division of Biophysics; Institute of Materials Science, Lodz University of Technology; Łódź Poland
| |
Collapse
|
9
|
Antoniellis Silveira AA, Dominical VM, Morelli Vital D, Alves Ferreira W, Trindade Maranhão Costa F, Werneck CC, Ferreira Costa F, Conran N. Attenuation of TNF-induced neutrophil adhesion by simvastatin is associated with the inhibition of Rho-GTPase activity, p50 activity and morphological changes. Int Immunopharmacol 2018; 58:160-165. [PMID: 29604489 DOI: 10.1016/j.intimp.2018.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/19/2022]
Abstract
Neutrophil adhesion to the vasculature in response to potent inflammatory stimuli, such as TNF-α (TNF), can contribute to atheroprogression amongst other pathophysiological mechanisms. Previous studies have shown that simvastatin, a statin with known pleiotropic anti-inflammatory properties, can partially abrogate the effects of TNF-induced neutrophil adhesion, in association with the modulation of β2-integrin expression. We aimed to further characterize the effects of this statin on neutrophil and leukocyte adhesive mechanisms in vitro and in vivo. A microfluidic assay confirmed the ability of simvastatin to inhibit TNF-induced human neutrophil adhesion to fibronectin ligand under conditions of shear stress, while intravital imaging microscopy demonstrated an abrogation of leukocyte recruitment by simvastatin in the microvasculature of mice that had received a TNF stimulus. This inhibition of neutrophil adhesion was accompanied by the inhibition of TNF-induced RhoA activity in human neutrophils, and alterations in cell morphology and β2-integrin activity. Additionally, TNF augmented the activity of the p50 NFκB subunit in human neutrophils and TNF-induced neutrophil adhesion and β2-integrin activity could be abolished using pharmacological inhibitors of NFκB translocation, BAY11-7082 and SC514. Accordingly, the TNF-induced elevation of neutrophil p50 activity was abolished by simvastatin. In conclusion, our data provide further evidence of the ability of simvastatin to inhibit neutrophil adhesive interactions in response to inflammatory stimuli, both in vivo and in vitro. Simvastatin appears to inhibit neutrophil adhesion by interfering in TNF-induced cytoskeletal rearrangements, in association with the inhibition of Rho A activity, NFκB translocation and, consequently, β2-integrin activity.
Collapse
Affiliation(s)
| | - Venina Marcela Dominical
- Hematology and Hemotherapy Center, School of Medicine, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Daiana Morelli Vital
- Hematology and Hemotherapy Center, School of Medicine, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Wilson Alves Ferreira
- Hematology and Hemotherapy Center, School of Medicine, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, Institute of Biology (IB), University of Campinas-UNICAMP, Brazil
| | - Claudio C Werneck
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | - Fernando Ferreira Costa
- Hematology and Hemotherapy Center, School of Medicine, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Nicola Conran
- Hematology and Hemotherapy Center, School of Medicine, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|