1
|
Khan ST, Ahuja N, Taïb S, Vohra S, Cleaver O, Nunes SS. Single-Cell Meta-Analysis Uncovers the Pancreatic Endothelial Cell Transcriptomic Signature and Reveals a Key Role for NKX2-3 in PLVAP Expression. Arterioscler Thromb Vasc Biol 2024. [PMID: 39445426 DOI: 10.1161/atvbaha.124.321781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND The pancreatic vasculature displays tissue-specific physiological and functional adaptations that support rapid insulin response by β-cells. However, the digestive enzymes have made it difficult to characterize pancreatic endothelial cells (ECs), resulting in the poor understanding of pancreatic EC specialization. METHODS Available single-nuclei/single-cell RNA-sequencing data sets were mined to identify pancreatic EC-enriched signature genes and to develop an integrated atlas of human pancreatic ECs. We validated the findings using independent single-nuclei/single-cell RNA-sequencing data, bulk RNA-sequencing data of isolated ECs, spatial transcriptomics data, immunofluorescence, and RNAScope of selected markers. The TF (transcription factor) NKX2-3 was expressed in HUVECs via gene transfection, and the expression of pancreatic EC-enriched signature genes was assessed via RT-qPCR. RESULTS We defined a pancreatic EC-enriched gene signature conserved across species and developmental stages that included genes involved in ECM (extracellular matrix) composition (COL15A1 and COL4A1), permeability and barrier function (PLVAP, EHD4, CAVIN3, HSPG2, ROBO4, HEG1, and CLEC14A), and key signaling pathways (S1P, TGF-β [transforming growth factor-β], RHO-RAC GTPase, PI3k-AKT, and PDGF [platelet-derived growth factor]). The integrated atlas revealed the vascular hierarchy within the pancreas. We identified and validated a specialized islet capillary subpopulation characterized by genes involved in permeability (PLVAP and EHD4), immune-modulation (FABP5, HLA-C, and B2M), ECM composition (SPARC and SPARCL1), IGF (insulin-like growth factor) signaling (IGFBP7), and membrane transport (SLCO2A1, SLC2A3, and CD320). Importantly, we identified NKX2-3 as a key TF enriched in pancreatic ECs. DNA-binding motif analysis found NKX2-3 motifs in ≈40% of the signature genes. Induction of NKX2-3 in HUVECs promoted the expression of the islet capillary EC-enriched genes PLVAP and SPARCL1. CONCLUSIONS We defined a validated transcriptomic signature of pancreatic ECs and uncovered their intratissue transcriptomic heterogeneity. We showed that NKX2-3 acts upstream of PLVAP and provided a single-cell online resource that can be further explored by the community: https://vasconcelos.shinyapps.io/pancreatic_endothelial/.
Collapse
Affiliation(s)
- Safwat T Khan
- Institute of Biomedical Engineering, University of Toronto, ON, Canada. (S.T.K., S.S.N.)
- Toronto General Hospital Research Institute, University Health Network, ON, Canada. (S.T.K., S.T., S.V., S.S.N.)
| | - Neha Ahuja
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (N.A., O.C.)
| | - Sonia Taïb
- Toronto General Hospital Research Institute, University Health Network, ON, Canada. (S.T.K., S.T., S.V., S.S.N.)
| | - Shabana Vohra
- Toronto General Hospital Research Institute, University Health Network, ON, Canada. (S.T.K., S.T., S.V., S.S.N.)
| | - Ondine Cleaver
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas (N.A., O.C.)
| | - Sara S Nunes
- Institute of Biomedical Engineering, University of Toronto, ON, Canada. (S.T.K., S.S.N.)
- Laboratory of Medicine and Pathobiology, University of Toronto, ON, Canada. (S.S.N.)
- Heart and Stroke/Richard Lewar Centre of Excellence, University of Toronto, ON, Canada. (S.S.N.)
- Toronto General Hospital Research Institute, University Health Network, ON, Canada. (S.T.K., S.T., S.V., S.S.N.)
| |
Collapse
|
2
|
Simińska-Stanny J, Podstawczyk D, Delporte C, Nie L, Shavandi A. Hyaluronic Acid Role in Biomaterials Prevascularization. Adv Healthc Mater 2024:e2402045. [PMID: 39254277 DOI: 10.1002/adhm.202402045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 09/11/2024]
Abstract
Tissue vascularization is a major bottleneck in tissue engineering. In this review, the state of the art on the intricate role of hyaluronic acid (HA) in angiogenesis is explored. HA plays a twofold role in angiogenesis. First, when released as a free polymer in the extracellular matrix (ECM), HA acts as a signaling molecule triggering multiple cascades that foster smooth muscle cell differentiation, migration, and proliferation thereby contributing to vessel wall thickening. Simultaneously, HA bound to the plasma membrane in the pericellular space functions as a polymer block, participating in vessel formation. Starting with the HA origins in native vascular tissues, the approaches aimed at achieving vascularization in vivo are reviewed. The significance of HA molecular weight (MW) in angiogenesis and the challenges associated with utilizing HA in vascular tissue engineering (VTE) are conscientiously addressed. The review finally focuses on a thorough examination and comparison of the diverse strategies adopted to harness the benefits of HA in the vascularization of bioengineered materials. By providing a nuanced perspective on the multifaceted role of HA in angiogenesis, this review contributes to the ongoing discourse in tissue engineering and advances the collective understanding of optimizing vascularization processes assisted by functional biomaterials.
Collapse
Affiliation(s)
- Julia Simińska-Stanny
- 3BIO-BioMatter, Faculty of Engineering, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, Wroclaw, 50-373, Poland
| | - Christine Delporte
- Laboratoire de Biochimie physiopathologique et nutritionnelle (LBNP), Faculté de Médecine, Université libre de Bruxelles (ULB), Campus Erasme - CP 611, Route de Lennik 808, Bruxelles, 1070, Belgium
| | - Lei Nie
- College of Life Science, Xinyang Normal University, Xinyang, 464031, China
| | - Armin Shavandi
- 3BIO-BioMatter, Faculty of Engineering, Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
3
|
Liu Y, Lyons CJ, Ayu C, O’Brien T. Enhancing endothelial colony-forming cells for treating diabetic vascular complications: challenges and clinical prospects. Front Endocrinol (Lausanne) 2024; 15:1396794. [PMID: 39076517 PMCID: PMC11284052 DOI: 10.3389/fendo.2024.1396794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia, leading to various vascular complications. Accumulating evidence indicates that endothelial colony-forming cells (ECFCs) have attractive prospects for repairing and restoring blood vessels. Thus, ECFCs may be a novel therapeutic option for diabetic patients with vascular complications who require revascularization therapy. However, it has been reported that the function of ECFCs is impaired in DM, which poses challenges for the autologous transplantation of ECFCs. In this review, we summarize the molecular mechanisms that may be responsible for ECFC dysfunction and discuss potential strategies for improving the therapeutic efficacy of ECFCs derived from patients with DM. Finally, we discuss barriers to the use of ECFCs in human studies in light of the fact that there are no published reports using these cells in humans.
Collapse
Affiliation(s)
| | | | | | - Timothy O’Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Ganapathy A, Narayanan K, Chen Y, Villani C, George A. Dentin matrix protein 1 and HUVEC-ECM scaffold promote the differentiation of human dental pulp stem cells into endothelial lineage: implications in regenerative medicine. Front Physiol 2024; 15:1429247. [PMID: 39040080 PMCID: PMC11260688 DOI: 10.3389/fphys.2024.1429247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Reprograming of the dental pulp somatic cells to endothelial cells is an attractive strategy for generation of new blood vessels. For tissue regeneration, vascularization of engineered constructs is crucial to improve repair mechanisms. In this study, we show that dentin matrix protein 1 (DMP1) and HUVEC-ECM scaffold enhances the differentiation potential of dental pulp stem cells (DPSCs) to an endothelial phenotype. Our results show that the differentiated DPSCs expressed endothelial markers CD31 and VE-Cadherin (CD144) at 7 and 14 days. Expression of CD31 and VE-Cadherin (CD144) were also confirmed by immunofluorescence. Furthermore, flow cytometry analysis revealed a steady increase in CD31 and VE-Cadherin (CD144) positive cells with DMP1 treatment when compared with control. In addition, integrins specific for endothelial cells were highly expressed during the differentiation process. The endothelial cell signature of differentiated DPSCs were additionally characterized for key endothelial cell markers using gene expression by RT-PCR, Western blotting, immunostaining, and RNA-seq analysis. Furthermore, the angiogenic phenotype was confirmed by tubule and capillary sprout formation. Overall, stimulation of DPSCs by DMP1 and use of HUVEC-ECM scaffold promoted their differentiation into phenotypically, transcriptionally, and functionally differentiated bonafide endothelial cells. This study is novel, physiologically relevant and different from conventional strategies.
Collapse
Affiliation(s)
| | | | | | | | - Anne George
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
De G, Yang M, Cai W, Zhao Q, Lu L, Chen A. Salvia miltiorrhiza augments endothelial cell function for ischemic hindlimb recovery. Biol Chem 2024; 405:119-128. [PMID: 36869860 DOI: 10.1515/hsz-2022-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Salvia miltiorrhiza (Salvia miltiorrhiza) root, as a traditional herb, is widely applied to pharmacotherapy for vascular system disease. In this study, we elucidate the therapy mechanism of Salvia miltiorrhiza by using a model of hindlimb ischemia. Blood perfusion measurement showed that intravenous administration of the Water Extract of Salvia miltiorrhiza (WES) could facilitate damaged hindlimb blood flow recovery and blood vessel regeneration. In vitro mRNA screen assay in cultured human umbilical vein endothelial cells (HUVECs) show that WES induced increased NOS3, VEGFA, and PLAU mRNA levels. Endothelial NOS (eNOS) promotor reporter analysis revealed that WES and the major ingredients danshensu (DSS) could enhance eNOS promoter activity. Additionally, we found that WES and its ingredients, including DSS, protocatechuic aldehyde (PAI), and salvianolic acid A (SaA), promoted HUVECs growth by the endothelial cell viability assays. A mechanistic approach confirmed that WES augments HUVECs proliferation through the activation of extracellular signal-regulated kinase (ERK) signal pathway. This study reveals that WES promotes ischemic remodeling and angiogenesis through its multiple principal ingredients, which target and regulate multiple sites of the network of the blood vessel endothelial cell regenerating process.
Collapse
Affiliation(s)
- Gejing De
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Miyi Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Qinghe Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongcheng District, Beijing 100700, China
| | - Lili Lu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Apeng Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
6
|
Sun F, Shen Z, Zhang B, Lu Y, Shan Y, Wu Q, Yuan L, Zhu J, Pan S, Wang Z, Wu C, Zhang G, Yang W, Xu X, Shi H. Biomimetic in situ tracheal microvascularization for segmental tracheal reconstruction in one-step. Bioeng Transl Med 2023; 8:e10534. [PMID: 37476057 PMCID: PMC10354772 DOI: 10.1002/btm2.10534] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 07/22/2023] Open
Abstract
Formation of functional and perfusable vascular network is critical to ensure the long-term survival and functionality of the engineered tissue tracheae after transplantation. However, the greatest challenge in tracheal-replacement therapy is the promotion of tissue regeneration by rapid graft vascularization. Traditional prevascularization methods for tracheal grafts typically utilize omentum or muscle flap wrapping, which requires a second operation; vascularized segment tracheal orthotopic transplantation in one step remains difficult. This study proposes a method to construct a tissue-engineered tracheal graft, which directly forms the microvascular network after orthotopic transplantation in vivo. The focus of this study was the preparation of a hybrid tracheal graft that is non-immunogenic, has good biomechanical properties, supports cell proliferation, and quickly vascularizes. The results showed that vacuum-assisted decellularized trachea-polycaprolactone hybrid scaffold could match most of the above requirements as closely as possible. Furthermore, endothelial progenitor cells (EPCs) were extracted and used as vascularized seed cells and seeded on the surfaces of hybrid grafts before and during the tracheal orthotopic transplantation. The results showed that the microvascularized tracheal grafts formed maintained the survival of the recipient, showing a satisfactory therapeutic outcome. This is the first study to utilize EPCs for microvascular construction of long-segment trachea in one-step; the approach represents a promising method for microvascular tracheal reconstruction.
Collapse
Affiliation(s)
- Fei Sun
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Zhiming Shen
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Boyou Zhang
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Yi Lu
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Yibo Shan
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Qiang Wu
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Lei Yuan
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Jianwei Zhu
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Shu Pan
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhihao Wang
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Cong Wu
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Guozhong Zhang
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
| | - Wenlong Yang
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
| | - Xiangyu Xu
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| | - Hongcan Shi
- Clinical Medical CollegeYangzhou UniversityYangzhouChina
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile DiseasesYangzhou UniversityYangzhouChina
| |
Collapse
|
7
|
Li Z, Wu M, Liu S, Liu X, Huan Y, Ye Q, Yang X, Guo H, Liu A, Huang X, Yang X, Ding F, Xu H, Zhou J, Liu P, Liu S, Jin Y, Xuan K. Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration. Mol Ther 2022; 30:3193-3208. [PMID: 35538661 PMCID: PMC9552912 DOI: 10.1016/j.ymthe.2022.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/19/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) derived from living cells play important roles in donor cell-induced recipient tissue regeneration. Although numerous studies have found that cells undergo apoptosis after implantation in an ischemic-hypoxic environment, the roles played by the EVs released by apoptotic cells are largely unknown. In this study, we obtained apoptotic vesicles (apoVs) derived from human deciduous pulp stem cells and explored their effects on the dental pulp regeneration process. Our work showed that apoVs were ingested by endothelial cells (ECs) and elevated the expression of angiogenesis-related genes, leading to pulp revascularization and tissue regeneration. Furthermore, we found that, at the molecular level, apoV-carried mitochondrial Tu translation elongation factor was transported and regulated the angiogenic activation of ECs via the transcription factor EB-autophagy pathway. In a beagle model of dental pulp regeneration in situ, apoVs recruited endogenous ECs and facilitated the formation of dental-pulp-like tissue rich in blood vessels. These findings revealed the significance of apoptosis in tissue regeneration and demonstrated the potential of using apoVs to promote angiogenesis in clinical applications.
Collapse
Affiliation(s)
- Zihan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China; State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Meiling Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Siying Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Xuemei Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China; State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Qingyuan Ye
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China; State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoxue Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Hao Guo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Xiaoyao Huang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Xiaoshan Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China; Stomatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Ding
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Haokun Xu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Jun Zhou
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Peisheng Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China.
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145West Changle Road, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Zhang S, Lin A, Tao Z, Fu Y, Xiao L, Ruan G, Li Y. Microsphere‐containing hydrogel scaffolds for tissue engineering. Chem Asian J 2022; 17:e202200630. [DOI: 10.1002/asia.202200630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shihao Zhang
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Anqi Lin
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Ziwei Tao
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Yingying Fu
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Lan Xiao
- Queensland University of Technology Centre for Biomedical Technologies AUSTRALIA
| | | | - Yulin Li
- East China University of Science and Technology Meilong Road 130 Shanghai CHINA
| |
Collapse
|
9
|
Xue H, Zhang Z, Lin Z, Su J, Panayi AC, Xiong Y, Hu L, Hu Y, Chen L, Yan C, Xie X, Shi Y, Zhou W, Mi B, Liu G. Enhanced tissue regeneration through immunomodulation of angiogenesis and osteogenesis with a multifaceted nanohybrid modified bioactive scaffold. Bioact Mater 2022; 18:552-568. [PMID: 35845319 PMCID: PMC9256949 DOI: 10.1016/j.bioactmat.2022.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Zhenhe Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jin Su
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chenchen Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xudong Xie
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- Corresponding author. Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- Corresponding author. Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
10
|
Tracy EP, Stielberg V, Rowe G, Benson D, Nunes SS, Hoying JB, Murfee WL, LeBlanc AJ. State of the field: cellular and exosomal therapeutic approaches in vascular regeneration. Am J Physiol Heart Circ Physiol 2022; 322:H647-H680. [PMID: 35179976 PMCID: PMC8957327 DOI: 10.1152/ajpheart.00674.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/19/2023]
Abstract
Pathologies of the vasculature including the microvasculature are often complex in nature, leading to loss of physiological homeostatic regulation of patency and adequate perfusion to match tissue metabolic demands. Microvascular dysfunction is a key underlying element in the majority of pathologies of failing organs and tissues. Contributing pathological factors to this dysfunction include oxidative stress, mitochondrial dysfunction, endoplasmic reticular (ER) stress, endothelial dysfunction, loss of angiogenic potential and vascular density, and greater senescence and apoptosis. In many clinical settings, current pharmacologic strategies use a single or narrow targeted approach to address symptoms of pathology rather than a comprehensive and multifaceted approach to address their root cause. To address this, efforts have been heavily focused on cellular therapies and cell-free therapies (e.g., exosomes) that can tackle the multifaceted etiology of vascular and microvascular dysfunction. In this review, we discuss 1) the state of the field in terms of common therapeutic cell population isolation techniques, their unique characteristics, and their advantages and disadvantages, 2) common molecular mechanisms of cell therapies to restore vascularization and/or vascular function, 3) arguments for and against allogeneic versus autologous applications of cell therapies, 4) emerging strategies to optimize and enhance cell therapies through priming and preconditioning, and, finally, 5) emerging strategies to bolster therapeutic effect. Relevant and recent clinical and animal studies using cellular therapies to restore vascular function or pathologic tissue health by way of improved vascularization are highlighted throughout these sections.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Virginia Stielberg
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Daniel Benson
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
| | - James B Hoying
- Advanced Solutions Life Sciences, Manchester, New Hampshire
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Amanda Jo LeBlanc
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|