1
|
Liu K, Hu C, Yin W, Zhou L, Gu X, Zuo X. An in vivo and in vitro model on the protective effect of cilnidipine on contrast-induced nephropathy via regulation of apoptosis and CaMKⅡ/mPTP pathway. J Biochem Mol Toxicol 2023; 37:e23238. [PMID: 36207783 DOI: 10.1002/jbt.23238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2023]
Abstract
Contrast-induced nephropathy (CIN) is an acute kidney injury (AKI) observed after the administration of contrast media. Calcium channel blockers (CCBs) have been reported to exert a renal protective effect. This study aims to investigate the role of cilnidipine, a novel CCBs, on CIN by regulating the calcium/calmodulin-dependent protein kinase Ⅱ(CaMKⅡ)/mitochondrial permeability transition pore (mPTP) pathway. Here, iohexol, a representative contrast media, was used to establish CIN model. KN-93 (CaMKⅡ inhibitor) and atractyloside (mPTP opener) were administered in rats, and CaMKⅡ overexpression was used in Human proximal tubular epithelial cells. Markers of renal injury (serum creatinine, blood urea nitrogen, and urinary NAGL), hematoxylin-eosin stain, oxidative stress (ROS, superoxide dismutase [SOD], and malondialdehyde [MDA] levels), cell death (MTT and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling [TUNEL]), mitochondrial function (mPTP, mitochondrial membrane potential [MMP], and ATP) were assessed. Western blots were used to measure the expression levels of Bax/Bcl-2, caspase-3, CaMKⅡ/mPTP signaling pathways. Results showed that cilnidipine markedly improved kidney function, and alleviated tubular cell apoptosis, oxidative stress and mitochondrial damage induced by iohexol in vitro and in vivo. The underlying mechanism may be that cilnidipine relieved CaMKⅡ activation and mPTP opening induced by iohexol. All of these protective effects of cilnidipine were attenuated by CaMKⅡ overexpression and atractyloside (mPTP opener) pretreatment. Moreover, KN-93 (CaMKⅡ inhibitor) treatment showed a similar renal protective effect with cilnidipine, while the protective effect of cilnidipine on kidney in CIN rats was not further suppressed by KN-93 cotreatment. These in vitro and in vivo results point toward the fact that cilnidipine might be a novel therapeutic drug against contrast-induced nephrotoxicity in a CaMKⅡ-dependent manner.
Collapse
Affiliation(s)
- Kun Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Can Hu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Wenjun Yin
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Lingyun Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Xurui Gu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Xiaocong Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.,Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
2
|
Effects of L-/N-Type Calcium Channel Blockers on Angiotensin II-Renin Feedback in Hypertensive Patients. Int J Hypertens 2021; 2020:6653851. [PMID: 33489354 PMCID: PMC7803135 DOI: 10.1155/2020/6653851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
Objectives Cilnidipine, an L-/N-type calcium channel blocker (CCB), has unique organ-protective properties due to suppression of hyperactivity in the sympathetic nervous system and renin-angiotensin system (RAS). In this study, we hypothesized that cilnidipine might exert a renoprotective effect by suppressing the RAS. Methods A total of 25 hypertensive patients receiving a RAS inhibitor were randomly assigned to a cilnidipine (n = 12) or amlodipine (n = 13) group. The effects of cilnidipine on proteinuria and angiotensin II-renin feedback were assessed. Results After 6 months of treatment, both systolic and diastolic blood pressures were significantly reduced to a similar extent in both groups. The urine albumin-to-creatinine ratio was significantly lower in the cilnidipine group (p < 0.05) than in the amlodipine group. Amlodipine increased plasma angiotensin I and angiotensin II levels (p < 0.05), whereas cilnidipine did not. Interestingly, the cilnidipine group had a higher ratio of angiotensin-(1-7) (Ang-(1-7)) to angiotensin II in plasma than the amlodipine group (p < 0.05). Conclusions The L-/N-type CCB cilnidipine, but not amlodipine, decreased urinary albumin excretion in hypertensive patients. Cilnidipine also increased the ratio of Ang-(1-7) to angiotensin II in plasma, which might be one factor underlying its beneficial effects.
Collapse
|
3
|
Tajiri K, Guichard JB, Qi X, Xiong F, Naud P, Tardif JC, Costa AD, Aonuma K, Nattel S. An N-/L-type calcium channel blocker, cilnidipine, suppresses autonomic, electrical, and structural remodelling associated with atrial fibrillation. Cardiovasc Res 2020; 115:1975-1985. [PMID: 31119260 DOI: 10.1093/cvr/cvz136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/18/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022] Open
Abstract
AIMS Autonomic dysfunction can promote atrial fibrillation (AF) and results from AF-related remodelling. N-type Ca2+-channels (NTCCs) at sympathetic nerve terminals mediate Ca2+-entry that triggers neurotransmitter release. AF-associated remodelling plays an important role in AF pathophysiology but the effects of NTCC inhibition on such remodelling is unknown. Here, we investigated the ability of a clinically available Ca2+-channel blocker (CCB) with NTCC-blocking activity to suppress the arrhythmogenic effects of AF-promoting remodelling in dogs. METHODS AND RESULTS Mongrel dogs were kept in AF by right atrial tachypacing at 600 bpm. Four groups were studied under short-term AF (7 days): (i) Shams, instrumented but without tachypacing (n = 5); (ii) a placebo group, tachypaced while receiving placebo (n = 6); (iii) a control tachypacing group receiving nifedipine (10 mg orally twice-daily; n = 5), an L-type CCB; and (iv) a cilnidipine group, subjected to tachypacing and treatment with cilnidipine (10 mg orally twice-daily; n = 7), an N-/L-type CCB. With cilnidipine therapy, dogs with 1-week AF showed significantly reduced autonomic changes reflected by heart rate variability (decreases in RMSSD and pNN50) and plasma norepinephrine concentrations. In addition, cilnidipine-treated dogs had decreased extracellular matrix gene expression vs. nifedipine-dogs. As in previous work, atrial fibrosis had not yet developed after 1-week AF, so three additional groups were studied under longer-term AF (21 days): (i) Shams, instrumented without tachypacing or drug therapy (n = 8); (ii) a placebo group, tachypaced while receiving placebo (n = 8); (iii) a cilnidipine group, subjected to tachypacing during treatment with cilnidipine (10 mg twice-daily; n = 8). Cilnidipine attenuated 3-week AF effects on AF duration and atrial conduction, and suppressed AF-induced increases in fibrous-tissue content, decreases in connexin-43 expression and reductions in sodium-channel expression. CONCLUSIONS Cilnidipine, a commercially available NTCC-blocking drug, prevents AF-induced autonomic, electrical and structural remodelling, along with associated AF promotion.
Collapse
Affiliation(s)
- Kazuko Tajiri
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Belanger St E, Montreal, Quebec, Canada.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Jean-Baptiste Guichard
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Belanger St E, Montreal, Quebec, Canada.,Department of Cardiology, University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France
| | - Xiaoyan Qi
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Belanger St E, Montreal, Quebec, Canada
| | - Feng Xiong
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Belanger St E, Montreal, Quebec, Canada
| | - Patrice Naud
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Belanger St E, Montreal, Quebec, Canada
| | - Jean-Claude Tardif
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Belanger St E, Montreal, Quebec, Canada
| | - Antoine Da Costa
- Department of Cardiology, University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France
| | - Kazutaka Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Belanger St E, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Promenade Sir-William-Osler, Montreal, Quebec, Canada.,Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Hufelandstr. 55, Essen, Germany.,IHU LIRYC and Fondation Bordeaux Université, Avenue du Haut Lévêque, Pessac, Bordeaux, France
| |
Collapse
|
4
|
Zou XY, Yu Y, Lin S, Zhong L, Sun J, Zhang G, Zhu Y. Comprehensive miRNA Analysis of Human Umbilical Cord-Derived Mesenchymal Stromal Cells and Extracellular Vesicles. Kidney Blood Press Res 2018; 43:152-161. [PMID: 29444515 DOI: 10.1159/000487369] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/04/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Mesenchymal stromal cells (MSCs) participate in the tissue-specific repair of many different organs, especially the kidney. Their effects are primarily mediated by the paracrine release of factors including extracellular vesicles (EVs), which are composed of micro-vesicles and exosomes. The corresponding microRNAs (miRNAs) of EVs are considered important for their biological functions. METHODS MSCs were cultured from the human umbilical cord, and EVs were isolated from the medium. The expression levels of miRNAs in MSCs and EVs were determined by microarray analysis, and gene ontology (GO) was used to analyze the functions of their target genes. RESULTS MSCs and EVs had similar miRNA expression profiles, with the exception of a small number of selectively enriched miRNAs. GO analysis indicated that, unlike MSCs, the target genes of EV-enriched miRNAs were associated with calcium channel regulation and cell junction activities, which may indicate that MSC and EVs have different regulatory properties. Angiogenesis, oxidative stress, and inflammatory signaling pathways related to the repair of renal injury were also analyzed, and EV-enriched miRNAs targeted genes associated with oxidative stress, T cell activation, and Toll-like receptor signaling. The miRNAs enriched in both MSCs and EVs targeted different genes in signaling pathways regulating angiogenesis and chemokine release. CONCLUSION MSCs and their EVs shared similar miRNA component, and some selectively enriched miRNAs observed in MSCs and EVs may affect different target genes through some specific signaling pathways.
Collapse
Affiliation(s)
- Xiang-Yu Zou
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongjiang Yu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sihao Lin
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Zhong
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Sun
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingjian Zhu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Hwang Y, Yoon K, Cha B, Lee K, Jang HC, Min KW, Chung CH, Lee M. Reduction in microalbuminuria by calcium channel blockers in patients with type 2 diabetes mellitus and hypertension-A randomized, open-label, active-controlled, superiority, parallel-group clinical trial. Int J Clin Pract 2017; 71:e12987. [PMID: 28840637 PMCID: PMC5637912 DOI: 10.1111/ijcp.12987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND It has been suggested that renoprotection with calcium channel blockers (CCBs) may differ. This study aimed to compare the anti-proteinuric effect of different CCBs in patients with type 2 diabetes (T2D). METHODS A multicentre, randomized, open-label, active-controlled study was performed in seven centres in Korea. A total of 74 patients with T2D and microalbuminuria treated with renin-angiotensin system (RAS) blockers were randomized to a cilnidipine 10 mg treatment (n=38) or amlodipine 5 mg treatment (n=36). RESULTS Urine albumin to creatinine ratio (ACR) reduction was similar between the two groups at 12 weeks (-53.0±123.2 mg/g in cilnidipine group and -35.7±83.6 mg/g in amlodipine group, P=.29) or 24 weeks (-57.3±106.9 mg/g in cilnidipine group and -20.0±110.4 mg/g in amlodipine group, P=.24). In a subgroup analysis, cilnidipine treatment showed a larger ACR reduction than amlodipine treatment at 12 weeks (-84.7±106.8 mg/g in cilnidipine group and -9.5±79.2 mg/g in amlodipine group, P=.01) and 24 weeks (-84.0±111.7 mg/g in cilnidipine group and 14.6±119.4 mg/g in amlodipine group, P=.008), particularly in patients with a longer duration of diabetes more than 10 years. CONCLUSIONS Cilnidipine did not show any additional anti-albuminuric effect compared with amlodipine in patients with T2D and microalbuminuria treated with an RAS blocker. However, the anti-albuminuric effect of cilnidipine might differ according to the duration of diabetes.
Collapse
Affiliation(s)
- You‐Cheol Hwang
- Division of Endocrinology and MetabolismDepartment of MedicineKyung Hee University Hospital at GangdongKyung Hee University School of MedicineSeoulKorea
| | - Kun‐Ho Yoon
- Department of Endocrinology & MetabolismSeoul St. Mary's HospitalThe Catholic University of Korea School of MedicineSeoulKorea
| | - Bong‐Soo Cha
- Division of Endocrinology and MetabolismDepartment of Internal MedicineYonsei University College of MedicineSeoulKorea
| | - Kwan‐Woo Lee
- Department of Endocrinology and MetabolismAjou University School of MedicineGyunggi‐doKorea
| | - Hak Chul Jang
- Department of Internal MedicineSeoul National University Bundang HospitalGyeonggi‐doKorea
| | - Kyung Wan Min
- Department of Internal MedicineEulji General HospitalEulji University School of MedicineSeoulKorea
| | - Choon Hee Chung
- Department of Internal MedicineYonsei University Wonju College of MedicineWonjuKorea
| | - Moon‐Kyu Lee
- Division of Endocrinology and MetabolismDepartment of MedicineSamsung Medical CenterSungkyunkwan University School of MedicineSeoulKorea
| |
Collapse
|