1
|
Qiu Y, Wang X, Ren J, Zhang Y, Bai C, Hu S, Wang T, Chen J, Wang C, He P, Dong Y. Role of letermovir therapeutic drug monitoring for cytomegalovirus prophylaxis in allogeneic hematopoietic stem cell transplantation recipients: a prospective study. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04977-7. [PMID: 39520621 DOI: 10.1007/s10096-024-04977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE The role of therapeutic drug monitoring (TDM) in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients receiving letermovir has not yet been clarified. This study is to explore letermovir trough concentration (Cmin) correlation with its clinical efficacy and adverse events, and factors affecting its plasma concentrations. METHODS A prospective, non-interventional study was performed in allo-HSCT recipients receiving letermovir prophylaxis. Plasma concentrations were determined using high-performance liquid chromatography-tandem mass spectrometry. Data analysis was performed using logistic regression, linear regression, and classification and regression tree (CART) models. RESULTS 701 trough concentrations from 71 recipients were included, uncovering pronounced intra- and inter-individual variability in letermovir Cmin. During 24-week follow-up, CMV infection incidence was 16.4%. A significant correlation was identified between letermovir Cmin and its clinical efficacy, and the CART model showed an increased risk of CMV infection when Cmin ≤ 2731 ng/mL. However, no clear correlation was found between Cmin and adverse events. Gastrointestinal graft-versus-host disease, cyclosporine Cmin, gender, and concomitant medications, including mycophenolate mofetil, ondansetron, caspofungin, and methylprednisolone, may impact letermovir Cmin. Additionally, coadministration with cyclosporine injection significantly decreased median letermovir Cmin compared with cyclosporine capsules (2311 vs. 3386 ng/mL). Moreover, with the extension of time post-transplant, trough concentrations of both cyclosporine and letermovir significantly decreased. CONCLUSION TDM for letermovir may be beneficial in allo-HSCT recipients considering the variability in letermovir Cmin and its correlation with clinical efficacy. Moreover, drug interactions and the effects of changes in cyclosporine dosage forms or concentrations require careful monitoring for their effect on letermovir Cmin.
Collapse
Affiliation(s)
- Yulan Qiu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoning Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Juan Ren
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yijing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chuqi Bai
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Sasa Hu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Kaci H, Dombi Á, Gömbös P, Szabó A, Bakos É, Özvegy-Laczka C, Poór M. Interaction of mycotoxins zearalenone, α-zearalenol, and β-zearalenol with cytochrome P450 (CYP1A2, 2C9, 2C19, 2D6, and 3A4) enzymes and organic anion transporting polypeptides (OATP1A2, OATP1B1, OATP1B3, and OATP2B1). Toxicol In Vitro 2024; 96:105789. [PMID: 38341109 DOI: 10.1016/j.tiv.2024.105789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Zearalenone (ZEN) is a mycoestrogen produced by Fusarium fungi. ZEN is a frequent contaminant in cereal-based products, representing significant health threat. The major reduced metabolites of ZEN are α-zearalenol (α-ZEL) and β-zearalenol (β-ZEL). Since the toxicokinetic interactions of ZEN/ZELs with cytochrome P450 enzymes (CYPs) and organic anion transporting polypeptides (OATPs) have been barely characterized, we examined these interactions applying in vitro models. ZEN and ZELs were relatively strong inhibitors of CYP3A4 and moderate inhibitors of CYP1A2 and CYP2C9. Both CYP1A2 and CYP3A4 decreased ZEN and β-ZEL concentrations in depletion assays, while only CYP1A2 reduced α-ZEL levels. OATPs tested were strongly or moderately inhibited by ZEN and ZELs; however, these mycotoxins did not show higher cytotoxicity in OATP-overexpressing cells. Our results help the deeper understanding of the toxicokinetic/pharmacokinetic interactions of ZEN, α-ZEL, and β-ZEL.
Collapse
Affiliation(s)
- Hana Kaci
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2, Budapest H-1117, Hungary; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. stny. 1/C, Budapest H-1117, Hungary
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary
| | - Patrik Gömbös
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, Gödöllő H-2103, Hungary
| | - András Szabó
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, Gödöllő H-2103, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| | - Éva Bakos
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2, Budapest H-1117, Hungary
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok krt. 2, Budapest H-1117, Hungary
| | - Miklós Poór
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, Pécs H-7624, Hungary; Molecular Medicine Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| |
Collapse
|
3
|
Laddha AP, Dzielak L, Lewis C, Xue R, Manautou JE. Impact of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) on the expression and function of hepatobiliary transporters: A comprehensive mechanistic review. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167037. [PMID: 38295624 DOI: 10.1016/j.bbadis.2024.167037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 02/02/2024]
Abstract
The liver plays a central role in the biotransformation and disposition of endogenous molecules and xenobiotics. In addition to drug-metabolizing enzymes, transporter proteins are key determinants of drug hepatic clearance. Hepatic transporters are transmembrane proteins that facilitate the movement of chemicals between sinusoidal blood and hepatocytes. Other drug transporters translocate molecules from hepatocytes into bile canaliculi for biliary excretion. The formers are known as basolateral, while the latter are known as canalicular transporters. Also, these transporters are classified into two super-families, the solute carrier transporter (SLC) and the adenosine triphosphate (ATP)-binding cassette (ABC) transporter. The expression and function of transporters involve complex regulatory mechanisms, which are contributing factors to interindividual variability in drug pharmacokinetics and disposition. A considerable number of liver diseases are known to alter the expression and function of drug transporters. Among them, non-alcoholic fatty liver disease (NAFLD) is a chronic condition with a rapidly increasing incidence worldwide. NAFLD, recently reclassified as metabolic dysfunction-associated steatotic liver disease (MASLD), is a disease continuum that includes steatosis with or without mild inflammation (NASH), and potentially neuroinflammatory pathology. NASH is additionally characterized by the presence of hepatocellular injury. During NAFLD and NASH, drug transporters exhibit altered expression and function, leading to altered drug pharmacokinetics and pharmacodynamics, thus increasing the risk of adverse drug reactions. The purpose of the present review is to provide comprehensive mechanistic information on the expression and function of hepatic transporters under fatty liver conditions and hence, the impact on the pharmacokinetic profiles of certain drugs from the available pre-clinical and clinical literature.
Collapse
Affiliation(s)
- Ankit P Laddha
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Lindsey Dzielak
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA; Non-Clinical Drug Safety (NDS) Department, Boehringer Ingelheim Pharmaceutical Co., Ridgefield, CT, USA
| | - Cedric Lewis
- Non-Clinical Drug Safety (NDS) Department, Boehringer Ingelheim Pharmaceutical Co., Ridgefield, CT, USA
| | - Raymond Xue
- Charles River Laboratories, Inc., Shrewsbury, MA, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
4
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
5
|
Jang Y, Kang J, Hwang S, Chung JY, Cho JY. Quantification of OATP1B1 endogenous metabolites coproporphyrin I and III in human urine. Transl Clin Pharmacol 2023; 31:139-147. [PMID: 37810628 PMCID: PMC10551744 DOI: 10.12793/tcp.2023.31.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 10/10/2023] Open
Abstract
Coproporphyrin (CP)-I and CP-III are the markers of organic anion-transporting polypeptides' (OATPs) activities, and they are porphyrin metabolites that originate from heme synthesis. Furthermore, CP-I and CP-III, which are OATP1B endogenous metabolites, have gradually attracted the attention of scientists and researchers in recent years. Previous studies have also observed CP-I and CP-III levels as clinical biomarkers for predicting OATP1B inhibition in drug-drug interaction studies. To establish an accurate ultra-high performance liquid chromatography-mass spectrometry method for the quantitation of CP-I and CP-III, we reviewed previous methodological publications and applied them to a clinical pharmacology study using a human urine matrix. We used 13.25 M formic acid as a working solution for internal standards (CP-I 15N4 and CP-III d8) to avoid isobaric interference. The calibration curve showed good linearity in the range of 1-100 ng/mL, with a correlation coefficient (R2) higher than 0.996 in each validation batch. Both the between-run and within-run assays achieved good precision and accuracy, and we found that both CP-I and CP-III were stable in the pre-study validation. The method exhibited suitable dilution integrity, allowing for the re-analysis of samples with concentrations exceeding the upper limit of quantification through dilution. Overall, the application of the described method in a clinical study revealed that it can be utilized effectively to monitor drug-drug interactions mediated by OATP1B.
Collapse
Affiliation(s)
- Yeonseo Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jihyun Kang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sejung Hwang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
6
|
Couto M, Andrade N, Magro F, Martel F. Taurocholate uptake by Caco-2 cells is inhibited by pro-inflammatory cytokines and butyrate. Cytokine 2023; 169:156307. [PMID: 37487380 DOI: 10.1016/j.cyto.2023.156307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic and life-threating inflammatory diseases of the gastrointestinal tract. The active intestinal absorption of bile salts is reduced in IBD, resulting in higher luminal concentrations of these agents that contribute to the pathophysiology of IBD-associated diarrhea. Butyrate (BT) is a short-chain fatty acid produced by colonic bacterial fermentation of dietary fibers. BT utilization is impaired in the intestinal inflamed mucosa of IBD patients. Our aim was to investigate the link between IBD and bile acid absorption, by testing the effect of the pro-inflammatory cytokines TNF-α and IFN-γ and of BT upon 3H-TC uptake by Caco-2 cells. The proinflammatory cytokines TNF-α and IFN-γ inhibit Na+-independent, non-ASBT (sodium-dependent bile acid transporter)-mediated 3H-TC uptake by Caco-2 cells. The inhibitory effect of these cytokines on Na+-independent 3H-TC uptake is PI3K- and JAK/STAT1-mediated. These two compounds upregulate ASBT expression levels, but no corresponding increase in Na+-dependent component of 3H-TC is observed. Moreover, BT was also found to inhibit 3H-TC uptake and showed an additive effect with IFN-γ in reducing 3H-TC uptake. We conclude that an interaction between BT and bile acids appears to exist in IBD, which may participate in the link between diet, microbiota and IBD.
Collapse
Affiliation(s)
- Mafalda Couto
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Gastroenterology Unit, Department of Medicine, Centro Hospitalar S. João, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.
| |
Collapse
|
7
|
Sato K, Mizutani A, Muranaka Y, Yao J, Kobayashi M, Yamazaki K, Nishii R, Nishi K, Nakanishi T, Tamai I, Kawai K. Biological Distribution after Oral Administration of Radioiodine-Labeled Acetaminophen to Estimate Gastrointestinal Absorption Function via OATPs, OATs, and/or MRPs. Pharmaceutics 2023; 15:pharmaceutics15020497. [PMID: 36839818 PMCID: PMC9964641 DOI: 10.3390/pharmaceutics15020497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
We evaluated the whole-body distribution of orally-administered radioiodine-125 labeled acetaminophen (125I-AP) to estimate gastrointestinal absorption of anionic drugs. 125I-AP was added to human embryonic kidney (HEK)293 and Flp293 cells expressing human organic anion transporting polypeptide (OATP)1B1/3, OATP2B1, organic anion transporter (OAT)1/2/3, or carnitine/organic cation transporter (OCTN)2, with and without bromosulfalein (OATP and multidrug resistance-associated protein (MRP) inhibitor) and probenecid (OAT and MRP inhibitor). The biological distribution in mice was determined by oral administration of 125I-AP with and without bromosulfalein and by intravenous administration of 125I-AP. The uptake of 125I-AP was significantly higher in HEK293/OATP1B1, OATP1B3, OATP2B1, OAT1, and OAT2 cells than that in mock cells. Bromosulfalein and probenecid inhibited OATP- and OAT-mediated uptake, respectively. Moreover, 125I-AP was easily excreted in the urine when administered intravenously. The accumulation of 125I-AP was significantly lower in the blood and urinary bladder of mice receiving oral administration of both 125I-AP and bromosulfalein than those receiving only 125I-AP, but significantly higher in the small intestine due to inhibition of OATPs and/or MRPs. This study indicates that whole-body distribution after oral 125I-AP administration can be used to estimate gastrointestinal absorption in the small intestine via OATPs, OATs, and/or MRPs by measuring radioactivity in the urinary bladder.
Collapse
Affiliation(s)
- Kakeru Sato
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Asuka Mizutani
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Yuka Muranaka
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Jianwei Yao
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Masato Kobayashi
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
- Correspondence: ; Tel.: +81-76-265-2500
| | - Kana Yamazaki
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage 263-8555, Japan
| | - Ryuichi Nishii
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage 263-8555, Japan
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki 370-0033, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Keiichi Kawai
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji 910-1193, Japan
| |
Collapse
|
8
|
Bi Y, Wang X, Ding H, He F, Han L, Zhang Y. Transporter-mediated Natural Product-Drug Interactions. PLANTA MEDICA 2023; 89:119-133. [PMID: 35304735 DOI: 10.1055/a-1803-1744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing use of natural products in clinical practice has raised great concerns about the potential natural product-drug interactions (NDIs). Drug transporters mediate the transmembrane passage of a broad range of drugs, and thus are important determinants for drug pharmacokinetics and pharmacodynamics. Generally, transporters can be divided into ATP binding cassette (ABC) family and solute carrier (SLC) family. Numerous natural products have been identified as inhibitors, substrates, inducers, and/or activators of drug transporters. This review article aims to provide a comprehensive summary of the recent progress on the research of NDIs, focusing on the main drug transporters, such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporter 1 and 3 (OAT1/OAT3), organic anion-transporting polypeptide 1B1 and 1B3 (OATP1B1/OATP1B3), organic cation transporter 2 (OCT2), multidrug and toxin extrusion protein 1 and 2-K (MATE1/MATE2-K). Additionally, the challenges and strategies of studying NDIs are also discussed.
Collapse
Affiliation(s)
- Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| | - Xue Wang
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, USA
| | - Hui Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, P. R. China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
9
|
Han H, Akiyoshi T, Morita T, Kataoka H, Katayama K, Yajima K, Imaoka A, Ohtani H. Comparison of the transport kinetics of fexofenadine and its pH dependency among OATP1A2 genetic variants. Drug Metab Pharmacokinet 2022; 47:100470. [DOI: 10.1016/j.dmpk.2022.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/06/2022] [Accepted: 08/06/2022] [Indexed: 11/03/2022]
|
10
|
Factors Influencing Gallstone Formation: A Review of the Literature. Biomolecules 2022; 12:biom12040550. [PMID: 35454138 PMCID: PMC9026518 DOI: 10.3390/biom12040550] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Gallstone disease is a common pathology of the digestive system with nearly a 10–20% incidence rate among adults. The mainstay of treatment is cholecystectomy, which is commonly associated with physical pain and may also seriously affect a patient’s quality of life. Clinical research suggests that cholelithiasis is closely related to the age, gender, body mass index, and other basic physical characteristics of patients. Clinical research further suggests that the occurrence of cholelithiasis is related to obesity, diabetes, non-alcoholic fatty liver, and other diseases. For this reason, we reviewed the following: genetic factors; excessive liver cholesterol secretion (causing cholesterol supersaturation in gallbladder bile); accelerated growth of cholesterol crystals and solid cholesterol crystals; gallbladder motility impairment; and cardiovascular factors. Herein, we summarize and analyze the causes and mechanisms of cholelithiasis, discuss its correlation with the pathogenesis of related diseases, and discuss possible mechanisms.
Collapse
|
11
|
Stouras I, Papaioannou TG, Tsioufis K, Eliopoulos AG, Sanoudou D. The Challenge and Importance of Integrating Drug-Nutrient-Genome Interactions in Personalized Cardiovascular Healthcare. J Pers Med 2022; 12:jpm12040513. [PMID: 35455629 PMCID: PMC9033008 DOI: 10.3390/jpm12040513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 12/30/2022] Open
Abstract
Despite the rich armamentarium of available drugs against different forms of cardiovascular disease (CVD), major challenges persist in their safe and effective use. These include high rates of adverse drug reactions, increased heterogeneity in patient responses, suboptimal drug efficacy, and in some cases limited compliance. Dietary elements (including food, beverages, and supplements) can modulate drug absorption, distribution, metabolism, excretion, and action, with significant implications for drug efficacy and safety. Genetic variation can further modulate the response to diet, to a drug, and to the interaction of the two. These interactions represent a largely unexplored territory that holds considerable promise in the field of personalized medicine in CVD. Herein, we highlight examples of clinically relevant drug–nutrient–genome interactions, map the challenges faced to date, and discuss their future perspectives in personalized cardiovascular healthcare in light of the rapid technological advances.
Collapse
Affiliation(s)
- Ioannis Stouras
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Theodore G. Papaioannou
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.G.P.); (K.T.)
| | - Konstantinos Tsioufis
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.G.P.); (K.T.)
| | - Aristides G. Eliopoulos
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Department of Biology, Medical School, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
12
|
Morita T, Akiyoshi T, Tsuchitani T, Kataoka H, Araki N, Yajima K, Katayama K, Imaoka A, Ohtani H. Inhibitory Effects of Cranberry Juice and Its Components on Intestinal OATP1A2 and OATP2B1: Identification of Avicularin as a Novel Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3310-3320. [PMID: 35230114 DOI: 10.1021/acs.jafc.2c00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic anion-transporting polypeptide (OATP) 1A2 and OATP2B1 mediate the intestinal absorption of drugs. This study aimed to identify fruit juices or fruit juice components that inhibit OATPs and assess the risk of associated food-drug interactions. Inhibitory potency was assessed by examining the uptake of [3H]estrone 3-sulfate and [3H]fexofenadine into HEK293 cells expressing OATP1A2 or OATP2B1. In vivo experiments were conducted using mice to evaluate the effects of cranberry juice on the pharmacokinetics of orally administered fexofenadine. Of eight examined fruit juices, cranberry juice inhibited the functions of both OATPs most potently. Avicularin, a component of cranberry juice, was identified as a novel OATP inhibitor. It exhibited IC50 values of 9.0 and 37 μM for the inhibition of estrone 3-sulfate uptake mediated by OATP1A2 and OATP2B1, respectively. A pharmacokinetic experiment revealed that fexofenadine exposure was significantly reduced (by 50%) by cranberry juice. Cranberry juice may cause drug interactions with OATP substrates.
Collapse
Affiliation(s)
- Tokio Morita
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Takeshi Akiyoshi
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Toshiaki Tsuchitani
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Hiroki Kataoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Naoya Araki
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kodai Yajima
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuhiro Katayama
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Ayuko Imaoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Hisakazu Ohtani
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
13
|
Koto Y, Kawahara H, Kurata K, Yoshikiyo K, Hashiguchi A, Okano K, Sugiura N, Shimizu K, Shimizu H. Microcystin-LR incorporated into colonic cells through probenecid-sensitive transporters leads to upregulated MCP-1 expression induced by JNK activation. Toxicol Rep 2022; 9:937-944. [PMID: 35875256 PMCID: PMC9301606 DOI: 10.1016/j.toxrep.2022.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Harmful algae that inhabit eutrophic lakes produce cyanotoxic microcystins. Therefore, the relationship between chronic exposure to microcystins via drinking water and organ disorders has been investigated. The present study aimed to determine whether representative microcystin-LR is involved in increased monocyte chemoattractant protein-1 (MCP-1) expression in rat colonic mucosa and enterocyte-like differentiated Caco-2 cells. The mRNA expression of MCP-1 was increased in the colons of rats administered with microcystin-LR, compared with controls. Furthermore, mRNA levels of MCP-1 expression significantly and positively correlated with those of Adhesion G Protein-Coupled Receptor E1 (ADGRE1; EMR1; F4/80), an indicator of macrophage infiltration, suggesting that increased MCP-1 expression induced by microcystin-LR promotes macrophage infiltration into the colon. Microcystin-LR increased MCP-1 expression in enterocyte-like differentiated Caco-2 cells, by activating c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase (ERK) or p38. The findings of transporter inhibitors indicated that microcystin-LR is incorporated into cells via ATP Binding Cassette (ABC) or solute carrier (SLC) transporters other than the organic anion transporting polypeptides (OATPs)1B1, 1B3, 2B1, and 1A2, which this leads to increased MCP-1 expression in the colon through activating JNK. Thus, increased MCP-1 expression induced by microcystin-LR might be a trigger for initiating tumorigenesis with inflammation in the colon because increased MCP-1 expression induces inflammation associated with macrophage infiltration into the colon, and chronic inflammation is associated with the initiation of tumorigenesis. Microcystin-LR upregulated colonic MCP-1 expression in rats. Increased MCP-1 expression correlated with accumulated macrophages in rat colon. Microcystin-LR evoked MCP-1 expression by activating JNK in cultured colon cells. Rifampicin was not involved in microcystin-LR-induced JNK activation. Probenecid suppressed JNK/MCP-1 pathway activation induced by microcystin-LR.
Collapse
Affiliation(s)
- Yoshihito Koto
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
| | - Hideaki Kawahara
- Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
| | - Koichi Kurata
- Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
| | - Keisuke Yoshikiyo
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
- Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
| | - Ayumi Hashiguchi
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
- Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
- Institute of Environmental Systems Science, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
- Estuary Research Center, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
| | - Kunihiro Okano
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Norio Sugiura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life Sciences, Toyo University, Gunma 374-0193, Japan
| | - Hidehisa Shimizu
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
- Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
- Estuary Research Center, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
- Raman Project Center for Medical and Biological Applications, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
- Project Center for Fortification of Local Specialty Food Functions, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan
- Correspondence to: Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
14
|
Lei K, Yuan M, Zhou T, Ye Q, Zeng B, Zhou Q, Wei A, Guo L. Research progress in the application of bile acid-drug conjugates: A "trojan horse" strategy. Steroids 2021; 173:108879. [PMID: 34181976 DOI: 10.1016/j.steroids.2021.108879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Bile acid transporters are highly expressed in intestinal cells and hepatocytes, and they determine the uptake of drugs in cells by modulating cellular entry and exit. In order to improve the oral bioavailability of drugs and investigate the potential application prospects of drugs used to target cancer, numerous studies have adopted these transporters to identify prodrug strategies. Through the connection of covalent bonds between drugs and bile acids, the resulting bile acid-drug conjugates continue to be recognized as similar to natural unmodified bile acid and is translocated by the transporter. The present mini-review provides a brief summary of recent progress of the application of bile acid-drug conjugates based primarily on ASBT, NTCP, and OATP, with the hope of contributing to subsequent research.
Collapse
Affiliation(s)
- Kelu Lei
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Yuan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Ye
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bin Zeng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Zhou
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ailing Wei
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Guo
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
15
|
Martinec O, Biel C, de Graaf IAM, Huliciak M, de Jong KP, Staud F, Cecka F, Olinga P, Vokral I, Cerveny L. Rifampicin Induces Gene, Protein, and Activity of P-Glycoprotein (ABCB1) in Human Precision-Cut Intestinal Slices. Front Pharmacol 2021; 12:684156. [PMID: 34177592 PMCID: PMC8220149 DOI: 10.3389/fphar.2021.684156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
P-glycoprotein (ABCB1), an ATP-binding cassette efflux transporter, limits intestinal absorption of its substrates and is a common site of drug–drug interactions. Drug-mediated induction of intestinal ABCB1 is a clinically relevant phenomenon associated with significantly decreased drug bioavailability. Currently, there are no well-established human models for evaluating its induction, so drug regulatory authorities provide no recommendations for in vitro/ex vivo testing drugs’ ABCB1-inducing activity. Human precision-cut intestinal slices (hPCISs) contain cells in their natural environment and express physiological levels of nuclear factors required for ABCB1 induction. We found that hPCISs incubated in William’s Medium E for 48 h maintained intact morphology, ATP content, and ABCB1 efflux activity. Here, we asked whether rifampicin (a model ligand of pregnane X receptor, PXR), at 30 μM, induces functional expression of ABCB1 in hPCISs over 24- and 48-h incubation (the time to allow complete induction to occur). Rifampicin significantly increased gene expression, protein levels, and efflux activity of ABCB1. Moreover, we described dynamic changes in ABCB1 transcript levels in hPCISs over 48 h incubation. We also observed that peaks of induction are achieved among donors at different times, and the extent of ABCB1 gene induction is proportional to PXR mRNA levels in the intestine. In conclusion, we showed that hPCISs incubated in conditions comparable to those used for inhibition studies can be used to evaluate drugs’ ABCB1-inducing potency in the human intestine. Thus, hPCISs may be valuable experimental tools that can be prospectively used in complex experimental evaluation of drug–drug interactions.
Collapse
Affiliation(s)
- Ondrej Martinec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia.,Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Carin Biel
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Groningen, Netherlands
| | - Inge A M de Graaf
- Graduate School of Science, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Martin Huliciak
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Koert P de Jong
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Filip Cecka
- Department of Surgery, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Groningen, Netherlands
| | - Ivan Vokral
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| |
Collapse
|
16
|
Wenzel C, Drozdzik M, Oswald S. Organic Cation Transporter 1 an Intestinal Uptake Transporter: Fact or Fiction? Front Pharmacol 2021; 12:648388. [PMID: 33935750 PMCID: PMC8080103 DOI: 10.3389/fphar.2021.648388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/01/2021] [Indexed: 01/11/2023] Open
Abstract
Intestinal transporter proteins are known to affect the pharmacokinetics and in turn the efficacy and safety of many orally administered drugs in a clinically relevant manner. This knowledge is especially well-established for intestinal ATP-binding cassette transporters such as P-gp and BCRP. In contrast to this, information about intestinal uptake carriers is much more limited although many hydrophilic or ionic drugs are not expected to undergo passive diffusion but probably require specific uptake transporters. A transporter which is controversially discussed with respect to its expression, localization and function in the human intestine is the organic cation transporter 1 (OCT1). This review article provides an up-to-date summary on the available data from expression analysis as well as functional studies in vitro, animal findings and clinical observations. The current evidence suggests that OCT1 is expressed in the human intestine in small amounts (on gene and protein levels), while its cellular localization in the apical or basolateral membrane of the enterocytes remains to be finally defined, but functional data point to a secretory function of the transporter at the basolateral membrane. Thus, OCT1 should not be considered as a classical uptake transporter in the intestine but rather as an intestinal elimination pathway for cationic compounds from the systemic circulation.
Collapse
Affiliation(s)
- Christoph Wenzel
- Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | - Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
17
|
Intestinal membrane transporter-mediated approaches to improve oral drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00515-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Lee W, Ha JM, Sugiyama Y. Post-translational regulation of the major drug transporters in the families of organic anion transporters and organic anion-transporting polypeptides. J Biol Chem 2020; 295:17349-17364. [PMID: 33051208 PMCID: PMC7863896 DOI: 10.1074/jbc.rev120.009132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
The organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs) belong to the solute carrier (SLC) transporter superfamily and play important roles in handling various endogenous and exogenous compounds of anionic charge. The OATs and OATPs are often implicated in drug therapy by impacting the pharmacokinetics of clinically important drugs and, thereby, drug exposure in the target organs or cells. Various mechanisms (e.g. genetic, environmental, and disease-related factors, drug-drug interactions, and food-drug interactions) can lead to variations in the expression and activity of the anion drug-transporting proteins of OATs and OATPs, possibly impacting the therapeutic outcomes. Previous investigations mainly focused on the regulation at the transcriptional level and drug-drug interactions as competing substrates or inhibitors. Recently, evidence has accumulated that cellular trafficking, post-translational modification, and degradation mechanisms serve as another important layer for the mechanisms underlying the variations in the OATs and OATPs. This review will provide a brief overview of the major OATs and OATPs implicated in drug therapy and summarize recent progress in our understanding of the post-translational modifications, in particular ubiquitination and degradation pathways of the individual OATs and OATPs implicated in drug therapy.
Collapse
Affiliation(s)
- Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Jeong-Min Ha
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Kanagawa, Japan
| |
Collapse
|
19
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
20
|
Morita T, Akiyoshi T, Sato R, Uekusa Y, Katayama K, Yajima K, Imaoka A, Sugimoto Y, Kiuchi F, Ohtani H. Citrus Fruit-Derived Flavanone Glycoside Narirutin is a Novel Potent Inhibitor of Organic Anion-Transporting Polypeptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14182-14191. [PMID: 33210911 DOI: 10.1021/acs.jafc.0c06132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic anion-transporting polypeptides (OATPs) 1A2 and OATP2B1 are expressed in the small intestine and are involved in drug absorption. We identified narirutin, which is present in grapefruit juice, as a novel OATP inhibitor. The citrus fruit jabara also contains high levels of narirutin; therefore, we investigated the inhibitory potency of jabara juice against OATPs. The inhibitory effects of various related compounds on the transport activity of OATPs were evaluated using OATP-expressing HEK293 cells. The IC50 values of narirutin for OATP1A2- and OATP2B1-mediated transport were 22.6 and 18.2 μM, respectively. Other flavanone derivatives from grapefruit juice also inhibited OATP1A2/OATP2B1-mediated transport (order of inhibitory potency: naringenin > narirutin > naringin). Five percent jabara juice significantly inhibited OATP1A2- and OATP2B1-mediated transport by 67 ± 11 and 81 ± 5.5%, respectively (p < 0.05). Based on their inhibitory potency and levels in grapefruit juice, the inhibition of OATPs by grapefruit juice is attributable to both naringin and narirutin. Citrus × jabara, which contains narirutin, potently inhibits OATP-mediated transport.
Collapse
Affiliation(s)
- Tokio Morita
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Takeshi Akiyoshi
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Ryo Sato
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yoshinori Uekusa
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuhiro Katayama
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
| | - Kodai Yajima
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Ayuko Imaoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yoshikazu Sugimoto
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Fumiyuki Kiuchi
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Hisakazu Ohtani
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
21
|
Rosa B. Equine Drug Transporters: A Mini-Review and Veterinary Perspective. Pharmaceutics 2020; 12:pharmaceutics12111064. [PMID: 33171593 PMCID: PMC7695171 DOI: 10.3390/pharmaceutics12111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Xenobiotic transport proteins play an important role in determining drug disposition and pharmacokinetics. Our understanding of the role of these important proteins in humans and pre-clinical animal species has increased substantially over the past few decades, and has had an important impact on human medicine; however, veterinary medicine has not benefitted from the same quantity of research into drug transporters in species of veterinary interest. Differences in transporter expression cause difficulties in extrapolation of drug pharmacokinetic parameters between species, and lack of knowledge of species-specific transporter distribution and function can lead to drug–drug interactions and adverse effects. Horses are one species in which little is known about drug transport and transporter protein expression. The purpose of this mini-review is to stimulate interest in equine drug transport proteins and comparative transporter physiology.
Collapse
Affiliation(s)
- Brielle Rosa
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, TRW 2D01, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
22
|
Scutellarin is Highly Likely to be Responsible for Drug-Drug Interactions Mediated by Hepatic Organic Anion-Transporting Polypeptide1B3. Pharm Res 2020; 37:232. [PMID: 33123800 PMCID: PMC7595966 DOI: 10.1007/s11095-020-02950-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/07/2020] [Indexed: 11/03/2022]
Abstract
Purpose Scutellarin, a flavonoid derived from the plant Erigeron breviscapus, is currently widely used to treat cerebrovascular diseases, liver-related diseases, and hyperlipidemia in china and other East Asian countries. This study was to investigate the effect of scutellarin on the uptake of rosuvastatin in HEK293T cells expressing human organic anion transporting polypeptide 1B3 (hOATP1B3) and rat OATP1B2 (rOATP1B2), respectively, and the effect of scutellarin on the pharmacokinetics of rosuvastatin in rats. Methods The newly established HEK293T cells expressing hOATP1B3 and rOATP1B2 were used to examine the effects of scutellarin and positive controls on in vitro rosuvastatin transport. After co-feeding with scutellarin, the rosuvastatin area under the plasma concentration-time curve (AUC0–24h), the peak plasma drug concentration (Cmax), elimination half-life (t1/2), time to reach Cmax (tmax), clearance (CL) and apparent clearance (CL/F) of rosuvastatin were determined in rats. Results Scutellarin inhibited hOATP1B3- and rOATP1B2-mediated rosuvastatin uptake (IC50: 45.54 ± 6.67 μM and 27.58 ± 3.97 μM) in vitro in a concentration-dependent manner. After co-feeding with scutellarin, the AUC0–24h and Cmax of rosuvastatin in rats increased to 27.4% and 37.7%, respectively. The t1/2 and tmax of rosuvastatin showed no significant change. Moreover, scutellarin caused 29.2% and 28.1% decrease in the CL and CL/F of rosuvastatin. Conclusion Scutellarin may inhibit the hOATP1B3- and rOATP1B2-mediated transport of rosuvastatin in vitro, and exerts a moderate inhibitory effect on the pharmacokinetics of rosuvastatin in rats. Scutellarin is highly likely to participate in drug-drug interactions, as mediated by OATP1B3 in humans.
Collapse
|
23
|
Cheung KWK, van Groen BD, Burckart GJ, Zhang L, de Wildt SN, Huang SM. Incorporating Ontogeny in Physiologically Based Pharmacokinetic Modeling to Improve Pediatric Drug Development: What We Know About Developmental Changes in Membrane Transporters. J Clin Pharmacol 2020; 59 Suppl 1:S56-S69. [PMID: 31502692 DOI: 10.1002/jcph.1489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
Developmental changes in the biological processes involved in the disposition of drugs, such as membrane transporter expression and activity, may alter the drug exposure and clearance in pediatric patients. Physiologically based pharmacokinetic (PBPK) models take these age-dependent changes into account and may be used to predict drug exposure in children. As a result, this mechanistic-based tool has increasingly been applied to improve pediatric drug development. Under the Prescription Drug User Fee Act VI, the US Food and Drug Administration has committed to facilitate the advancement of PBPK modeling in the drug application review process. Yet, significant knowledge gaps on developmental biology still exist, which must be addressed to increase the confidence of prediction. Recently, more data on ontogeny of transporters have emerged and supplied a missing piece of the puzzle. This article highlights the recent findings on the ontogeny of transporters specifically in the intestine, liver, and kidney. It also provides a case study that illustrates the utility of incorporating this information in predicting drug exposure in children using a PBPK approach. Collaborative work has greatly improved the understanding of the interplay between developmental physiology and drug disposition. Such efforts will continue to be needed to address the remaining knowledge gaps to enhance the application of PBPK modeling in drug development for children.
Collapse
Affiliation(s)
- Kit Wun Kathy Cheung
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.,Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA.,Oak Ridge Institute for Science and Education (ORISE Fellow), Oak Ridge, TN, USA
| | - Bianca D van Groen
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Saskia N de Wildt
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pharmacology and Toxicology, Radboud University, Nijmegen, the Netherlands
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
24
|
Arnold YE, Kalia YN. Using Ex Vivo Porcine Jejunum to Identify Membrane Transporter Substrates: A Screening Tool for Early-Stage Drug Development. Biomedicines 2020; 8:biomedicines8090340. [PMID: 32927779 PMCID: PMC7555276 DOI: 10.3390/biomedicines8090340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Robust, predictive ex vivo/in vitro models to study intestinal drug absorption by passive and active transport mechanisms are scarce. Membrane transporters can significantly impact drug uptake and transporter-mediated drug–drug interactions can play a pivotal role in determining the drug safety profile. Here, the presence and activity of seven clinically relevant apical/basolateral drug transporters found in human jejunum were tested using ex vivo porcine intestine in a Ussing chamber system. Experiments using known substrates of peptide transporter 1 (PEPT1), organic anion transporting polypeptide (OATP2B1), organic cation transporter 1 (OCT1), P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multi drug resistance-associated protein 2 and 3 (MRP2 and MRP3), in the absence and presence of potent inhibitors, showed that there was a statistically significant change in apparent intestinal permeability Papp,pig (cm/s) in the presence of the corresponding inhibitor. For MRP2, a transporter reportedly present at relatively low concentration, although Papp,pig did not significantly change in the presence of the inhibitor, substrate deposition (QDEP) in the intestinal tissue was significantly increased. The activity of the seven transport proteins was successfully demonstrated and the results provided insight into their apical/basolateral localization. In conclusion, the results suggest that studies using the porcine intestine/Ussing chamber system, which could easily be integrated into the drug development process, might enable the early-stage identification of new molecular entities that are substrates of membrane transporters.
Collapse
Affiliation(s)
- Yvonne E. Arnold
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire, 1 rue Michel Servet, 1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-(0)22-379-3355
| |
Collapse
|
25
|
Jinhua W, Ying Z, Yuhua L. PXR-ABC drug transporters/CYP-mediated ursolic acid transport and metabolism in vitro and vivo. Arch Pharm (Weinheim) 2020; 353:e2000082. [PMID: 32628284 DOI: 10.1002/ardp.202000082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
The transporting kinetics and metabolic kinetics of ursolic acid were studied in transgenic cell models. Then, the pharmacokinetics features of ursolic acid and the expression of ATP-binding cassette transporters (ABC transporter) and cytochrome P450 (CYP) enzymes in tissues after pregnane X receptor (PXR) activation by 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN) were investigated in rats. After silencing of PXR in Caco2-siRNA-PXR cells, there was a decrease in the protein abundance of P-glycoprotein, breast cancer-resistant protein, multidrug resistance-associated protein 2 (MRP2), and CYP2C9. The apparent permeability (PDR) values of 10, 20, and 50 µM ursolic acid in Caco2 cells were 2.19 ± 0.44, 1.40 ± 0.17, and 1.25 ± 0.07, respectively, whereas in Caco2-siRNA-PXR cells, they were 1.85 ± 0.36, 1.24 ± 0.11, and 1.19 ± 0.04, respectively. PXR-RXRα would significantly activate ABC transporter expression in Caco2 cells. Compared with Caco2 cells, when the concentrations of ursolic acid were 10, 20, and 50 µM, the PDR values increased in Caco2-PXR-RXRα cells after PXR activation: 1.60 ± 0.31 versus 1.97 ± 0.21, 1.46 ± 0.08 versus 2.01 ± 0.19, and 1.32 ± 0.26 versus 2.09 ± 0.22, respectively. Simultaneously, PXR-RXRα would activate the expression of CYP2C9; metabolic kinetics of ursolic acid in CYP metabolizing enzyme lysate of Caco2 cells and Caco2-PXR-RXR cells was studied and it was found that the Km values were 81.99 ± 44.32 and 60.05 ± 29.62 µg/ml, and Vmax values were 3.77 ± 0.86 and 3.41 ± 0.96 µg · ml-1 · min-1 , respectively. However, in human CYP metabolizing recombinase, we found that both CYP2C9 and CYP34A were involved in the metabolism of ursolic acid. Vm and Km values for CYP3A4 and CYP2C9 were 3.57 ± 1.12 µg · ml-1 · min-1 and 81.71 ± 18.38 µg/ml, 3.85 ± 1.46 µg · ml-1 · min-1 and 62.18 ± 14.56 µg/ml, respectively. As a strong agonist for mouse pxr, PCN could significantly affect pharmacokinetics of ursolic acid in rats, and it showed discrepant effects on messenger RNA expression of cyp and transporters in tissues.
Collapse
Affiliation(s)
- Wen Jinhua
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhou Ying
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Yuhua
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Davies M, Peramuhendige P, King L, Golding M, Kotian A, Penney M, Shah S, Manevski N. Evaluation of In Vitro Models for Assessment of Human Intestinal Metabolism in Drug Discovery. Drug Metab Dispos 2020; 48:1169-1182. [DOI: 10.1124/dmd.120.000111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
|
27
|
Human variability in influx and efflux transporters in relation to uncertainty factors for chemical risk assessment. Food Chem Toxicol 2020; 140:111305. [DOI: 10.1016/j.fct.2020.111305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
|
28
|
Interactions between Oroxylin A with the solute carrier transporters and ATP-binding cassette transporters: Drug transporters profile for this flavonoid. Chem Biol Interact 2020; 324:109097. [PMID: 32305507 DOI: 10.1016/j.cbi.2020.109097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/15/2020] [Accepted: 04/05/2020] [Indexed: 12/31/2022]
Abstract
Oroxylin A is a flavonoid monomer extracted from Scutellaria baicalensis Georgi with neuroprotective, anti-tumor activity and many other biological functions. However, the interaction between Oroxylin A and the drug transporters has not been clearly reported. The purpose of this study is to investigate the interaction between Oroxylin A and the solute carrier transporters (OATP1B1, OATP1B3, OAT1, OAT3, OCT2, MATE1, and MATE2K), and ATP-binding cassette transporters (BCRP, MDR1). The HEK293 cell lines (HEK293-OATP1B1, HEK293-OATP1B3, HEK293-OAT1, HEK293-OAT3, HEK293-OCT2, HEK293-MATE1, and HEK293-MATE2K) that stably expressing previous listed human-derived transporters were employed to evaluate the solute carrier transporters. Vesicles expressing human BCRP and MDR1 transporters was employed to research ATP-binding cassette transporters. Our work suggested that Oroxylin A was a substrate of OATP1B1, OATP1B3, but not a substrate of the other transporters in the concentration range of our study. Oroxylin A shows concentration-dependent inhibition of OATP1B1, OAT1, OAT3 and BCRP transportation with the half-inhibitory concentration (IC50) of 7.03, 0.961, 0.112 μM, and 0.477 μM, respectively. No inhibitory effects on the transport activities of other transporters were observed for Oroxylin A. Drug transporters profile of Oroxylin A was first confirmed by our work, which provides important information for its pharmacokinetics, pharmacodynamics, and drug-drug interactions studies.
Collapse
|
29
|
Yin Y, Deng H, Wu K, He B, Dai W, Zhang H, Fu J, Le Y, Wang X, Zhang Q. A multiaspect study on transcytosis mechanism of sorafenib nanogranules engineered by high-gravity antisolvent precipitation. J Control Release 2020; 323:600-612. [PMID: 32278828 DOI: 10.1016/j.jconrel.2020.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Nanotechniques show significant merits in terms of improving the oral bioavailability of poorly water-soluble drugs. However, the mechanisms behind are not clear yet. For instance, what is the contribution of free drug released during nanogranule transcytosis, as well as the impact of drug transporter and chylomicron? To address these issues, sorafenib nanogranules (SFN-NGs) were prepared as model by the high-gravity antisolvent precipitation method which approaches to practical mass production. Then, a multiaspect study on the transcytosis mechanism of SFN-NGs was conducted in Caco-2 cells and rats, including paracellular transport, endocytosis, intracellular trafficking, transmembrane pathway, as well as the involvement of transporter and chylomicron. Pharmacokinetics in rats demonstrated an obvious superiority of SFN-NGs in oral absorption and lymphatic transfer over SFN crude drugs. Different from free SFN, SFN-NGs could be internalized in cells in early stage by caveolin/lipid raft or clathrin induced endocytosis, and transported intactly through the polarized cell monolayers. While in late stage, transporter-mediated transport of free SFN began to play a vital role on the transmembrane of SFN-NGs. No paracellular transport of SFN-NGs was found, and the trafficking of SFN-NGs was affected by the pathway of ER-Golgi complexes. Surprisedly, the intracellular free SFN was the main source of transmembrane for SFN-NGs, which was entrapped into chylomicrons and then secreted into the extracellular space. Generally, the findings in current study may shed light on the absorption mechanism of oral nanoformulations.
Collapse
Affiliation(s)
- Yajie Yin
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kai Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jijun Fu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Yuan Le
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| |
Collapse
|
30
|
pH-dependent transport kinetics of the human organic anion-transporting polypeptide 1A2. Drug Metab Pharmacokinet 2020; 35:220-227. [DOI: 10.1016/j.dmpk.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 01/10/2023]
|
31
|
Rodrigues AD, Lai Y, Shen H, Varma MV, Rowland A, Oswald S. Induction of Human Intestinal and Hepatic Organic Anion Transporting Polypeptides: Where Is the Evidence for Its Relevance in Drug-Drug Interactions? Drug Metab Dispos 2019; 48:205-216. [DOI: 10.1124/dmd.119.089615] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
|
32
|
Quantitative mass spectrometry-based proteomics in the era of model-informed drug development: Applications in translational pharmacology and recommendations for best practice. Pharmacol Ther 2019; 203:107397. [DOI: 10.1016/j.pharmthera.2019.107397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
|
33
|
Medwid S, Li MM, Knauer MJ, Lin K, Mansell SE, Schmerk CL, Zhu C, Griffin KE, Yousif MD, Dresser GK, Schwarz UI, Kim RB, Tirona RG. Fexofenadine and Rosuvastatin Pharmacokinetics in Mice with Targeted Disruption of Organic Anion Transporting Polypeptide 2B1. Drug Metab Dispos 2019; 47:832-842. [DOI: 10.1124/dmd.119.087619] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/20/2019] [Indexed: 01/06/2023] Open
|