1
|
Gadkar K, Feigelman J, Sukumaran S, Rodrigo MC, Staton T, Cai F, Bauer RN, Choy DF, Stokes CL, Scheerens H, Ramanujan S. Integrated systems modeling of severe asthma: Exploration of IL-33/ST2 antagonism. CPT Pharmacometrics Syst Pharmacol 2022; 11:1268-1277. [PMID: 35857704 PMCID: PMC9469696 DOI: 10.1002/psp4.12842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 01/12/2023] Open
Abstract
Asthma is a complex, heterogeneous disease with a high unmet medical need, despite therapies targeting a multitude of pathways. The ability to quantitatively integrate preclinical and clinical data on these pathways could aid in the development and testing of novel targets and therapeutics. In this work, we develop a computational model of asthma biology, including key cell types and mediators, and create a virtual population capturing clinical heterogeneity. The simulated responses to therapies targeting IL-13, IL-4Rα, IL-5, IgE, and TSLP demonstrate agreement with clinical endpoints and biomarkers of type 2 (T2) inflammation, including blood eosinophils, FEV1, IgE, and FeNO. We use the model to explore the potential benefit of targeting the IL-33 pathway with anti-IL-33 and anti-ST2. Model predictions are compared with data on blood eosinophils, FeNO, and FEV1 from recent anti-IL-33 and anti-ST2 trials and used to interpret trial results based on pathway biology and pharmacology. Results of sensitivity analyses on the contributions of IL-33 to the predicted biomarker changes suggest that anti-ST2 therapy reduces circulating blood eosinophil levels primarily through its impact on eosinophil progenitor maturation and IL-5-dependent survival, and induces changes in FeNO and FEV1 through its effect on immune cells involved in T2 cytokine production. Finally, we also investigate the impact of ST2 genetics on the conferred benefit of anti-ST2. The model includes representation of a wide array of biologic mechanisms and interventions that will provide mechanistic insight and support clinical program design for a wide range of novel therapies during drug development.
Collapse
Affiliation(s)
- Kapil Gadkar
- Genentech, Inc., South San Francisco, California, USA.,Denali Therapeutics, Inc., South San Francisco, California, USA
| | | | - Siddharth Sukumaran
- Genentech, Inc., South San Francisco, California, USA.,Janssen, Inc., Spring House, Pennsylvania, USA
| | - Manoj C Rodrigo
- Genentech, Inc., South San Francisco, California, USA.,Stryker, Inc., Fremont, California, USA
| | - Tracy Staton
- Genentech, Inc., South San Francisco, California, USA
| | - Fang Cai
- Genentech, Inc., South San Francisco, California, USA.,AbbVie, Inc., South San Francisco, California, USA
| | | | - David F Choy
- Genentech, Inc., South San Francisco, California, USA
| | | | | | | |
Collapse
|
2
|
Eosinophils as Drivers of Severe Eosinophilic Asthma: Endotypes or Plasticity? Int J Mol Sci 2021; 22:ijms221810150. [PMID: 34576313 PMCID: PMC8467265 DOI: 10.3390/ijms221810150] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023] Open
Abstract
Asthma is now recognized as a heterogeneous disease, encompassing different phenotypes driven by distinct pathophysiological mechanisms called endotypes. Common phenotypes of asthma, referred to as eosinophilic asthma, are characterized by the presence of eosinophilia. Eosinophils are usually considered invariant, terminally differentiated effector cells and have become a primary therapeutic target in severe eosinophilic asthma (SEA) and other eosinophil-associated diseases (EADs). Biological treatments that target eosinophils reveal an unexpectedly complex role of eosinophils in asthma, including in SEA, suggesting that "not all eosinophils are equal". In this review, we address our current understanding of the role of eosinophils in asthma with regard to asthma phenotypes and endotypes. We further address the possibility that different SEA phenotypes may involve differences in eosinophil biology. We discuss how these differences could arise through eosinophil "endotyping", viz. adaptations of eosinophil function imprinted during their development, or through tissue-induced plasticity, viz. local adaptations of eosinophil function through interaction with their lung tissue niches. In doing so, we also discuss opportunities, technical challenges, and open questions that, if addressed, might provide considerable benefits in guiding the choice of the most efficient precision therapies of SEA and, by extension, other EADs.
Collapse
|
3
|
van den Berg MPM, Nijboer-Brinksma S, Bos IST, van den Berge M, Lamb D, van Faassen M, Kema IP, Gosens R, Kistemaker LEM. The novel TRPA1 antagonist BI01305834 inhibits ovalbumin-induced bronchoconstriction in guinea pigs. Respir Res 2021; 22:48. [PMID: 33557843 PMCID: PMC7871391 DOI: 10.1186/s12931-021-01638-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Background Asthma is a chronic respiratory disease in which the nervous system plays a central role. Sensory nerve activation, amongst others via Transient Receptor Potential Ankyrin 1 (TRPA1) channels, contributes to asthma characteristics including cough, bronchoconstriction, mucus secretion, airway hyperresponsiveness (AHR) and inflammation. In the current study, we evaluated the efficacy of the novel TRPA1 antagonist BI01305834 against AHR and inflammation in guinea-pig models of asthma. Methods First, a pilot study was performed in a guinea-pig model of allergic asthma to find the optimal dose of BI01305834. Next, the effect of BI01305834 on (1) AHR to inhaled histamine after the early and late asthmatic reaction (EAR and LAR), (2) magnitude of EAR and LAR and (3) airway inflammation was assessed. Precision-cut lung slices and trachea strips were used to investigate the bronchoprotective and bronchodilating-effect of BI01305834. Statistical evaluation of differences of in vivo data was performed using a Mann–Whitney U test or One-way nonparametric Kruskal–Wallis ANOVA, for ex vivo data One- or Two-way ANOVA was used, all with Dunnett’s post-hoc test where appropriate. Results A dose of 1 mg/kg BI01305834 was selected based on AHR and exposure data in blood samples from the pilot study. In the subsequent study, 1 mg/kg BI01305834 inhibited AHR after the EAR, and the development of EAR and LAR elicited by ovalbumin in ovalbumin-sensitized guinea pigs. BI01305834 did not inhibit allergen-induced total and differential cells in the lavage fluid and interleukin-13 gene expression in lung homogenates. Furthermore, BI01305834 was able to inhibit allergen and histamine-induced airway narrowing in guinea-pig lung slices, without affecting histamine release, and reverse allergen-induced bronchoconstriction in guinea-pig trachea strips. Conclusions TRPA1 inhibition protects against AHR and the EAR and LAR in vivo and allergen and histamine-induced airway narrowing ex vivo, and reverses allergen-induced bronchoconstriction independently of inflammation. This effect was partially dependent upon histamine, suggesting a neuronal and possible non-neuronal role for TRPA1 in allergen-induced bronchoconstriction.
Collapse
Affiliation(s)
- Mariska P M van den Berg
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Susan Nijboer-Brinksma
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - David Lamb
- Immunology + Respiratory, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands. .,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
4
|
Emson C, Diver S, Chachi L, Megally A, Small C, Downie J, Parnes JR, Bowen K, Colice G, Brightling CE. CASCADE: a phase 2, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the effect of tezepelumab on airway inflammation in patients with uncontrolled asthma. Respir Res 2020; 21:265. [PMID: 33050900 PMCID: PMC7550845 DOI: 10.1186/s12931-020-01513-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients with severe, uncontrolled asthma, particularly those with a non-eosinophilic phenotype, have a great unmet need for new treatments that act on a broad range of inflammatory pathways in the airway. Tezepelumab is a human monoclonal antibody that blocks the activity of thymic stromal lymphopoietin, an epithelial cytokine. In the PATHWAY phase 2b study (NCT02054130), tezepelumab reduced exacerbations by up to 71% in adults with severe, uncontrolled asthma, irrespective of baseline eosinophilic inflammatory status. This article reports the design and objectives of the phase 2 CASCADE study. METHODS CASCADE is an ongoing exploratory, phase 2, randomized, double-blind, placebo-controlled, parallel-group study aiming to assess the anti-inflammatory effects of tezepelumab 210 mg administered subcutaneously every 4 weeks for 28 weeks in adults aged 18-75 years with uncontrolled, moderate-to-severe asthma. The primary endpoint is the change from baseline to week 28 in airway submucosal inflammatory cells (eosinophils, neutrophils, T cells and mast cells) from bronchoscopic biopsies. Epithelial molecular phenotyping, comprising the three-gene-mean technique, will be used to assess participants' type 2 (T2) status to enable evaluation of the anti-inflammatory effect of tezepelumab across the continuum of T2 activation. Other exploratory analyses include assessments of the impact of tezepelumab on airway remodelling, including reticular basement membrane thickening and airway epithelial integrity. At the onset of the COVID-19 pandemic, the protocol was amended to address the possibility that site visits would be limited. The amendment allowed for: at-home dosing of study drug by a healthcare professional, extension of the treatment period by up to 6 months so patients are able to attend an onsite visit to undergo the end-of-treatment bronchoscopy, and replacement of final follow-up visits with a virtual or telephone visit. DISCUSSION CASCADE aims to determine the mechanisms by which tezepelumab improves clinical asthma outcomes by evaluating the effect of tezepelumab on airway inflammatory cells and remodelling in patients with moderate-to-severe, uncontrolled asthma. An important aspect of this study is the evaluation of the anti-inflammatory effect of tezepelumab across patients with differing levels of eosinophilic and T2 inflammation. TRIAL REGISTRATION NCT03688074 (ClinicalTrials.gov). Registered 28 September 2018.
Collapse
Affiliation(s)
- Claire Emson
- Translational Science and Experimental Medicine, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA.
| | | | | | - Ayman Megally
- Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Cherrie Small
- Development Operations, BioPharmaceuticals R&D, AstraZeneca, Mississauga, Ontario, Canada
| | | | | | - Karin Bowen
- Biometrics, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Gene Colice
- Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | |
Collapse
|
5
|
Louis R, Bureau F, Desmet CJ. Advances toward precision medicine for asthma. Biochem Pharmacol 2020; 179:114081. [PMID: 32511986 DOI: 10.1016/j.bcp.2020.114081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Renaud Louis
- Laboratory of Pneumology, GIGA Institute, Belgium; Faculty of Medicine, Liège University, Liège, Belgium; Department of Pulmonary Medicine, Centre Hospitalier Universitaire, Liège, Belgium
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Belgium; Faculty of Veterinary Medicine, Liège University, Liège, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Christophe J Desmet
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Belgium; Faculty of Veterinary Medicine, Liège University, Liège, Belgium.
| |
Collapse
|
6
|
van den Berg MPM, Kurhade SH, Maarsingh H, Erceg S, Hulsbeek IR, Boekema PH, Kistemaker LEM, van Faassen M, Kema IP, Elsinga PH, Dömling A, Meurs H, Gosens R. Pharmacological Screening Identifies SHK242 and SHK277 as Novel Arginase Inhibitors with Efficacy against Allergen-Induced Airway Narrowing In Vitro and In Vivo. J Pharmacol Exp Ther 2020; 374:62-73. [PMID: 32269169 DOI: 10.1124/jpet.119.264341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/31/2020] [Indexed: 02/02/2023] Open
Abstract
Arginase is a potential target for asthma treatment. However, there are currently no arginase inhibitors available for clinical use. Here, a novel class of arginase inhibitors was synthesized, and their efficacy was pharmacologically evaluated. The reference compound 2(S)-amino-6-boronohexanoic acid (ABH) and >200 novel arginase inhibitors were tested for their ability to inhibit recombinant human arginase 1 and 2 in vitro. The most promising compounds were separated as enantiomers. Enantiomer pairs SHK242 and SHK243, and SHK277 and SHK278 were tested for functional efficacy by measuring their effect on allergen-induced airway narrowing in lung slices of ovalbumin-sensitized guinea pigs ex vivo. A guinea pig model of acute allergic asthma was used to examine the effect of the most efficacious enantiopure arginase inhibitors on allergen-induced airway hyper-responsiveness (AHR), early and late asthmatic reactions (EAR and LAR), and airway inflammation in vivo. The novel compounds were efficacious in inhibiting arginase 1 and 2 in vitro. The enantiopure SHK242 and SHK277 fully inhibited arginase activity, with IC50 values of 3.4 and 10.5 μM for arginase 1 and 2.9 and 4.0 µM for arginase 2, respectively. Treatment of slices with ABH or novel compounds resulted in decreased ovalbumin-induced airway narrowing compared with control, explained by increased local nitric oxide production in the airway. In vivo, ABH, SHK242, and SHK277 protected against allergen-induced EAR and LAR but not against AHR or lung inflammation. We have identified promising novel arginase inhibitors for the potential treatment of allergic asthma that were able to protect against allergen-induced early and late asthmatic reactions. SIGNIFICANCE STATEMENT: Arginase is a potential drug target for asthma treatment, but currently there are no arginase inhibitors available for clinical use. We have identified promising novel arginase inhibitors for the potential treatment of allergic asthma that were able to protect against allergen-induced early and late asthmatic reactions. Our new inhibitors show protective effects in reducing airway narrowing in response to allergens and reductions in the early and late asthmatic response.
Collapse
Affiliation(s)
- M P M van den Berg
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - S H Kurhade
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - H Maarsingh
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - S Erceg
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - I R Hulsbeek
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - P H Boekema
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - L E M Kistemaker
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - M van Faassen
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - I P Kema
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - P H Elsinga
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - A Dömling
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - H Meurs
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| | - R Gosens
- Departments of Molecular Pharmacology (M.P.M.v.d.B., S.E., I.R.H., P.H.B., L.E.M.K., H.Me., R.G.) and Drug Design (S.H.K., A.D.), Groningen Research Institute of Pharmacy, University of Groningen. Department of Laboratory Medicine, University Medical Center Groningen (M.v.F., I.P.K.), University of Groningen, Groningen, The Netherlands; Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida (H.Ma.); and Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (P.H.E.)
| |
Collapse
|
7
|
De Martinis M, Sirufo MM, Suppa M, Di Silvestre D, Ginaldi L. Sex and Gender Aspects for Patient Stratification in Allergy Prevention and Treatment. Int J Mol Sci 2020; 21:E1535. [PMID: 32102344 PMCID: PMC7073150 DOI: 10.3390/ijms21041535] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Allergies are rapidly worsening in recent decades, representing the most common immunological diseases. The mechanism of disorders such as asthma, rhinocongiuntivitis, urticaria, atopic dermatitis, food and drug allergies, and anaphylaxis still remain unclear and consequently treatments is mostly still symptomatic and aspecific while developments of new therapies are limited. A growing amount of data in the literature shows us how the prevalence of allergic diseases is different in both sexes and its changes over the course of life. Genes, hormones, environmental and immunological factors affect sex disparities associated with the development and control of allergic diseases, while they more rarely are considered and reported regarding their differences related to social, psychological, cultural, economic, and employment aspects. This review describes the available knowledge on the role of sex and gender in allergies in an attempt to improve the indispensable gender perspective whose potential is still underestimated while it represents a significant turning point in research and the clinic. It will offer insights to stimulate exploration of the many aspects still unknown in this relationship that could ameliorate the preventive, diagnostic, and therapeutic strategies in allergic diseases.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Mariano Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Daniela Di Silvestre
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (D.D.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| |
Collapse
|
8
|
Bourdin A, Adcock I, Berger P, Bonniaud P, Chanson P, Chenivesse C, de Blic J, Deschildre A, Devillier P, Devouassoux G, Didier A, Garcia G, Magnan A, Martinat Y, Perez T, Roche N, Taillé C, Val P, Chanez P. How can we minimise the use of regular oral corticosteroids in asthma? Eur Respir Rev 2020; 29:29/155/190085. [PMID: 32024721 PMCID: PMC9488989 DOI: 10.1183/16000617.0085-2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Options to achieve oral corticosteroid (OCS)-sparing have been triggering increasing interest since the 1970s because of the side-effects of OCSs, and this has now become achievable with biologics. The Société de Pneumologie de Langue Française workshop on OCSs aimed to conduct a comprehensive review of the basics for OCS use in asthma and issue key research questions. Pharmacology and definition of regular use were reviewed by the first working group (WG1). WG2 examined whether regular OCS use is associated with T2 endotype. WG3 reported on the specificities of the paediatric area. Key “research statement proposals” were suggested by WG4. It was found that the benefits of regular OCS use in asthma outside episodes of exacerbations are poorly supported by the existing evidence. However, complete OCS elimination couldn’t be achieved in any available studies for all patients and the panel felt that it was too early to conclude that regular OCS use could be declared criminal. Repeated or prolonged need for OCS beyond 1 g·year−1 should indicate the need for referral to secondary/tertiary care. A strategic sequential plan aiming at reducing overall exposure to OCS in severe asthma was then held as a conclusion of the workshop. A yearly cumulative OCS dose above 1 g should be considered unacceptable in severe asthma and should make the case for referralhttp://bit.ly/34GAYLX
Collapse
Affiliation(s)
- Arnaud Bourdin
- Service des Maladies Respirartoires, CHU Arnaud de Villeneuve, University of Montpellier, Montpellier, France
| | - Ian Adcock
- Thoracic Medicine, Imperial College London, London, UK
| | - Patrick Berger
- Centre de Recherche Cardiothoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
| | | | | | - Cécile Chenivesse
- Centre Hospitalier Regional Universitaire de Lille, Lille, France.,Universite de Lille II, Lille, France
| | - Jacques de Blic
- Pediatric Respiratory Diseases, Necker-Enfants Malades Hospitals, Paris, France
| | | | | | - Gilles Devouassoux
- Pneumologie, Hopital de la Croix-Rousse, HCL, Lyon, France.,Université Claude Bernard lyon1 et INSERM U851, Lyon, France
| | | | | | | | | | - Thierry Perez
- Respiratory, Hopital Calmette, CHRU Lille, Lille, France.,Lung function, Hôpital Calmette, CHRU Lille, Lille, France
| | | | - Camille Taillé
- Service de Pneumologie, Hopital Bichat - Claude-Bernard, Paris, France
| | | | | |
Collapse
|
9
|
Huang Y, Liu H, Zuo L, Tao A. Key genes and co-expression modules involved in asthma pathogenesis. PeerJ 2020; 8:e8456. [PMID: 32117613 PMCID: PMC7003696 DOI: 10.7717/peerj.8456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022] Open
Abstract
Machine learning and weighted gene co-expression network analysis (WGCNA) have been widely used due to its well-known accuracy in the biological field. However, due to the nature of a gene’s multiple functions, it is challenging to locate the exact genes involved in complex diseases such as asthma. In this study, we combined machine learning and WGCNA in order to analyze the gene expression data of asthma for better understanding of associated pathogenesis. Specifically, the role of machine learning is assigned to screen out the key genes in the asthma development, while the role of WGCNA is to set up gene co-expression network. Our results indicated that hormone secretion regulation, airway remodeling, and negative immune regulation, were all regulated by critical gene modules associated with pathogenesis of asthma progression. Overall, the method employed in this study helped identify key genes in asthma and their roles in the asthma pathogenesis.
Collapse
Affiliation(s)
- Yuyi Huang
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Liu
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Zuo
- The Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.,College of Arts and Sciences, University of Maine Presque Isle Campus, Presque Isle, ME, USA
| | - Ailin Tao
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Menzella F, Galeone C, Ruggiero P, Bagnasco D, Catellani C, Facciolongo N. Biologics and Bronchial Thermoplasty for severe refractory asthma treatment: From eligibility criteria to real practice. A cross-sectional study. Pulm Pharmacol Ther 2019; 60:101874. [PMID: 31857207 DOI: 10.1016/j.pupt.2019.101874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
The increasing knowledge on immuno-inflammatory pathways allowed the development of new therapeutic options in the field of severe refractory asthma (SRA). It is therefore very important to accurately identify phenotypes and endotypes of patients potentially eligible for innovative treatments. The aim of this study was to describe a cohort of patients affected by SRA referring to the Pneumology Unit of Azienda USL di Reggio Emilia/IRCCS in Reggio Emilia, Italy. It is an observational cross-sectional study, investigating the proportion of subjects with eligibility criteria for biological treatments (omalizumab, mepolizumab, benralizumab) and non-pharmacological treatment (bronchial thermoplasty, BT). We enrolled 137 patients with SRA referring to the centre from June 1st, 2017 to June 30th, 2019. The results of this study showed that 125 (91%) of patients were eligible for at least one biologic and 94 (69%) were eligible for BT. Only 6 (4%) of patients had no criteria for any available SRA treatments. Among biologics, there were only 11 (8%) patients resulting in overlap between omalizumab, mepolizumab and benralizumab, and 22 (16%) overlap of patients when BT was included. Considering eligibility criteria for BT, only 6 (4%) patients had inclusion criteria for BT, instead in real life 28% of patients were treated with BT. The major comorbidities were: bronchiectasis, chronic rhinosinusitis with nasal polyps (CRSwNP), gastro-esophageal reflux disease (GERD), and eosinophilic granulomatosis with polyangiitis (EGPA). The prevalence of bronchiectasis was much higher in the mepolizumab (45%) and benralizumab (43%) groups than in omalizumab (1%) and BT (7%), p < 0,001; CRSwNP and GERD were equally present and EGPA was only present in the mepolizumab group. Overall, our population was eligible for biologicals in almost all cases, and a significant percentage of patients showed the presence of an overlap of allergic and eosinophilic endotypes. This implies the possibility of different therapeutic options and reiterates the need for a correct characterization of patients. This study confirmed how the identification of inflammatory endotypes and phenotypes represent a key role in the selection of the right therapy for the right patient.
Collapse
Affiliation(s)
- Francesco Menzella
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia- IRCCS, 42123, Reggio Emilia, Italy.
| | - Carla Galeone
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia- IRCCS, 42123, Reggio Emilia, Italy
| | - Patrizia Ruggiero
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia- IRCCS, 42123, Reggio Emilia, Italy
| | - Diego Bagnasco
- Allergy & Respiratory Diseases, University of Genoa, 16132, Genoa, Italy
| | - Chiara Catellani
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia- IRCCS, 42123, Reggio Emilia, Italy
| | - Nicola Facciolongo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia- IRCCS, 42123, Reggio Emilia, Italy
| |
Collapse
|
11
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
12
|
Scavone C, di Mauro G, Mascolo A, Berrino L, Rossi F, Capuano A. The New Paradigms in Clinical Research: From Early Access Programs to the Novel Therapeutic Approaches for Unmet Medical Needs. Front Pharmacol 2019; 10:111. [PMID: 30814951 PMCID: PMC6381027 DOI: 10.3389/fphar.2019.00111] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
Despite several innovative medicines gaining worldwide approval in recent years, there are still therapeutic areas for which unsatisfied therapeutic needs persist. For example, high unmet clinical need was observed in patients diagnosed with type 2 diabetes mellitus and hemophilia, as well as in specific age groups, such as the pediatric population. Given the urgent need to improve the therapy of clinical conditions for which unmet clinical need is established, clinical testing, and approval of new medicines are increasingly being carried out through accelerated authorization procedures. Starting from 1992, the Food and Drug Administration and the European Medicines Agency have supported the so-called Early Access Programs (EAPs). Such procedures, which can be based on incomplete clinical data, allow an accelerated marketing authorization for innovative medicines. The growth in pharmaceutical research has also resulted in the development of novel therapeutic approaches, such as biotech drugs and advanced therapy medicinal products, including new monoclonal antibodies for the treatment of asthma, antisense oligonucleotides for the treatment of Duchenne muscular dystrophy and spinal muscular atrophy, and new anticancer drugs that act on genetic biomarkers rather than any specific type of cancer. Even though EAPs and novel therapeutic approaches have brought huge benefits for public health, their implementation is limited by several challenges, including the high risk of safety-related label changes for medicines authorized through the accelerated procedure, the high costs, and the reimbursement and access concerns. In this context, regulatory agencies should provide the best conditions for the implementation of the described new tools.
Collapse
Affiliation(s)
- Cristina Scavone
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gabriella di Mauro
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annamaria Mascolo
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Liberato Berrino
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Rossi
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
13
|
Raftis EJ, Delday MI, Cowie P, McCluskey SM, Singh MD, Ettorre A, Mulder IE. Bifidobacterium breve MRx0004 protects against airway inflammation in a severe asthma model by suppressing both neutrophil and eosinophil lung infiltration. Sci Rep 2018; 8:12024. [PMID: 30104645 PMCID: PMC6089914 DOI: 10.1038/s41598-018-30448-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Asthma is a phenotypically heterogeneous disease. In severe asthma, airway inflammation can be predominantly eosinophilic, neutrophilic, or mixed. Only a limited number of drug candidates are in development to address this unmet clinical need. Live biotherapeutics derived from the gut microbiota are a promising new therapeutic area. MRx0004 is a commensal Bifidobacterium breve strain isolated from the microbiota of a healthy human. The strain was tested prophylactically and therapeutically by oral gavage in a house dust mite mouse model of severe asthma. A strong reduction of neutrophil and eosinophil infiltration was observed in lung bronchoalveolar lavage fluid following MRx0004 treatment. Peribronchiolar and perivascular immunopathology was also reduced. MRx0004 increased lung CD4+CD44+ cells and CD4+FoxP3+ cells and decreased activated CD11b+ dendritic cells. Cytokine analysis of lung tissue revealed reductions of pro-inflammatory cytokines and chemokines involved in neutrophil migration. In comparison, anti-IL-17 antibody treatment effectively reduced neutrophilic infiltration and increased CD4+FoxP3+ cells, but it induced lung eosinophilia and did not decrease histopathology scores. We have demonstrated that MRx0004, a microbiota-derived bacterial strain, can reduce both neutrophilic and eosinophilic infiltration in a mouse model of severe asthma. This novel therapeutic is a promising next-generation drug for management of severe asthma.
Collapse
Affiliation(s)
- Emma J Raftis
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Margaret I Delday
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Philip Cowie
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Seánín M McCluskey
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Mark D Singh
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Anna Ettorre
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom
| | - Imke E Mulder
- 4D Pharma Research Ltd, Life Science Innovation Building, Cornhill Road, Aberdeen, AB25 2ZS, United Kingdom.
| |
Collapse
|
14
|
Galeone C, Scelfo C, Bertolini F, Caminati M, Ruggiero P, Facciolongo N, Menzella F. Precision Medicine in Targeted Therapies for Severe Asthma: Is There Any Place for "Omics" Technology? BIOMED RESEARCH INTERNATIONAL 2018; 2018:4617565. [PMID: 29992143 PMCID: PMC6016214 DOI: 10.1155/2018/4617565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/28/2022]
Abstract
According to the current guidelines, severe asthma still represents a controversial topic in terms of definition and management. The introduction of novel biological therapies as a treatment option for severe asthmatic patients paved the way to a personalized approach, which aims at matching the appropriate therapy with the different asthma phenotypes. Traditional asthma phenotypes have been decomposing by an increasing number of asthma subclasses based on functional and physiopathological mechanisms. This is possible thanks to the development and application of different omics technologies. The new asthma classification patterns, particularly concerning severe asthma, include an increasing number of endotypes that have been identified using new omics technologies. The identification of endotypes provides new opportunities for the management of asthma symptoms, but this implies that biological therapies which target inflammatory mediators in the frame of specific patterns of inflammation should be developed. However, the pathway leading to a precision approach in asthma treatment is still at its beginning. The aim of this review is providing a synthetic overview of the current asthma management, with a particular focus on severe asthma, in the light of phenotype and endotype approach, and summarizing the current knowledge about "omics" science and their therapeutic relevance in the field of bronchial asthma.
Collapse
Affiliation(s)
- Carla Galeone
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Chiara Scelfo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Francesca Bertolini
- Department of Bio and Health Informatics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marco Caminati
- Asthma Center and Allergy Unit, Verona University Hospital, Piazzale L.A. Scuro, 37134 Verona, Italy
| | - Patrizia Ruggiero
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Nicola Facciolongo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Francesco Menzella
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia-IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
15
|
Barnig C, Frossard N, Levy BD. Towards targeting resolution pathways of airway inflammation in asthma. Pharmacol Ther 2018; 186:98-113. [PMID: 29352860 DOI: 10.1016/j.pharmthera.2018.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asthma is a chronic disorder characterized by persistent inflammation of the airways with mucosal infiltration of eosinophils, T lymphocytes, and mast cells, and release of proinflammatory cytokines and lipid mediators. The natural resolution of airway inflammation is now recognized as an active host response, with highly coordinated cellular events under the control of endogenous pro-resolving mediators that enable the restoration of tissue homeostasis. Lead members of proresolving mediators are enzymatically derived from essential polyunsaturated fatty acids, including arachidonic acid-derived lipoxins, eicosapentaenoic acid-derived E-series resolvins, and docosahexaenoic acid-derived D-series resolvins, protectins, and maresins. Functionally, these specialized pro-resolving mediators can limit further leukocyte recruitment, induce granulocyte apoptosis, and enhance efferocytosis by macrophages. They can also switch macrophages from classical to alternatively activated cells, promote the return of non-apoptotic cells to lymphatics and blood vessels, and help initiate tissue repair and healing. In this review, we highlight cellular and molecular mechanisms for successful resolution of inflammation, and describe the main specialized pro-resolving mediators that drive these processes. Furthermore, we report recent data suggesting that the pathobiology of severe asthma may result in part from impaired resolution of airway inflammation, including defects in the biosynthesis of these specialized pro-resolving mediators. Finally, we discuss resolution-based therapeutic perspectives.
Collapse
Affiliation(s)
- Cindy Barnig
- Department of Chest Disease, Strasbourg University Hospital, 1, place de l'Hôpital, 67091 Strasbourg, France; EA 3072, University of Strasbourg, France.
| | - Nelly Frossard
- UMR 7200 CNRS/Université de Strasbourg, Laboratoire d'Innovation Thérapeutique and LabEx MEDALIS, Faculté de Pharmacie, Strasbourg, France
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|