1
|
Guo ZH, Khattak S, Rauf MA, Ansari MA, Alomary MN, Razak S, Yang CY, Wu DD, Ji XY. Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules 2023; 28:1283. [PMID: 36770950 PMCID: PMC9921752 DOI: 10.3390/molecules28031283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023] Open
Abstract
Central nervous system disorders, especially neurodegenerative diseases, are a public health priority and demand a strong scientific response. Various therapy procedures have been used in the past, but their therapeutic value has been insufficient. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier is two of the barriers that protect the central nervous system (CNS), but are the main barriers to medicine delivery into the CNS for treating CNS disorders, such as brain tumors, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Nanotechnology-based medicinal approaches deliver valuable cargos targeting molecular and cellular processes with greater safety, efficacy, and specificity than traditional approaches. CNS diseases include a wide range of brain ailments connected to short- and long-term disability. They affect millions of people worldwide and are anticipated to become more common in the coming years. Nanotechnology-based brain therapy could solve the BBB problem. This review analyzes nanomedicine's role in medication delivery; immunotherapy, chemotherapy, and gene therapy are combined with nanomedicines to treat CNS disorders. We also evaluated nanotechnology-based approaches for CNS disease amelioration, with the intention of stimulating the immune system by delivering medications across the BBB.
Collapse
Affiliation(s)
- Zi-Hua Guo
- Department of Neurology, Kaifeng Hospital of Traditional Chinese Medicine, No. 54 East Caizhengting St., Kaifeng 475000, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Sufyan Razak
- Dow Medical College, John Hopkins Medical Center, School of Medicine, Baltimore, MD 21205, USA
| | - Chang-Yong Yang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Guillemain G, Lacapere JJ, Khemtemourian L. Targeting hIAPP fibrillation: A new paradigm to prevent β-cell death? BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184002. [PMID: 35868406 DOI: 10.1016/j.bbamem.2022.184002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Loss of pancreatic β-cell mass is deleterious for type 2 diabetes patients since it reduces insulin production, critical for glucose homeostasis. The main research axis developed over the last few years was to generate new pancreatic β-cells or to transplant pancreatic islets as occurring for some specific type 1 diabetes patients. We evaluate here a new paradigm consisting in preservation of β-cells by prevention of human islet amyloid polypeptide (hIAPP) oligomers and fibrils formation leading to pancreatic β-cell death. We review the hIAPP physiology and the pathology that contributes to β-cell destruction, deciphering the various cellular steps that could be involved. Recent progress in understanding other amyloidosis such as Aβ, Tau, α-synuclein or prion, involved in neurodegenerative processes linked with inflammation, has opened new research lines of investigations to preserve neuronal cells. We evaluate and estimate their transposition to the pancreatic β-cells preservation. Among them is the control of reactive oxygen species (ROS) production occurring with inflammation and the possible implication of the mitochondrial translocator protein as a diagnostic and therapeutic target. The present review also focuses on other amyloid forming proteins from molecular to physiological and physiopathological points of view that could help to better decipher hIAPP-induced β-cell death mechanisms and to prevent hIAPP fibril formation.
Collapse
Affiliation(s)
- Ghislaine Guillemain
- Sorbonne Université, Institut Hospitalo-Universitaire, Inserm UMR_S938, Institute of Cardio metabolism and Nutrition (ICAN), Centre de recherche de St-Antoine (CRSA), 27 rue de Chaligny, F-75012 Paris, France.
| | - Jean-Jacques Lacapere
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS UMR 7203, Laboratoire des BioMolécules (LBM), 4 place Jussieu, F-75005 Paris, France.
| | - Lucie Khemtemourian
- CBMN, CNRS UMR 5248, IPB, Univ. Bordeaux, Allée Geoffroy Saint-Hilaire, F-33600 Pessac, France.
| |
Collapse
|
3
|
Boukholda K, Gargouri B, Aouey B, Attaai A, Elkodous MA, Najimi M, Fiebich BL, Bouchard M, Fetoui H. Subacute silica nanoparticle exposure induced oxidative stress and inflammation in rat hippocampus combined with disruption of cholinergic system and behavioral functions. NANOIMPACT 2021; 24:100358. [PMID: 35559817 DOI: 10.1016/j.impact.2021.100358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 06/15/2023]
Abstract
Increasing environmental exposure to silica nanoparticles (SiNPs) and limited neurotoxicity studies pose a challenge for safety evaluation and management of these materials. This study aimed to explore the adverse effects and underlying mechanisms of subacute exposure to SiNPs by the intraperitoneal route on hippocampus function in rats. Data showed that SiNPs induced a significant increase in oxidative/nitrosative stress markers including reactive oxygen species (ROS), malondialdehyde (MDA), protein oxidation (PCO) and nitrite (NO) production accompanied by reduced antioxidant enzyme activity (catalase, superoxide dismutase, and glutathione peroxidase) and decreased glutathione (GSH). Phenotypically, SiNPs exhibited spatial learning and memory impairment in the Morris water maze (MWM) test, a decrease of the discrimination index in the novel object recognition test (NORT) and higher anxiety-like behavior. SiNPs affected the cholinergic system as reflected by reduced acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity. In addition, SiNPs significantly increased mRNA expression level of genes related to inflammation (TNF-α, IL-1β, IL-6, and COX-2) and decreased mRNA expression level of genes related to cholinergic system including choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), AChE, muscarinic acetylcholine receptor M1 (m1AChR) and nicotinic acetylcholine receptors (nAChR). Histopathological results further showed an alteration in the hippocampus of treated animals associated with marked vacuolation in different hippocampus areas. These findings provide new insights into the molecular mechanism of SiNPs-induced hippocampal alterations leading to impairment of cognitive and behavioral functions, and implicating oxidative stress and inflammation in the hippocampus, as well as disruption of cholinergic system.
Collapse
Affiliation(s)
- Khadija Boukholda
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Brahim Gargouri
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia; Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany
| | - Bakhta Aouey
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Abdelraheim Attaai
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Mohamed Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Mohamed Najimi
- Bioengineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, 23000 Beni Mellal, Morocco
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U424, P.O. Box 6128, Main Station, Montreal, Quebec, Canada, H3C 3J7
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia.
| |
Collapse
|
4
|
Dermatopharmacokinetic and pharmacodynamic evaluation of a novel nanostructured formulation containing capsaicinoids for treating neuropathic pain. Int J Pharm 2021; 596:120294. [PMID: 33497705 DOI: 10.1016/j.ijpharm.2021.120294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 12/17/2022]
Abstract
The in vivo skin penetration by dermal microdialysis and the pharmacological efficacy of a chitosan hydrogel containing capsaicinoids-loaded nanocapsules (CHNCCaps) was evaluated in this study. Such gel has previously been proven to control capsaicinoids release and decrease the drugs side effects in humans. The nanocapsules containing capsaicinoids had an average size around 150 nm, with a low polydispersity index, positive zeta potential, and high encapsulation efficiency of the drugs. The CHNCCaps showed intact nanocapsules, a slightly acid pH value, and a pseudoplastic behavior suitable for topical application. Microdialysis experiments showed a 1.6-fold increase in the concentration of capsaicinoids in the dermis (after 12 h of its application) when CHNCCaps was administered compared to a chitosan hydrogel containing capsaicinoids in hydroethanolic solution (CHETCaps) and the commercial cream. The CHNCCaps showed antiallodynic and antihyperalgesic effects from 6 h to 96 h after treatment initiation, whereas CHETCaps and the commercial cream showed antiallodynic and antihyperalgesic effects only at 48 h and 96 h after treatment initiation, respectively. CHNCCaps and the commercial cream maintained antihyperalgesic activity for 6 days after treatment interruption. For mechanical allodynia, the antinociceptive effect was maintained for 48 h after treatment interruption only with CHNCCaps. In conclusion, CHNCCaps is a promising formulation for treating peripheral neuropathic pain.
Collapse
|
5
|
Hanif S, Muhammad P, Chesworth R, Rehman FU, Qian RJ, Zheng M, Shi BY. Nanomedicine-based immunotherapy for central nervous system disorders. Acta Pharmacol Sin 2020; 41:936-953. [PMID: 32467570 PMCID: PMC7468531 DOI: 10.1038/s41401-020-0429-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Central nervous system (CNS) disorders represent a broad spectrum of brain ailments with short- and long-term disabilities, and nanomedicine-based approaches provide a new therapeutic approach to treating CNS disorders. A variety of potential drugs have been discovered to treat several neuronal disorders; however, their therapeutic success can be limited by the presence of the blood-brain barrier (BBB). Furthermore, unique immune functions within the CNS provide novel target mechanisms for the amelioration of CNS diseases. Recently, various therapeutic approaches have been applied to fight brain-related disorders, with moderate outcomes. Among the various therapeutic strategies, nanomedicine-based immunotherapeutic systems represent a new era that can deliver useful cargo with promising pharmacokinetics. These approaches exploit the molecular and cellular targeting of CNS disorders for enhanced safety, efficacy, and specificity. In this review, we focus on the efficacy of nanomedicines that utilize immunotherapy to combat CNS disorders. Furthermore, we detailed summarize nanomedicine-based pathways for CNS ailments that aim to deliver drugs across the BBB by mimicking innate immune actions. Overview of how nanomedicines can utilize multiple immunotherapy pathways to combat CNS disorders. ![]()
Collapse
|
6
|
Cano A, Sánchez-López E, Ettcheto M, López-Machado A, Espina M, Souto EB, Galindo R, Camins A, García ML, Turowski P. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomedicine (Lond) 2020; 15:1239-1261. [PMID: 32370600 DOI: 10.2217/nnm-2019-0443] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Effective intervention is essential to combat the coming epidemic of neurodegenerative (ND) diseases. Nanomedicine can overcome restrictions of CNS delivery imposed by the blood-brain barrier, and thus be instrumental in preclinical discovery and therapeutic intervention of ND diseases. Polymeric nanoparticles (PNPs) have shown great potential and versatility to encapsulate several compounds simultaneously in controlled drug-delivery systems and target them to the deepest brain regions. Here, we critically review recent advances in the development of drugs incorporated into PNPs and summarize the molecular changes and functional effects achieved in preclinical models of the most common ND disorders. We also briefly discuss the many challenges remaining to translate these findings and technological advances successfully to current clinical settings.
Collapse
Affiliation(s)
- Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Unit of Biochemistry & Pharmacology, Faculty of Medicine & Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Ana López-Machado
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057, Braga, Portugal
| | - Ruth Galindo
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Unit of Synthesis & Biomedical Applications of Peptides, Department of Biomedical Chemistry, Institute for Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Barcelona, Spain
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College of London, London, UK
| |
Collapse
|
7
|
Evaluation of zeta potential of nanomaterials by electrophoretic light scattering: Fast field reversal versus Slow field reversal modes. Talanta 2019; 205:120062. [DOI: 10.1016/j.talanta.2019.06.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 11/21/2022]
|
8
|
Vauthier C. A journey through the emergence of nanomedicines with poly(alkylcyanoacrylate) based nanoparticles. J Drug Target 2019; 27:502-524. [PMID: 30889991 DOI: 10.1080/1061186x.2019.1588280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Starting in the late 1970s, the pioneering work of Patrick Couvreur gave birth to the first biodegradable nanoparticles composed of a biodegradable synthetic polymer. These nanoparticles, made of poly(alkylcyanoacrylate) (PACA), were the first synthetic polymer-based nanoparticulate drug carriers undergoing a phase III clinical trial so far. Analyzing the journey from the birth of PACA nanoparticles to their clinical evaluation, this paper highlights their remarkable adaptability to bypass various drug delivery challenges found on the way. At present, PACA nanoparticles include a wide range of nanoparticles that can associate drugs of different chemical nature and can be administered in vivo by different routes. The most recent technologies giving the nanoparticles customised functions could also be implemented on this family of nanoparticles. Through different examples, this paper discusses the seminal role of the PACA nanoparticles' family in the development of nanomedicines.
Collapse
Affiliation(s)
- Christine Vauthier
- a Institut Galien Paris Sud, UMR CNRS 8612 , Université Paris-Sud , Chatenay-Malabry Cedex , France
| |
Collapse
|
9
|
Protein aggregation: From background to inhibition strategies. Int J Biol Macromol 2017; 103:208-219. [DOI: 10.1016/j.ijbiomac.2017.05.048] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/01/2023]
|
10
|
Uptake of silica nanoparticles in the brain and effects on neuronal differentiation using different in vitro models. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:1195-1204. [PMID: 27871963 DOI: 10.1016/j.nano.2016.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/18/2016] [Accepted: 11/17/2016] [Indexed: 01/04/2023]
Abstract
Nanomedicine offers a promising tool for therapies of brain diseases, but they may be associated with potential adverse effects. The aim of this study was to investigate the uptake of silica-nanoparticles engineered for laser-tissue soldering in the brain using SH-SY5Y cells, dissociated and organotypic slice cultures from rat hippocampus. Nanoparticles were predominantly taken up by microglial cells in the hippocampal cultures but nanoparticles were also found in differentiated SH-SY5Y cells. The uptake was time- and concentration-dependent in primary hippocampal cells. Transmission electron microscopy experiments demonstrated nanoparticle aggregates and single particles in the cytoplasm. Nanoparticles were found in the endoplasmic reticulum, but not in other cellular compartments. Nanoparticle exposure did not impair cell viability and neuroinflammation in primary hippocampal cultures at all times investigated. Neurite outgrowth was not significantly altered in SH-SY5Y cells, but the neuronal differentiation markers indicated a reduction in neuronal differentiation induction after nanoparticle exposure.
Collapse
|
11
|
DeMarino C, Schwab A, Pleet M, Mathiesen A, Friedman J, El-Hage N, Kashanchi F. Biodegradable Nanoparticles for Delivery of Therapeutics in CNS Infection. J Neuroimmune Pharmacol 2016; 12:31-50. [PMID: 27372507 DOI: 10.1007/s11481-016-9692-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/12/2016] [Indexed: 12/18/2022]
Abstract
Despite the significant advances in neurological medicine, it remains difficult to treat ailments directly involving the brain. The blood brain barrier (BBB) is a tightly regulated, selectively permeable barrier that restricts access from the blood into the brain extracellular fluid (BEF). Many conditions such as tumors or infections in the brain are difficult to treat due to the fact that drugs and other therapeutic agents are unable to easily pass through this relatively impermeable barrier. Human Immunodeficiency Virus (HIV) presents a particular problem as it is able to remain dormant in the brain for years protected from antiretroviral drugs by the BBB. The development of nanoscale carriers over the past few decades has made possible the delivery of therapies with the potential to overcome membrane barriers and provide specific, targeted delivery. This review seeks to provide a comprehensive overview of the various aspects of nanoparticle formulation and their applications in improving the delivery efficiency of drugs, specifically antiretroviral therapeutics to the brain to treat HIV.
Collapse
Affiliation(s)
- Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Angela Schwab
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Michelle Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Allison Mathiesen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Joel Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
12
|
Tosi G, Vandelli MA, Forni F, Ruozi B. Nanomedicine and neurodegenerative disorders: so close yet so far. Expert Opin Drug Deliv 2015; 12:1041-4. [DOI: 10.1517/17425247.2015.1041374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Staderini M, Martín MA, Bolognesi ML, Menéndez JC. Imaging of β-amyloid plaques by near infrared fluorescent tracers: a new frontier for chemical neuroscience. Chem Soc Rev 2015; 44:1807-19. [DOI: 10.1039/c4cs00337c] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Near infrared (NIR) imaging is a promising and non-invasive method to visualize amyloid plaquesin vivo.
Collapse
Affiliation(s)
- Matteo Staderini
- Departamento de Química Orgánica y Farmacéutica
- Facultad de Farmacia
- Universidad Complutense
- 28040 Madrid
- Spain
| | - María Antonia Martín
- Departamento de Química Analítica
- Facultad de Farmacia
- Universidad Complutense
- 28040 Madrid
- Spain
| | - Maria Laura Bolognesi
- Dipartimento di Farmacia e Biotecnologie
- Alma Mater Studiorum University of Bologna
- 40126 Bologna
- Italy
| | - J. Carlos Menéndez
- Departamento de Química Orgánica y Farmacéutica
- Facultad de Farmacia
- Universidad Complutense
- 28040 Madrid
- Spain
| |
Collapse
|
14
|
Cerebral vascular leak in a mouse model of amyloid neuropathology. J Cereb Blood Flow Metab 2014; 34:1646-54. [PMID: 25052555 PMCID: PMC4269723 DOI: 10.1038/jcbfm.2014.125] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/28/2014] [Accepted: 06/15/2014] [Indexed: 11/08/2022]
Abstract
In Alzheimer's disease (AD), there is increasing evidence of blood-brain barrier (BBB) compromise, usually observed as 'microbleeds' correlated with amyloid plaque deposition and apoE-ɛ4 status, raising the possibility of nanotherapeutic delivery. Molecular probes have been used to study neurovascular leak, but this approach does not adequately estimate vascular permeability of nanoparticles. We therefore characterized cerebrovascular leaks in live APP+ transgenic animals using a long circulating ∼100 nm nanoparticle computed tomography (CT) contrast agent probe. Active leaks fell into four categories: (1) around the dorsomedial cerebellar artery (DMCA), (2) around other major vessels, (3) nodular leaks in the cerebral cortex, and (4) diffuse leaks. Cortical leaks were uniformly more frequent in the transgenic animals than in age-matched controls. Leaks around vessels other than the DMCA were more frequent in older transgenics compared with younger ones. All other leaks were equally prevalent across genotypes independent of age. Ten days after injection, 4 to 5 μg of the dose was estimated to be present in the brain, roughly a half of which was in locations other than the leaky choroid plexus, and associated with amyloid deposition in older animals. These results suggest that amyloid deposition and age increase delivery of nanoparticle-borne reagents to the brain, in therapeutically relevant amounts.
Collapse
|
15
|
el Bahhaj F, Dekker FJ, Martinet N, Bertrand P. Delivery of epidrugs. Drug Discov Today 2014; 19:1337-52. [DOI: 10.1016/j.drudis.2014.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/28/2014] [Accepted: 03/19/2014] [Indexed: 12/22/2022]
|
16
|
Multitarget ligands and theranostics: sharpening the medicinal chemistry sword against prion diseases. Future Med Chem 2014; 6:1017-29. [DOI: 10.4155/fmc.14.56] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prion diseases (PrDs) are fatal neurodegenerative disorders, for which no effective therapeutic and diagnostic tools exist. The main pathogenic event has been identified as the misfolding of a disease-associated prion protein. Nevertheless, pathogenesis seems to involve an intricate array of concomitant processes. Thus, it may be unlikely that drugs acting on single targets can effectively control PrDs. In addition, diagnosis occurs late in the disease process, by which point it is difficult to determine a successful therapeutic intervention. In this context, multitarget ligands (MTLs) and theranostic ligands (TLs) emerge for their potential to effectively cure and diagnose PrDs. In this review, we discuss the medicinal chemistry challenges of identifying novel MTLs and TLs against PrDs, and envision their impact on prion drug discovery.
Collapse
|
17
|
Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 2014; 71:2-14. [PMID: 23981489 DOI: 10.1016/j.addr.2013.08.008] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 02/06/2023]
Abstract
Nanoparticles enable the delivery of a great variety of drugs including anticancer drugs, analgesics, anti-Alzheimer's drugs, cardiovascular drugs, protease inhibitors, and several macromolecules into the brain after intravenous injection of animals. The mechanism of the nanoparticle-mediated drug transport across the BBB appears to be receptor-mediated endocytosis followed by transcytosis into the brain or by drug release within the endothelial cells. Modification of the nanoparticle surface with covalently attached targeting ligands or by coating with certain surfactants that lead to the adsorption of specific plasma proteins after injection is necessary for this receptor-mediated uptake. A very critical and important requirement for nanoparticulate brain delivery is that the employed nanoparticles are biocompatible and, moreover, rapidly biodegradable, i.e. over a time frame of a few days. In addition to enabling drug delivery to the brain, nanoparticles, as with doxorubicin, may importantly reduce the drug's toxicity and adverse effects due to an alteration of the body distribution. Because of the possibility to treat severe CNS diseases such as brain tumours and to even transport proteins and other macromolecules across the blood-brain barrier, this technology holds great promise for a non-invasive therapy of these diseases.
Collapse
Affiliation(s)
- Jörg Kreuter
- Institut für Pharmazeutische Technologie, Goethe-Universtät, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| |
Collapse
|