1
|
Ciumărnean L, Sârb OF, Drăghici NC, Sălăgean O, Milaciu MV, Orășan OH, Vlad CV, Vlad IM, Alexescu T, Para I, Țărmure SF, Hirișcău EI, Dogaru GB. Obesity Control and Supplementary Nutraceuticals as Cofactors of Brain Plasticity in Multiple Sclerosis Populations. Int J Mol Sci 2024; 25:10909. [PMID: 39456690 PMCID: PMC11507128 DOI: 10.3390/ijms252010909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammation, demyelination, and neurodegeneration within the central nervous system. Brain plasticity, the brain's ability to adapt its structure and function, plays a crucial role in mitigating MS's impact. This paper explores the potential benefits of lifestyle changes and nutraceuticals on brain plasticity in the MS population. Lifestyle modifications, including physical activity and dietary adjustments, can enhance brain plasticity by upregulating neurotrophic factors, promoting synaptogenesis, and reducing oxidative stress. Nutraceuticals, such as vitamin D, omega-3 fatty acids, and antioxidants like alpha lipoic acid, have shown promise in supporting brain health through anti-inflammatory and neuroprotective mechanisms. Regular physical activity has been linked to increased levels of brain-derived neurotrophic factor and improved cognitive function. Dietary interventions, including caloric restriction and the intake of polyphenols, can also positively influence brain plasticity. Integrating these lifestyle changes and nutraceuticals into the management of MS can provide a complementary approach to traditional therapies, potentially improving neurological outcomes and enhancing the quality of life for the MS population.
Collapse
Affiliation(s)
- Lorena Ciumărnean
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Oliviu-Florențiu Sârb
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Nicu-Cătălin Drăghici
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
- “IMOGEN” Institute, Centre of Advanced Research Studies, Emergency Clinical County Hospital Cluj, 400347 Cluj-Napoca, Romania
| | - Octavia Sălăgean
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Mircea-Vasile Milaciu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Olga-Hilda Orășan
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Călin-Vasile Vlad
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Irina-Maria Vlad
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Teodora Alexescu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Ioana Para
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Simina-Felicia Țărmure
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Elisabeta-Ioana Hirișcău
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Gabriela-Bombonica Dogaru
- Department of Medical Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Keshavarz Shahbaz S, Koushki K, Izadi O, Penson PE, Sukhorukov VN, Kesharwani P, Sahebkar A. Advancements in curcumin-loaded PLGA nanoparticle delivery systems: progressive strategies in cancer therapy. J Drug Target 2024:1-26. [PMID: 39106154 DOI: 10.1080/1061186x.2024.2389892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Cancer is a leading cause of death worldwide, and imposes a substantial socioeconomic burden with little impact especially on aggressive types of cancer. Conventional therapies have many serious side effects including generalised systemic toxicity which limits their long-term use. Tumour resistance and recurrence is another main problem associated with conventional therapy. Purified or extracted natural products have been investigated as cost-effective cancer chemoprotective agents with the potential to reverse or delaying carcinogenesis. Curcumin (CUR) as a natural polyphenolic component, exhibits many pharmacological activities such as anti-cancer, anti-inflammatory, anti-microbial, activity against neurodegenerative diseases including Alzheimer, antidiabetic activities (type II diabetes), anticoagulant properties, wound healing effects in both preclinical and clinical studies. Despite these effective protective properties, CUR has several limitations, including poor aqueous solubility, low bioavailability, chemical instability, rapid metabolism and a short half-life time. To overcome the pharmaceutical problems associated with free CUR, novel nanomedicine strategies (including polymeric nanoparticles (NPs) such as poly (lactic-co-glycolic acid) (PLGA) NPs have been developed. These formulations have the potential to improve the therapeutic efficacy of curcuminoids. In this review, we comprehensively summarise and discuss recent in vitro and in vivo studies to explore the pharmaceutical significance and clinical benefits of PLGA-NPs delivery system to improve the efficacy of CUR in the treatment of cancer.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadijeh Koushki
- Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Omid Izadi
- Department of Industrial Engineering, ACECR Institute of Higher Education Kermanshah, Kermanshah, Iran
| | - Peter E Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Dere Yelken H, Elci MP, Turker PF, Demirkaya S. Omega fatty acid ratios and neurodegeneration in a healthy environment. Prostaglandins Other Lipid Mediat 2024; 170:106799. [PMID: 37977351 DOI: 10.1016/j.prostaglandins.2023.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Multiple Sclerosis pose substantial public health challenges. While genetics play a primary role, recent research emphasizes the impact of environmental factors, particularly diet and lifestyle. This study investigates the initiating effects of Omega (ω)- 3 and Omega (ω)- 6 fatty acids on neuroinflammation, potentially contributing to these diseases. Using BV-2 microglial cells, we explored the influence of different fatty acid compositions and ratios on cell viability, cytokine production, morphological changes, and lipid peroxidation. Notably, a 2/1 ω-6:ω-3 ratio led to decreased cell viability. Fatty acid compositions influenced cytokine secretion, with reduced TNF-α suggesting anti-inflammatory effects. IL-17 increased, while IL-4 and IL-10 decreased in the 15/1 ω-6:ω-3 ratio, indicating complex cytokine interactions. This study found that polyunsaturated fatty acids interventions induced microglial activation, altering cell morphology even without immunostimulants. These findings demonstrate the intricate nature of fatty acid interactions with microglial cells and their potential implications for neuroinflammation. Further research is needed to clarify mechanisms and their relevance to neurodegenerative diseases, informing possible therapeutic strategies.
Collapse
Affiliation(s)
- H Dere Yelken
- Yeditepe University, 26 August Settlement, Atasehir, Istanbul 34755, Turkey.
| | - M P Elci
- University of Health Sciences Gulhane Health Sciences Institute, Gulhane Complex, Etlik, Ankara 06018, Turkey
| | - P F Turker
- Baskent University, Baglica Campus, Eskisehir highway 18.km Etimesgut, Ankara 06790, Turkey
| | - S Demirkaya
- University of Health Sciences, Gulhane Faculty of Medicine, Etlik, Ankara 06018, Turkey
| |
Collapse
|
4
|
Dere Yelken H, Elci MP, Turker PF, Demirkaya S. Exploring the role of polyunsaturated fatty acid ratios in modulating neuroinflammation in LPS-induced microglia: A comprehensive in vitro analysis. Prostaglandins Other Lipid Mediat 2023; 168:106739. [PMID: 37105440 DOI: 10.1016/j.prostaglandins.2023.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
The study investigated the effect of different omega (ω)- 3 and omega (ω)- 6 polyunsaturated fatty acid (PUFA) ratios on cytokine secretion, cell viability, and microglial cell shape in lipopolysaccharide (LPS)-induced microglia. The addition of PUFAs at different ratios, especially ω-3 and ratios of 7/1 and 2/1 ω-6/ω-3, resulted in a significant increase in the ameboid form of microglial cells, as well as more branching of their distal branches. Microglial cells were treated with varying ratios of PUFAs, and their cytokine secretion was measured. The results showed that all PUFA ratios had lower tumor necrosis factor (TNF)-α secretion than the control group, higher interleukin (IL)- 4 secretion in the ω-6 group, and less IL-10 secretion most down IL-6 secretion in the 7/1 ratio group. The study suggests that determining the appropriate ω-6/ω-3 consumption ratio, especially the 7/1 and 2/1 ratios, may help manage neuroinflammation, develop dietary models in immune-mediated neurodegenerative diseases, and open up new treatment possibilities.
Collapse
Affiliation(s)
- H Dere Yelken
- Yeditepe University, 26 August Settlement, Atasehir, Istanbul 34755, Turkey.
| | - M P Elci
- University of Health Sciences Gulhane Health Sciences Institute, Gülhane Complex, Etlik, Ankara 06018, Turkey
| | - P F Turker
- Baskent University, Baglica Campus, Eskisehir highway 18.km Etimesgut, Ankara 06790, Turkey
| | - S Demirkaya
- University of Health Sciences, Gulhane Faculty of Medicine, Etlik, Ankara 06018, Turkey
| |
Collapse
|
5
|
Koudriavtseva T, Lorenzano S, Cellerino M, Truglio M, Fiorelli M, Lapucci C, D’Agosto G, Conti L, Stefanile A, Zannino S, Filippi MM, Cortese A, Piantadosi C, Maschio M, Maialetti A, Galiè E, Salvetti M, Inglese M. Tissue factor as a potential coagulative/vascular marker in relapsing-remitting multiple sclerosis. Front Immunol 2023; 14:1226616. [PMID: 37583699 PMCID: PMC10424925 DOI: 10.3389/fimmu.2023.1226616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
Objectives Recent studies supported coagulation involvement in multiple sclerosis, an inflammatory-demyelinating and degenerative disease of the central nervous system. The main objectives of this observational study were to identify the most specific pro-coagulative/vascular factors for multiple sclerosis pathogenesis and to correlate them with brain hemodynamic abnormalities. Methods We compared i) serum/plasma levels of complement(C)/coagulation/vascular factors, viral/microbiological assays, fat-soluble vitamins and lymphocyte count among people with multiple sclerosis sampled in a clinical remission (n=30; 23F/7M, 40 ± 8.14 years) or a relapse (n=30; 24F/6M, age 41 ± 10.74 years) and age/sex-matched controls (n=30; 23F/7M, 40 ± 8.38 years); ii) brain hemodynamic metrics at dynamic susceptibility contrast-enhanced 3T-MRI during relapse and remission, and iii) laboratory data with MRI perfusion metrics and clinical features of people with multiple sclerosis. Two models by Partial Least Squares Discriminant Analysis were performed using two groups as input: (1) multiple sclerosis vs. controls, and (2) relapsing vs. remitting multiple sclerosis. Results Compared to controls, multiple sclerosis patients had a higher Body-Mass-Index, Protein-C and activated-C9; and a lower activated-C4. Levels of Tissue-Factor, Tie-2 and P-Selectin/CD62P were lower in relapse compared to remission and HC, whereas Angiopoietin-I was higher in relapsing vs. remitting multiple sclerosis. A lower number of total lymphocytes was found in relapsing multiple sclerosis vs. remitting multiple sclerosis and controls. Cerebral-Blood-Volume was lower in normal-appearing white matter and left caudatum while Cerebral-Blood-Flow was inferior in bilateral putamen in relapsing versus remitting multiple sclerosis. The mean-transit-time of gadolinium-enhancing lesions negatively correlated with Tissue-Factor. The top-5 discriminating variables for model (1) were: EBV-EBNA-1 IgG, Body-Mass-Index, Protein-C, activated-C4 and Tissue-Factor whereas for model (2) were: Tissue-Factor, Angiopoietin-I, MCHC, Vitamin A and T-CD3. Conclusion Tissue-factor was one of the top-5 variables in the models discriminating either multiple sclerosis from controls or multiple sclerosis relapse from remission and correlated with mean-transit-time of gadolinium-enhancing lesions. Tissue-factor appears a promising pro-coagulative/vascular biomarker and a possible therapeutic target in relapsing-remitting multiple sclerosis. Clinical trial registration ClinicalTrials.gov, identifier NCT04380220.
Collapse
Affiliation(s)
- Tatiana Koudriavtseva
- Medical Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Svetlana Lorenzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Maria Cellerino
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Mauro Truglio
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Fiorelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Giovanna D’Agosto
- Clinical Pathology and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gallicano Dermatological Institute, Rome, Italy
| | - Laura Conti
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Annunziata Stefanile
- Clinical Pathology and Cancer Biobank, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Silvana Zannino
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | | | - Antonio Cortese
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Piantadosi
- Unità Operativa Complessa (UOC) Neurology, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Marta Maschio
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Andrea Maialetti
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Edvina Galiè
- Department of Clinical Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Marco Salvetti
- Department of Neuroscience Mental Health and Sensory Organs (NEMOS), Sapienza University, Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Department of Neurology, Mount Sinai Hospital, New York, NY, United States
| |
Collapse
|
6
|
Yu H, Bai S, Hao Y, Guan Y. Fatty acids role in multiple sclerosis as "metabokines". J Neuroinflammation 2022; 19:157. [PMID: 35715809 PMCID: PMC9205055 DOI: 10.1186/s12974-022-02502-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS), as an autoimmune neurological disease with both genetic and environmental contribution, still lacks effective treatment options among progressive patients, highlighting the need to re-evaluate disease innate properties in search for novel therapeutic targets. Fatty acids (FA) and MS bear an interesting intimate connection. FA and FA metabolism are highly associated with autoimmunity, as the diet-derived circulatory and tissue-resident FAs level and composition can modulate immune cells polarization, differentiation and function, suggesting their broad regulatory role as “metabokines”. In addition, FAs are indeed protective factors for blood–brain barrier integrity, crucial contributors of central nervous system (CNS) chronic inflammation and progressive degeneration, as well as important materials for remyelination. The remaining area of ambiguity requires further exploration into this arena to validate the existed phenomenon, develop novel therapies, and confirm the safety and efficacy of therapeutic intervention targeting FA metabolism.
Collapse
Affiliation(s)
- Haojun Yu
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Shuwei Bai
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
7
|
Kuntzel T, Bagnard D. Manipulating Macrophage/Microglia Polarization to Treat Glioblastoma or Multiple Sclerosis. Pharmaceutics 2022; 14:344. [PMID: 35214076 PMCID: PMC8877500 DOI: 10.3390/pharmaceutics14020344] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophages and microglia are implicated in several diseases with divergent roles in physiopathology. This discrepancy can be explained by their capacity to endorse different polarization states. Theoretical extremes of these states are called M1 and M2. M1 are pro-inflammatory, microbicidal, and cytotoxic whereas M2 are anti-inflammatory, immunoregulatory cells in favor of tumor progression. In pathological states, these polarizations are dysregulated, thus restoring phenotypes could be an interesting treatment approach against diseases. In this review, we will focus on compounds targeting macrophages and microglia polarization in two very distinctive pathologies: multiple sclerosis and glioblastoma. Multiple sclerosis is an inflammatory disease characterized by demyelination and axon degradation. In this case, macrophages and microglia endorse a M1-like phenotype inducing inflammation. Promoting the opposite M2-like polarization could be an interesting treatment strategy. Glioblastoma is a brain tumor in which macrophages and microglia facilitate tumor progression, spreading, and angiogenesis. They are part of the tumor associated macrophages displaying an anti-inflammatory phenotype, thereby inhibiting anti-tumoral immunity. Re-activating them could be a method to limit and reduce tumor progression. These two pathologies will be used to exemplify that targeting the polarization of macrophages and microglia is a promising approach with a broad spectrum of applications deserving more attention.
Collapse
Affiliation(s)
- Thomas Kuntzel
- UMR7242 Biotechnology and Cell Signaling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France;
| | - Dominique Bagnard
- UMR7242 Biotechnology and Cell Signaling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France;
- Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
8
|
Oliveira VMD, Rios CC, Gubert VT, Ferreira CM, Vasconcelos-Pereira EFD, Toffoli-Kadri MC, Monreal MTFD. Association of clinical epidemiological factors to polypharmacy among patients with multiple sclerosis: real-life data. ABCS HEALTH SCIENCES 2021. [DOI: 10.7322/abcshs.2020137.1899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Introduction: Treatment for multiple sclerosis should focus on relapse prevention and treatment, as well as symptom and disease progression control, which require the use of multiple medications. Objective: To evaluate the association of polypharmacy and related clinical, epidemiological factors in multiple sclerosis patient cohorts. Methods: It was conducted a prospective study of multiple sclerosis patients that held a prescription of disease-modifying drugs between January and December 2017. The medications were analyzed and classified as either long-term or as-needed medications for therapeutic objective and prescription status purposes. Results: During 2017, 124 patients were attended, 106 were eligible for the study, and 81 agreed to participate. The average age was 40.95±11.69 years. The disease duration varied between 6 months and 30 years, with a median of 7 years. More than half of the multiple sclerosis patients suffered from comorbidities (54.32%), and 76.54% were categorized as polypharmacy. The comparison of polypharmacy between the groups yielded significant differences for comorbidities and employment status and regarding age between patients with polypharmacy and patients without polypharmacy of long-term medications. Conclusion: The age of the patient and the presence of comorbidities are important factors related to polypharmacy.
Collapse
|
9
|
Fu YS, Chen TH, Weng L, Huang L, Lai D, Weng CF. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed Pharmacother 2021; 141:111888. [PMID: 34237598 DOI: 10.1016/j.biopha.2021.111888] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Curcumin, isolated from Curcuma longa L., is a fat-soluble natural compound that can be obtained from ginger plant tuber roots, which accumulative evidences have demonstrated that it can resist viral and microbial infection and has anti-tumor, reduction of blood lipid and blood glucose, antioxidant and removal of free radicals, and is active against numerous disorders various chronic diseases including cardiovascular, pulmonary, neurological and autoimmune diseases. In this article is highlighted the recent evidence of curcuminoids applied in sevral aspects of medical problem particular in COVID-19 pandemics. We have searched several literature databases including MEDLINE (PubMed), EMBASE, the Web of Science, Cochrane Library, Google Scholar, and the ClinicalTrials.gov website via using curcumin and medicinal properties as a keyword. All studies published from the time when the database was established to May 2021 was retrieved. This review article summarizes the growing confirmation for the mechanisms related to curcumin's physiological and pharmacological effects with related target proteins interaction via molecular docking. The purpose is to provide deeper insight and understandings of curcumin's medicinal value in the discovery and development of new drugs. Curcumin could be used in the prevention or therapy of cardiovascular disease, respiratory diseases, cancer, neurodegeneration, infection, and inflammation based on cellular biochemical, physiological regulation, infection suppression and immunomodulation.
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Ting-Hsu Chen
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Lebin Weng
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Liyue Huang
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Dong Lai
- Department of Transfusion, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| | - Ching-Feng Weng
- Department of Physiology, School of Basic Medicine, Xiamen Medical College, Xiamen 361023, Fujian, China.
| |
Collapse
|
10
|
Himalian R, Singh SK, Singh MP. Ameliorative Role of Nutraceuticals on Neurodegenerative Diseases Using the Drosophila melanogaster as a Discovery Model to Define Bioefficacy. J Am Coll Nutr 2021; 41:511-539. [PMID: 34125661 DOI: 10.1080/07315724.2021.1904305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurodegeneration is the destruction of neurons, and once the neurons degenerate they can't revive. This is one of the most concerned health conditions among aged population, more than ∼70% of the elderly people are suffering from neurodegeneration. Among all of the neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and Poly-glutamine disease (Poly-Q) are the major one and affecting most of the people around the world and posing excessive burden on the society. In order to understand this disease in non-human animal models it is pertinent to examine in model organism and various animal model are being used for such diseases like rat, mice and non-vertebrate model like Drosophila. Drosophila melanogaster is one of the best animal proven by several eminent scientist and had received several Nobel prizes for uncovering mechanism of human related genes and highly efficient model for studying neurodegenerative diseases due to its great affinity with human disease-related genes. Another factor is also employed to act as therapeutic or preventive method that is nutraceuticals. Nutraceuticals are functional natural compounds with antioxidant properties and had extensively showed the neuroprotective effect in different organisms. These nutraceuticals having antioxidant properties act through scavenging free radicals or by increasing endogenous cellular antioxidant defense molecules. For the best benefit, we are trying to utilize these nutraceuticals, which will have no or negligible side effects. In this review, we are dealing with various types of such nutraceuticals which have potent value in the prevention and curing of the diseases related to neurodegeneration.HighlightsNeurodegeneration is the silently progressing disease which shows its symptoms when it is well rooted.Many chemical drugs (almost all) have only symptomatic relief with side effects.Potent mechanism of neurodegeneration and improvement effect by nutraceuticals is proposed.Based on the Indian Cuisine scientists are trying to find the medicine from the food or food components having antioxidant properties.The best model to study the neurodegenerative diseases is Drosophila melanogaster.Many nutraceuticals having antioxidant properties have been studied and attenuated various diseases are discussed.
Collapse
Affiliation(s)
- Ranjana Himalian
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow, India
| | - Mahendra Pratap Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
11
|
Fleck AK, Hucke S, Teipel F, Eschborn M, Janoschka C, Liebmann M, Wami H, Korn L, Pickert G, Hartwig M, Wirth T, Herold M, Koch K, Falk-Paulsen M, Dobrindt U, Kovac S, Gross CC, Rosenstiel P, Trautmann M, Wiendl H, Schuppan D, Kuhlmann T, Klotz L. Dietary conjugated linoleic acid links reduced intestinal inflammation to amelioration of CNS autoimmunity. Brain 2021; 144:1152-1166. [PMID: 33899089 PMCID: PMC8105041 DOI: 10.1093/brain/awab040] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
A close interaction between gut immune responses and distant organ-specific autoimmunity including the CNS in multiple sclerosis has been established in recent years. This so-called gut–CNS axis can be shaped by dietary factors, either directly or via indirect modulation of the gut microbiome and its metabolites. Here, we report that dietary supplementation with conjugated linoleic acid, a mixture of linoleic acid isomers, ameliorates CNS autoimmunity in a spontaneous mouse model of multiple sclerosis, accompanied by an attenuation of intestinal barrier dysfunction and inflammation as well as an increase in intestinal myeloid-derived suppressor-like cells. Protective effects of dietary supplementation with conjugated linoleic acid were not abrogated upon microbiota eradication, indicating that the microbiome is dispensable for these conjugated linoleic acid-mediated effects. Instead, we observed a range of direct anti-inflammatory effects of conjugated linoleic acid on murine myeloid cells including an enhanced IL10 production and the capacity to suppress T-cell proliferation. Finally, in a human pilot study in patients with multiple sclerosis (n = 15, under first-line disease-modifying treatment), dietary conjugated linoleic acid-supplementation for 6 months significantly enhanced the anti-inflammatory profiles as well as functional signatures of circulating myeloid cells. Together, our results identify conjugated linoleic acid as a potent modulator of the gut–CNS axis by targeting myeloid cells in the intestine, which in turn control encephalitogenic T-cell responses.
Collapse
Affiliation(s)
- Ann-Katrin Fleck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stephanie Hucke
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Flavio Teipel
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Melanie Eschborn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Claudia Janoschka
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Haleluya Wami
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Lisanne Korn
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Geethanjali Pickert
- Institute of Translational Immunology, University Medical Center Mainz, Mainz, Germany
| | - Marvin Hartwig
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Timo Wirth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Martin Herold
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Kathrin Koch
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Ulrich Dobrindt
- Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Marcel Trautmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center Mainz, Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tanja Kuhlmann
- Department of Neuropathology, University of Münster, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| |
Collapse
|
12
|
Behl T, Kaur G, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bungau SG, Munteanu MA, Brisc MC, Andronie-Cioara FL, Brisc C. Elucidating the Multi-Targeted Role of Nutraceuticals: A Complementary Therapy to Starve Neurodegenerative Diseases. Int J Mol Sci 2021; 22:4045. [PMID: 33919895 PMCID: PMC8070907 DOI: 10.3390/ijms22084045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying multifactorial diseases are always complex and challenging. Neurodegenerative disorders (NDs) are common around the globe, posing a critical healthcare issue and financial burden to the country. However, integrative evidence implies some common shared mechanisms and pathways in NDs, which include mitochondrial dysfunction, neuroinflammation, oxidative stress, intracellular calcium overload, protein aggregates, oxidative stress (OS), and neuronal destruction in specific regions of the brain, owing to multifaceted pathologies. The co-existence of these multiple pathways often limits the advantages of available therapies. The nutraceutical-based approach has opened the doors to target these common multifaceted pathways in a slow and more physiological manner to starve the NDs. Peer-reviewed articles were searched via MEDLINE and PubMed published to date for in-depth research and database collection. Considered to be complementary therapy with current clinical management and common drug therapy, the intake of nutraceuticals is considered safe to target multiple mechanisms of action in NDs. The current review summarizes the popular nutraceuticals showing different effects (anti-inflammatory, antioxidant, neuro-protectant, mitochondrial homeostasis, neurogenesis promotion, and autophagy regulation) on vital molecular mechanisms involved in NDs, which can be considered as complementary therapy to first-line treatment. Moreover, owing to its natural source, lower toxicity, therapeutic interventions, biocompatibility, potential nutritional effects, and presence of various anti-oxidative and neuroprotective constituents, the nutraceuticals serve as an attractive option to tackle NDs.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Gagandeep Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Chandigarh 160009, India; (T.B.); (G.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman; (S.B.); (A.A.-H.)
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (M.C.B.); (C.B.)
| |
Collapse
|
13
|
Tredinnick AR, Probst YC. Evaluating the Effects of Dietary Interventions on Disease Progression and Symptoms of Adults with Multiple Sclerosis: An Umbrella Review. Adv Nutr 2020; 11:1603-1615. [PMID: 32504530 PMCID: PMC7666914 DOI: 10.1093/advances/nmaa063] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/08/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system. The role of diet in the progression of MS and severity of symptoms remains unclear. Various systematic literature reviews (SRs) have reported the effects of single nutrients on MS progression or the role of dietary factors on specific symptoms of MS. Narrative reviews have examined the effects of various dietary patterns in MS populations. An umbrella review was undertaken to collate the findings from review articles and evaluate the strength of the scientific evidence of dietary interventions for people living with MS. Scientific databases including MEDLINE, PubMed, CINAHL, and The Cochrane Library were systematically searched up to April 2019. Review articles and meta-analyses were included if they examined the effect of any dietary intervention in adult populations with MS. Outcomes included MS progression indicated by relapses, disability, MRI activity and disease classification, and MS symptoms. Characteristics and findings from both review articles and their included primary studies were extracted and summarized. A total of 19 SRs and 43 narrative reviews were included. Vitamin D and PUFAs were the most commonly studied interventions. Across SR studies, vitamin D supplementation had no significant effect on relapses, MRI, or disability progression; however, an inverse association was found between vitamin D status and disability scores through observational studies. Effects of PUFA supplementation on major outcomes of MS progression were inconsistent across review articles. Other interventions less commonly studied included vitamin, mineral, and herbal supplementation and varying dietary patterns. Strong consistent evidence is lacking for dietary interventions in persons with MS. The body of evidence is primarily focused around the isolation of individual nutrients, many of which demonstrate no effect on major outcomes of MS progression. Stronger food-focused studies are required to strengthen the evidence.
Collapse
Affiliation(s)
- Abbey R Tredinnick
- School of Medicine, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yasmine C Probst
- School of Medicine, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
14
|
Khan H, Ullah H, Khattak S, Aschner M, Aguilar CN, Halimi SMA, Cauli O, Shah SMM. Therapeutic potential of alkaloids in autoimmune diseases: Promising candidates for clinical trials. Phytother Res 2020; 35:50-62. [PMID: 32667693 DOI: 10.1002/ptr.6763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/23/2020] [Accepted: 05/16/2020] [Indexed: 02/05/2023]
Abstract
Clinical investigations have characterized numerous disorders like autoimmune diseases, affecting the population at a rate of approximately 8-10%. These disorders are characterized by T-cell and auto-antibodies responses to self-molecules by immune system reactivity. Several therapeutic options have been adopted in clinics to combat such diseases, however, most of them are recurring. Thus, the discovery of new effective agents for the treatment of autoimmune diseases is paramount. In this context, natural products might be a useful alternative to the current therapies. Plant alkaloids with their substantial therapeutic history can be particularly interesting candidates for the alleviation of autoimmune ailments. This review encompasses various alkaloids with significant effects against autoimmune diseases in preclinical trials. These results suggest further clinical assessment with respect to autoimmune illnesses. Furthermore, the application of modern technologies such as nanoformulation could be also helpful in the design of more effective therapies and thus further studies are needed to decipher their therapeutic efficacy as well as potential limitations.
Collapse
Affiliation(s)
- Haroon Khan
- Abdul Wali khan university Mardan, Abdul Wali khan university Mardan, Department of Pharmacy, Abdul Wali Khan university Mardan, Pakistan, Mardan, Pakistan, 23200, Pakistan
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Sumaira Khattak
- Abdul Wali khan university Mardan, Abdul Wali khan university Mardan, Department of Pharmacy, Abdul Wali Khan university Mardan, Pakistan, Mardan, Pakistan, 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| | - Cristobal N Aguilar
- School of Chemistry, Universidad Autónoma de Coahuila Saltillo, Saltillo, Mexico
| | - Syed M A Halimi
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Omar Cauli
- Department of Nursing, University of Valencia, Valencia, Spain
| | - Syed M M Shah
- Department of Pharmacy, University of Swabi Pakistan, Swabi, Pakistan
| |
Collapse
|
15
|
Abdel-Hafez SM, Hathout RM, Sammour OA. Attempts to enhance the anti-cancer activity of curcumin as a magical oncological agent using transdermal delivery. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00439-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Ge S, Jiang X, Paul D, Song L, Wang X, Pachter JS. Human ES-derived MSCs correct TNF-α-mediated alterations in a blood-brain barrier model. Fluids Barriers CNS 2019; 16:18. [PMID: 31256757 PMCID: PMC6600885 DOI: 10.1186/s12987-019-0138-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Immune cell trafficking into the CNS is considered to contribute to pathogenesis in MS and its animal model, EAE. Disruption of the blood–brain barrier (BBB) is a hallmark of these pathologies and a potential target of therapeutics. Human embryonic stem cell-derived mesenchymal stem/stromal cells (hES-MSCs) have shown superior therapeutic efficacy, compared to bone marrow-derived MSCs, in reducing clinical symptoms and neuropathology of EAE. However, it has not yet been reported whether hES-MSCs inhibit and/or repair the BBB damage associated with neuroinflammation that accompanies EAE. Methods BMECs were cultured on Transwell inserts as a BBB model for all the experiments. Disruption of BBB models was induced by TNF-α, a pro-inflammatory cytokine that is a hallmark of acute and chronic neuroinflammation. Results Results indicated that hES-MSCs reversed the TNF-α-induced changes in tight junction proteins, permeability, transendothelial electrical resistance, and expression of adhesion molecules, especially when these cells were placed in direct contact with BMEC. Conclusions hES-MSCs and/or products derived from them could potentially serve as novel therapeutics to repair BBB disturbances in MS. Electronic supplementary material The online version of this article (10.1186/s12987-019-0138-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shujun Ge
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Xi Jiang
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.,Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Debayon Paul
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Li Song
- ImStem Biotechnology, Inc., 400 Farmington Ave., Farmington, CT, 06030, USA
| | - Xiaofang Wang
- ImStem Biotechnology, Inc., 400 Farmington Ave., Farmington, CT, 06030, USA
| | - Joel S Pachter
- Blood-Brain Barrier Laboratory, Dept. of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| |
Collapse
|
17
|
Frahm N, Hecker M, Zettl UK. Multi-drug use among patients with multiple sclerosis: A cross-sectional study of associations to clinicodemographic factors. Sci Rep 2019; 9:3743. [PMID: 30842515 PMCID: PMC6403326 DOI: 10.1038/s41598-019-40283-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/13/2019] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is the most prevalent immune-mediated disease affecting the central nervous system. A treatment strategy with multiple therapies is a frequent clinical scenario. Unmonitored multi-drug use can lead to adverse outcomes, higher health care costs and medication non-adherence. The primary aim of this study was to evaluate the frequency of polypharmacy and related clinicodemographic factors in a single-center MS patient cohort. Furthermore, medication aspects of therapy management were examined. After the patients agreed to participate in the study, data were collected through patient interviews, patient records and clinical investigations. Subsequently, a statistical data analysis regarding various medication subgroups and polypharmacy (use of at least five drugs) was performed. Polypharmacy was observed in 56.5% of the patients (N = 306). High degrees of disability (odds ratio [OR] = 1.385), comorbidities (OR = 4.879) and inpatient treatment (OR = 5.146) were associated with a significantly higher risk of polypharmacy (p ≤ 0.001). Among patients with polypharmacy, disease-modifying drugs, antihypertensives, gastrointestinal drugs, thrombosis prophylactics, osteoporosis medications and sedatives were frequently used. In summary, polypharmacy plays a large role in MS patients, especially in those with higher degrees of disability, those with comorbidities and those treated in an inpatient setting.
Collapse
Affiliation(s)
- Niklas Frahm
- Neuroimmunology Section, Department of Neurology, University of Rostock, Rostock, Germany.
| | - Michael Hecker
- Neuroimmunology Section, Department of Neurology, University of Rostock, Rostock, Germany
| | - Uwe Klaus Zettl
- Neuroimmunology Section, Department of Neurology, University of Rostock, Rostock, Germany
| |
Collapse
|
18
|
Rengasamy KR, Khan H, Gowrishankar S, Lagoa RJ, Mahomoodally FM, Khan Z, Suroowan S, Tewari D, Zengin G, Hassan ST, Pandian SK. The role of flavonoids in autoimmune diseases: Therapeutic updates. Pharmacol Ther 2019; 194:107-131. [DOI: 10.1016/j.pharmthera.2018.09.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Dietary salt promotes ischemic brain injury and is associated with parenchymal migrasome formation. PLoS One 2018; 13:e0209871. [PMID: 30589884 PMCID: PMC6307724 DOI: 10.1371/journal.pone.0209871] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
Sodium chloride promotes vascular fibrosis, arterial hypertension, pro-inflammatory immune cell polarization and endothelial dysfunction, all of which might influence outcomes following stroke. But despite enormous translational relevance, the functional importance of sodium chloride in the pathophysiology of acute ischemic stroke is still unclear. In the current study, we show that high-salt diet leads to significantly worse functional outcomes, increased infarct volumes, and a loss of astrocytes and cortical neurons in acute ischemic stroke. While analyzing the underlying pathologic processes, we identified the migrasome as a novel, sodium chloride-driven pathomechanism in acute ischemic stroke. The migrasome was previously described in vitro as a migrating organelle, which incorporates and dispatches cytosol of surrounding cells and plays a role in intercellular signaling, whereas a pathophysiological meaning has not been elaborated. We here confirm previously reported characteristics of the migrasome in vivo. Immunohistochemistry, electron microscopy and proteomic analyses further demonstrate that the migrasome incorporates and dispatches cytosol of surrounding neurons following stroke. The clinical relevance of these findings is emphasized by neuropathological examinations, which detected migrasome formation in infarcted brain parenchyma of human stroke patients. In summary, we demonstrate that high-salt diet aggravates stroke outcomes, and we characterize the migrasome as a novel mechanism in acute stroke pathophysiology.
Collapse
|
20
|
Nutrition et sclérose en plaques : le point de la littérature. NUTR CLIN METAB 2018. [DOI: 10.1016/j.nupar.2017.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
ESPEN guideline clinical nutrition in neurology. Clin Nutr 2018; 37:354-396. [DOI: 10.1016/j.clnu.2017.09.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
|
22
|
Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, Bharti AC, Aggarwal BB. Chronic diseases, inflammation, and spices: how are they linked? J Transl Med 2018; 16:14. [PMID: 29370858 PMCID: PMC5785894 DOI: 10.1186/s12967-018-1381-2] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/10/2018] [Indexed: 01/17/2023] Open
Abstract
Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, cardiovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Bethsebie L Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sahdeo Prasad
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | | |
Collapse
|
23
|
Caputi FF, Acquas E, Kasture S, Ruiu S, Candeletti S, Romualdi P. The standardized Withania somnifera Dunal root extract alters basal and morphine-induced opioid receptor gene expression changes in neuroblastoma cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:9. [PMID: 29316911 PMCID: PMC5761194 DOI: 10.1186/s12906-017-2065-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022]
Abstract
Background Behavioral studies demonstrated that the administration of Withania somnifera Dunal roots extract (WSE), prolongs morphine-elicited analgesia and reduces the development of tolerance to the morphine’s analgesic effect; however, little is known about the underpinning molecular mechanism(s). In order to shed light on this issue in the present paper we explored whether WSE promotes alterations of μ (MOP) and nociceptin (NOP) opioid receptors gene expression in neuroblastoma SH-SY5Y cells. Methods A range of WSE concentrations was preliminarily tested to evaluate their effects on cell viability. Subsequently, the effects of 5 h exposure to WSE (0.25, 0.50 and 1.00 mg/ml), applied alone and in combination with morphine or naloxone, on MOP and NOP mRNA levels were investigated. Results Data analysis revealed that morphine decreased MOP and NOP receptor gene expression, whereas naloxone elicited their up-regulation. In addition, pre-treatment with naloxone prevented the morphine-elicited gene expression alterations. Interestingly, WSE was able to: a) alter MOP but not NOP gene expression; b) counteract, at its highest concentration, morphine-induced MOP down-regulation, and c) hamper naloxone-induced MOP and NOP up-regulation. Conclusion Present in-vitro data disclose novel evidence about the ability of WSE to influence MOP and NOP opioid receptors gene expression in SH-SY5Y cells. Moreover, our findings suggest that the in-vivo modulation of morphine-mediated analgesia by WSE could be related to the hindering of morphine-elicited opioid receptors down-regulation here observed following WSE pre-treatment at its highest concentration.
Collapse
|
24
|
Evaluating the effect of adding Fish oil to Fingolimod on TNF-α, IL1β, IL6, and IFN-γ in patients with relapsing-remitting multiple sclerosis: A double-blind randomized placebo-controlled trial. Clin Neurol Neurosurg 2017; 163:173-178. [DOI: 10.1016/j.clineuro.2017.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
|
25
|
Hathout RM, El-Ahmady SH, Metwally AA. Curcumin or bisdemethoxycurcumin for nose-to-brain treatment of Alzheimer disease? A bio/chemo-informatics case study. Nat Prod Res 2017; 32:2873-2881. [PMID: 29022380 DOI: 10.1080/14786419.2017.1385017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The current study introduces a new idea of utilising several bio/chemoinformatics tools in comparing two bio-similar natural molecules viz. curcumin and bisdemethoxycurcumin (BDMC) in order to select a potential nose-to-brain remedy for Alzheimer disease. The comparison comprised several bio/chemo informatics tools. It encompassed all levels starting from loading the drug in a certain carrier; PLGA nanoparticles, to the biopharmaceutical level investigating the interaction with mucin and inhibition of P-gp blood-brain barrier efflux pumps. Finally, the therapeutic level was investigated by studying the interaction with pharmacological targets such as amyloid peptide plaques and cyclooxygenase2 enzyme responsible for the inflammatory reactions of the studied disease. The comparison revealed the superiority of curcumin over BDMC. Five new analogues were also hypothesised where diethoxybisdemethoxycurcumin was recommended as a superior molecule. This work introduced the virtual utilisation of bio/chemo informatics tools as a reliable and economic alternative to the exhausting and resources-consuming wet-lab experimentation.
Collapse
Affiliation(s)
- Rania M Hathout
- a Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy , Ain Shams University , Cairo , Egypt.,b Faculty of Computer and Information Sciences , Bioinformatics Program, Ain Shams University , Cairo , Egypt.,c Faculty of Pharmacy and Biotechnology, Department of Pharmaceutical Technology , German University in Cairo (GUC) , Cairo , Egypt
| | - Sherweit H El-Ahmady
- d Faculty of Pharmacy, Department of Pharmacognosy , Ain Shams University , Cairo , Egypt
| | - AbdelKader A Metwally
- a Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy , Ain Shams University , Cairo , Egypt
| |
Collapse
|
26
|
Monoclonal Antibodies in Preclinical EAE Models of Multiple Sclerosis: A Systematic Review. Int J Mol Sci 2017; 18:ijms18091992. [PMID: 28926943 PMCID: PMC5618641 DOI: 10.3390/ijms18091992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 02/08/2023] Open
Abstract
Monoclonal antibodies (mAb) are promising therapeutics in multiple sclerosis and multiple new candidates have been developed, hence increasing the need for some agreement for preclinical mAb studies. We systematically analyzed publications of experimental autoimmune encephalomyelitis (EAE) studies showing effects of monoclonal antibodies. A PubMed search retrieved 570 records, out of which 122 studies with 253 experiments were eligible based on experimental design, number of animals and presentation of time courses of EAE scores. Analysis of EAE models, treatment schedules, single and total doses, routes of administration, and onset of treatment from pre-immunization up to 35 days after immunization revealed high heterogeneity. Total doses ranged from 0.1 to 360 mg/kg for observation times of up to 35 days after immunization. About half of experiments (142/253) used total doses of 10-70 mg/kg. Employing this range, we tested anti-Itga4 as a reference mAb at varying schedules and got no, mild or substantial EAE-score reductions, depending on the mouse strain and onset of the treatment. The result agrees with the range of outcomes achieved in 10 reported anti-Itga4 experiments. Studies comparing low and high doses of various mAbs or early vs. late onset of treatment did not reveal dose-effect or timing-effect associations, with a tendency towards better outcomes with preventive treatments starting within the first week after immunization. The systematic comparison allows for extraction of some "common" design characteristics, which may be helpful to further assess the efficacy of mAbs and role of specific targets in preclinical models of multiple sclerosis.
Collapse
|
27
|
van den Hoogen WJ, Laman JD, 't Hart BA. Modulation of Multiple Sclerosis and Its Animal Model Experimental Autoimmune Encephalomyelitis by Food and Gut Microbiota. Front Immunol 2017; 8:1081. [PMID: 28928747 PMCID: PMC5591889 DOI: 10.3389/fimmu.2017.01081] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/21/2017] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS), leading to demyelination, axonal damage, and symptoms such as fatigue and disability. Although the cause of MS is not known, the infiltration of peripherally activated immune cells into the CNS has a key pathogenic role. Accumulating evidence supports an important role of diet and gut microbiota in immune-mediated diseases. Preclinical as well as clinical studies suggest a role for gut microbiota and dietary components in MS. Here, we review these recent studies on gut microbiota and dietary interventions in MS and its animal model experimental autoimmune encephalomyelitis. We also propose directions for future research.
Collapse
Affiliation(s)
| | - Jon D Laman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bert A 't Hart
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
28
|
Hussain Z, Thu HE, Amjad MW, Hussain F, Ahmed TA, Khan S. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: A review of new trends and future perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1316-1326. [DOI: 10.1016/j.msec.2017.03.226] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/24/2017] [Indexed: 02/08/2023]
|
29
|
Dadhania VP, Trivedi PP, Vikram A, Tripathi DN. Nutraceuticals against Neurodegeneration: A Mechanistic Insight. Curr Neuropharmacol 2017; 14:627-40. [PMID: 26725888 PMCID: PMC4981739 DOI: 10.2174/1570159x14666160104142223] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/17/2015] [Accepted: 01/01/2016] [Indexed: 12/20/2022] Open
Abstract
The mechanisms underlying neurodegenerative disorders are complex and multifactorial; however, accumulating evidences suggest few common shared pathways. These common pathways include mitochondrial dysfunction, intracellular Ca2+ overload, oxidative stress and inflammation. Often multiple pathways co-exist, and therefore limit the benefits of therapeutic interventions. Nutraceuticals have recently gained importance owing to their multifaceted effects. These food-based approaches are believed to target multiple pathways in a slow but more physiological manner without causing severe adverse effects. Available information strongly supports the notion that apart from preventing the onset of neuronal damage, nutraceuticals can potentially attenuate the continued progression of neuronal destruction. In this article, we i) review the common pathways involved in the pathogenesis of the toxicants-induced neurotoxicity and neurodegenerative disorders with special emphasis on Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple sclerosis (MS) and Amyotrophic lateral sclerosis (ALS), and ii) summarize current research advancements on the effects of nutraceuticals against these detrimental pathways.
Collapse
Affiliation(s)
| | | | - Ajit Vikram
- Department of Internal Medicine, The University of Iowa, Iowa City, IA-52240, USA.
| | - Durga Nand Tripathi
- DNT at Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University Health Science Center, Houston, TX-77030, USA.
| |
Collapse
|
30
|
Hussain Z, Thu HE, Ng SF, Khan S, Katas H. Nanoencapsulation, an efficient and promising approach to maximize wound healing efficacy of curcumin: A review of new trends and state-of-the-art. Colloids Surf B Biointerfaces 2016; 150:223-241. [PMID: 27918967 DOI: 10.1016/j.colsurfb.2016.11.036] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/21/2016] [Accepted: 11/26/2016] [Indexed: 12/13/2022]
Abstract
Wound healing is a multifarious and vibrant process of replacing devitalized and damaged cellular structures, leading to restoration of the skin's barrier function, re-establishment of tissue integrity, and maintenance of the internal homeostasis. Curcumin (CUR) and its analogs have gained widespread recognition due to their remarkable anti-inflammatory, anti-infective, anticancer, immunomodulatory, antioxidant, and wound healing activities. However, their pharmaceutical significance is limited due to inherent hydrophobic nature, poor water solubility, low bioavailability, chemical instability, rapid metabolism and short half-life. Owing to their pharmaceutical limitations, newer strategies have been attempted in recent years aiming to mitigate problems related to the effective delivery of curcumanoids and to improve their wound healing potential. These advanced strategies include nanovesicles, polymeric micelles, conventional liposomes and hyalurosomes, nanocomposite hydrogels, electrospun nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, nanodispersion, and polymeric nanoparticles (NPs). The superior wound healing activities achieved after nanoencapsulation of the CUR are attributed to its target-specific delivery, longer retention at the target site, avoiding premature degradation of the encapsulated cargo and the therapeutic superiority of the advanced delivery systems over the conventional delivery. We have critically reviewed the literature and summarize the convincing evidence which explore the pharmaceutical significance and therapeutic feasibility of the advanced delivery systems in improving wound healing activities of the CUR and its analogs.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia.
| | - Hnin Ei Thu
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz 50300, Kuala Lumpur, Malaysia
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KPK, Pakistan
| | - Haliza Katas
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz 50300, Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Ozgun-Acar O, Celik-Turgut G, Gazioglu I, Kolak U, Ozbal S, Ergur BU, Arslan S, Sen A, Topcu G. Capparis ovata treatment suppresses inflammatory cytokine expression and ameliorates experimental allergic encephalomyelitis model of multiple sclerosis in C57BL/6 mice. J Neuroimmunol 2016; 298:106-16. [PMID: 27609283 DOI: 10.1016/j.jneuroim.2016.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/27/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022]
Abstract
Since ancient times, Capparis species have been widely used in traditional medicine to treat various diseases. Our recent investigations have suggested Capparis ovata's potential anti-neuroinflammatory application for the treatment of multiple sclerosis (MS). The present study was designed to precisely determine the underlying mechanism of its anti-neuroinflammatory effect in a mouse model of MS. C. ovata water extract (COWE) was prepared using the plant's fruit, buds, and flower parts (Turkish Patent Institute, PT 2012/04,093). We immunized female C57BL/6J mice with MOG35-55/CFA. COWE was administered at a daily dose of 500mg/kg by oral gavage either from the day of immunization (T1) or at disease onset (T2) for 21days. Gene expression analysis was performed using a Mouse Multiple Sclerosis RT² Profiler PCR Array, and further determinations and validations of the identified genes were performed using qPCR. Whole-genome transcriptome profiling was analyzed using Agilent SurePrint G3 Mouse GE 8X60K microarrays. Immunohistochemical staining was applied to brain sections of the control and treated mice to examine the degree of degeneration. COWE was further fractionated and analyzed phytochemically using the Zivak Tandem Gold Triple Quadrupole LC/MS-MS system. COWE remarkably suppressed the development of EAE in T1, and the disease activity was completely inhibited. In the T2 group, the maximal score was significantly reduced compared with that of the parallel EAE group. The COWE suppression of EAE was associated with a significantly decreased expression of genes that are important in inflammatory signaling, such as TNFα, IL6, NF-κB, CCL5, CXCL9, and CXCK10. On the other hand, the expression of genes involved in myelination/remyelination was significantly increased. Immunohistochemical analysis further supported these effects, showing that the number of infiltrating immune cells was decreased in the brains of COWE-treated animals. In addition, differential expression profiling of the transcriptome revealed that COWE treatment caused the down regulation of a group of genes involved in the immune response, inflammatory response, antigen processing and presentation, B-cell-mediated immunity and innate immune response. Collectively, these results suggest anti-neuroinflammatory mechanisms by which COWE treatment delayed and suppressed the development of EAE and ameliorated the disease in mice with persistent clinical signs.
Collapse
Affiliation(s)
- Ozden Ozgun-Acar
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, 20070 Kınıklı, Denizli, Turkey
| | - Gurbet Celik-Turgut
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, 20070 Kınıklı, Denizli, Turkey
| | - Isil Gazioglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| | - Ufuk Kolak
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Beyazit, Istanbul, Turkey
| | - Seda Ozbal
- Department of Histology and Embryology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Bekir U Ergur
- Department of Histology and Embryology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Sevki Arslan
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, 20070 Kınıklı, Denizli, Turkey
| | - Alaattin Sen
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, 20070 Kınıklı, Denizli, Turkey.
| | - Gulacti Topcu
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
| |
Collapse
|
32
|
Sulforaphane regulates phenotypic and functional switching of both induced and spontaneously differentiating human monocytes. Int Immunopharmacol 2016; 35:85-98. [DOI: 10.1016/j.intimp.2016.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 12/26/2022]
|
33
|
Mehanny M, Hathout RM, Geneidi AS, Mansour S. Exploring the use of nanocarrier systems to deliver the magical molecule; Curcumin and its derivatives. J Control Release 2016; 225:1-30. [PMID: 26778694 DOI: 10.1016/j.jconrel.2016.01.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
Abstract
Curcumin and its derivatives; curcuminoids have been proven as potential remedies in different diseases. However, their delivery carries several challenges owing to their poor aqueous solubility, photodegradation, chemical instability, poor bioavailability and rapid metabolism. This review explores and criticizes the numerous attempts that were adopted through the years to entrap/encapsulate this valuable drug in nanocarriers aiming to reach its most appropriate and successful delivery system.
Collapse
Affiliation(s)
- Mina Mehanny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Ahmed S Geneidi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt.
| |
Collapse
|
34
|
Shirani A, Okuda DT, Stüve O. Therapeutic Advances and Future Prospects in Progressive Forms of Multiple Sclerosis. Neurotherapeutics 2016; 13:58-69. [PMID: 26729332 PMCID: PMC4720678 DOI: 10.1007/s13311-015-0409-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying effective therapies for the treatment of progressive forms of multiple sclerosis (MS) is a highly relevant priority and one of the greatest challenges for the global MS community. Better understanding of the mechanisms involved in progression of the disease, novel trial designs, drug repurposing strategies, and new models of collaboration may assist in identifying effective therapies. In this review, we discuss various therapies under study in phase II or III trials, including antioxidants (idebenone); tyrosine kinase inhibitors (masitinib); sphingosine receptor modulators (siponimod); monoclonal antibodies (anti-leucine-rich repeat and immunoglobulin-like domain containing neurite outgrowth inhibitor receptor-interacting protein-1, natalizumab, ocrelizumab, intrathecal rituximab); hematopoetic stem cell therapy; statins and other possible neuroprotective agents (amiloride, riluzole, fluoxetine, oxcarbazepine); lithium; phosphodiesterase inhibitors (ibudilast); hormone-based therapies (adrenocorticotrophic hormone and erythropoietin); T-cell receptor peptide vaccine (NeuroVax); autologous T-cell immunotherapy (Tcelna); MIS416 (a microparticulate immune response modifier); dopamine antagonists (domperidone); and nutritional supplements, including lipoic acid, biotin, and sunphenon epigallocatechin-3-gallate (green tea extract). Given ongoing and planned clinical trial initiatives, and the largest ever focus of the global research community on progressive MS, future prospects for developing targeted therapeutics aimed at reducing disability in progressive forms of MS appear promising.
Collapse
Affiliation(s)
- Afsaneh Shirani
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Darin T Okuda
- Department of Neurology and Neurotherapeutics, Clinical Center for Multiple Sclerosis, Multiple Sclerosis and Neuroimmunology Imaging Program, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Neurology Section, VA North Texas Health Care System, Medical Service, Dallas VA Medical Center, Dallas, TX, 75216, USA.
| |
Collapse
|
35
|
Hucke S, Eschborn M, Liebmann M, Herold M, Freise N, Engbers A, Ehling P, Meuth SG, Roth J, Kuhlmann T, Wiendl H, Klotz L. Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity. J Autoimmun 2015; 67:90-101. [PMID: 26584738 DOI: 10.1016/j.jaut.2015.11.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 10/23/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022]
Abstract
The increasing incidence in Multiple Sclerosis (MS) during the last decades in industrialized countries might be linked to a change in dietary habits. Nowadays, enhanced salt content is an important characteristic of Western diet and increased dietary salt (NaCl) intake promotes pathogenic T cell responses contributing to central nervous system (CNS) autoimmunity. Given the importance of macrophage responses for CNS disease propagation, we addressed the influence of salt consumption on macrophage responses in CNS autoimmunity. We observed that EAE-diseased mice receiving a NaCl-high diet showed strongly enhanced macrophage infiltration and activation within the CNS accompanied by disease aggravation during the effector phase of EAE. NaCl treatment of macrophages elicited a strong pro-inflammatory phenotype characterized by enhanced pro-inflammatory cytokine production, increased expression of immune-stimulatory molecules, and an antigen-independent boost of T cell proliferation. This NaCl-induced pro-inflammatory macrophage phenotype was accompanied by increased activation of NF-kB and MAPK signaling pathways. The pathogenic relevance of NaCl-conditioned macrophages is illustrated by the finding that transfer into EAE-diseased animals resulted in significant disease aggravation compared to untreated macrophages. Importantly, also in human monocytes, NaCl promoted a pro-inflammatory phenotype that enhanced human T cell proliferation. Taken together, high dietary salt intake promotes pro-inflammatory macrophages that aggravate CNS autoimmunity. Together with other studies, these results underline the need to further determine the relevance of increased dietary salt intake for MS disease severity.
Collapse
Affiliation(s)
| | | | - Marie Liebmann
- Department of Neurology, University of Muenster, Germany
| | - Martin Herold
- Department of Neurology, University of Muenster, Germany
| | - Nicole Freise
- Institute of Immunology, University of Muenster, Germany
| | - Annika Engbers
- Department of Neurology, University of Muenster, Germany
| | - Petra Ehling
- Department of Neurology, University of Muenster, Germany
| | - Sven G Meuth
- Department of Neurology, University of Muenster, Germany; Cells in Motion, Cluster of Excellence, University of Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University of Muenster, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Muenster, Germany; Cells in Motion, Cluster of Excellence, University of Münster, Germany
| | - Luisa Klotz
- Department of Neurology, University of Muenster, Germany.
| |
Collapse
|
36
|
Possible immunosuppressive effects of drug exposure and environmental and nutritional effects on infection and vaccination. Mediators Inflamm 2015; 2015:349176. [PMID: 25944981 PMCID: PMC4402171 DOI: 10.1155/2015/349176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022] Open
Abstract
A variety of drugs which are not primarily considered to be immunosuppressive agents have been
described to modulate the humoral and cellular immune response in humans or animals. Thereby
they may have an influence on the effectiveness and possible side effects of vaccines.
This mini review lists some of the different substance classes and also some of endogeneous, infectious,
nutritional, and environmental influences with suspected capability to interfere with immunizations.
Studies in most cases focused on substances with known immunosuppressive functions, but there is
growing evidence for immunomodulatory effects also of commonly used drugs with wide
distribution. In particular combinations of those antiproliferative and antiphlogistic side effects of
different substance classes have not been studied in detail but may substantially interfere with the
development of a functional humoral and cellular immune response. The drugs of importance
include antipyretics, anticoagulants, tranquilizers, and substances influencing lipid metabolism but
also commonly used drugs of abuse like alcohol or cannabinoids. Additional substances of environmental, nutritional, or microbiological origin may also play a role but their
combinatory/synergistic effects have been disregarded so far due to the lack of systematic data and
the complex study designs necessary to elucidate those complex epidemiologic questions.
Collapse
|