1
|
Yang Y, Liao J, Pan Z, Meng J, Zhang L, Shi W, Wang X, Zhang X, Zhou Z, Luo J, Chen X, Yang Z, Mei X, Ma J, Zhang Z, Jiang YZ, Shao ZM, Chen FX, Yu X, Guo X. Dual Inhibition of CDK4/6 and CDK7 Suppresses Triple-Negative Breast Cancer Progression via Epigenetic Modulation of SREBP1-Regulated Cholesterol Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2413103. [PMID: 39656925 DOI: 10.1002/advs.202413103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/13/2024] [Indexed: 12/17/2024]
Abstract
Inhibitors targeting cyclin-dependent kinases 4 and 6 (CDK4/6) to block cell cycle progression have been effective in treating hormone receptor-positive breast cancer, but triple-negative breast cancer (TNBC) remains largely resistant, limiting their clinical applicability. The study reveals that transcription regulator cyclin-dependent kinase7 (CDK7) is a promising target to circumvent TNBC's inherent resistance to CDK4/6 inhibitors. Combining CDK4/6 and CDK7 inhibitors significantly enhances therapeutic effectiveness, leading to a marked decrease in cholesterol biosynthesis within cells. This effect is achieved through reduced activity of the transcription factor forkhead box M1 (FOXM1), which normally increases cholesterol production by inducing SREBF1 expression. Furthermore, this dual inhibition strategy attenuates the recruitment of sterol regulatory element binding transcription factor 1 (SREBP1) and p300 to genes essential for cholesterol synthesis, thus hindering tumor growth. This research is corroborated by an in-house cohort showing lower survival rates in TNBC patients with higher cholesterol production gene activity. This suggests a new treatment approach for TNBC by simultaneously targeting CDK4/6 and CDK7, warranting additional clinical trials.
Collapse
Affiliation(s)
- Yilan Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Jiatao Liao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Zhe Pan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Jin Meng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Li Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Wei Shi
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Xiaofang Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Xiaomeng Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Zhirui Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Radiation Oncology Center, Huashan Hospital, No.12 Wulumuqi Middle Road, Shanghai, 200040, China
| | - Jurui Luo
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.1630 Dongfang Road, Shanghai, 200127, China
| | - Xingxing Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Zhaozhi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Xin Mei
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Jinli Ma
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, China
| | - Zhi-Min Shao
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, 200032, China
| | - Fei Xavier Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Fudan University, No.131 Dong'an Road, Shanghai, 200032, China
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, No.270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Clinical Research Center for Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Radiation Oncology, No.270 Dong'an Road, Shanghai, 200032, China
| |
Collapse
|
2
|
Yan S, Liu Z, Wang T, Sui Y, Wu X, Shen J, Pu P, Yang Y, Wu S, Qiu S, Wang Z, Jiang X, Feng F, Li G, Liu F, Zhao C, Liu K, Feng J, Li M, Man K, Wang C, Tang Y, Liu Y. Super-Enhancer Reprograming Driven by SOX9 and TCF7L2 Represents Transcription-Targeted Therapeutic Vulnerability for Treating Gallbladder Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406448. [PMID: 39492805 DOI: 10.1002/advs.202406448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/01/2024] [Indexed: 11/05/2024]
Abstract
Gallbladder cancer (GBC) is a highly aggressive malignancy lacking clinically available targeted therapeutic agents. Super-enhancers (SEs) are crucial epigenetic cis-regulatory elements whose extensive reprogramming drives aberrant transcription in cancers. To study SE in GBC, the genomic distribution of H3K27ac is profiled in multiple GBC tissue and cell line samples to establish the SE landscape and its associated core regulatory circuitry (CRC). The biliary lineage factor SOX9 and Wnt pathway effector TCF7L2, two master transcription factor (TF) candidates identified by CRC analysis, are verified to co-occupy each other's SE region, forming a mutually autoregulatory loop to drive oncogenic SE reprogramming in a subset of GBC. The SOX9/TCF7L2 double-high GBC cells are highly dependent on the two TFs and enriched of SE-associated gene signatures related to stemness, ErbB and Wnt pathways. Patients with more such GBC cells exhibited significantly worse prognosis. Furthermore, SOX9/TCF7L2 double-high GBC preclinical models are found to be susceptible to SE-targeted CDK7 inhibition therapy in vitro and in vivo. Together, this study provides novel insights into the epigenetic mechanisms underlying the oncogenesis of a subset of GBCs with poorer prognosis and illustrates promising prognostic stratification and therapeutic strategies for treating those GBC patients in future clinical trials.
Collapse
Affiliation(s)
- Siyuan Yan
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Zhaonan Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Teng Wang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, 314400, P. R. China
| | - Yi Sui
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Jiayi Shen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng Pu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yang Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Sizhong Wu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Shimei Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Ziyi Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Xiaoqing Jiang
- Department of Biliary Tract Surgery I, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Feiling Feng
- Department of Biliary Tract Surgery I, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Guoqiang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - FaTao Liu
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Chaoxian Zhao
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Jiayi Feng
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, 999077, P. R. China
| | - Chaochen Wang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, 314400, P. R. China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- State Key Laboratory of Systems Medicine for Cancer,Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Systems Regulation and Clinical Translation for Cancer, Shanghai, 200127, P. R. China
- Department of General Surgery, Jiading Branch, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201800, P. R. China
| |
Collapse
|
3
|
Ji W, Du G, Jiang J, Lu W, Mills CE, Yuan L, Jiang F, He Z, Bradshaw GA, Chung M, Jiang Z, Byun WS, Hinshaw SM, Zhang T, Gray NS. Discovery of bivalent small molecule degraders of cyclin-dependent kinase 7 (CDK7). Eur J Med Chem 2024; 276:116613. [PMID: 39004018 PMCID: PMC11316633 DOI: 10.1016/j.ejmech.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Cyclin-dependent kinase 7, along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs cell cycle progression via T-loop phosphorylation of cell cycle CDKs. Pharmacological inhibition of CDK7 leads to selective anti-cancer effects in cellular and in vivo models, motivating several ongoing clinical investigations of this target. Current CDK7 inhibitors are either reversible or covalent inhibitors of its catalytic activity. We hypothesized that small molecule targeted protein degradation (TPD) might result in differentiated pharmacology due to the loss of scaffolding functions. Here, we report the design and characterization of a potent CDK7 degrader that is comprised of an ATP-competitive CDK7 binder linked to a CRL2VHL recruiter. JWZ-5-13 effectively degrades CDK7 in multiple cancer cells and leads to a potent inhibition of cell proliferation. Additionally, compound JWZ-5-13 displayed bioavailability in a pharmacokinetic study conducted in mice. Therefore, JWZ-5-13 is a useful chemical probe to investigate the pharmacological consequences of CDK7 degradation.
Collapse
Affiliation(s)
- Wenzhi Ji
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenchao Lu
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Linjie Yuan
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Fen Jiang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gary A Bradshaw
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Mirra Chung
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Zixuan Jiang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Woong Sub Byun
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Stephen M Hinshaw
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA.
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
4
|
Liu J, He L, Jiang W, Xie P. Global trends and topics in CDK7 inhibitor research: a bibliometric analysis. Front Pharmacol 2024; 15:1426988. [PMID: 39386027 PMCID: PMC11461233 DOI: 10.3389/fphar.2024.1426988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Background CDK7 has been demonstrated to play a crucial role in the initiation and progression of malignancy. Therefore, targeting CDK7, which regulates the transcription process, has emerged as a new promising approach for treating cancer. Research on CDK7 inhibitors has significantly increased over the past 2 decades, with almost 600 related papers in the Web of Science Core Collection database. To effectively identify future research hotspots and potential future directions, it is crucial to systematically review and visually present the research on this topic from a comprehensive viewpoint, ensuring scientific reliability. Methods This study performed bibliometric analysis via CiteSpace and VOSviewer scientometrics analysis software to examine data on the publication of articles on CDK7 inhibitors over the past 2 decades; the data included country of publication, author names, institution names, scientific categories, cited journals, and keywords related to the field of CDK7 inhibitors. Results This bibliometric analysis included 426 publications from 41 different nations, referencing a total of 15,892 sources. Research associated with CDK7 inhibitors has rapidly expanded since 2016, and the US and China are the two countries with the highest publication output among the countries and institutes that produce literature on CDK7 inhibitors. Furthermore, the US is the country that most frequently engages in international cooperation. The evolution of keywords identifying antitumor strategies related to CDK7-mediated cellular transcription processes has been the research focus in recent years. Conclusion In this study, we identified research efforts and their evolving patterns and predicted advances in the CDK7 inhibitor field. The knowledge structure of CDK7 inhibitors encompasses pharmacological mechanisms, therapeutic targets, and cancer treatment strategies. The primary objectives of contemporary research are to discover the processes underlying cancer progression, identify specific signaling pathways, and develop effective clinical medicines.
Collapse
Affiliation(s)
| | | | | | - Ping Xie
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Huang Y, Liu W, Zhao C, Shi X, Zhao Q, Jia J, Wang A. Targeting cyclin-dependent kinases: From pocket specificity to drug selectivity. Eur J Med Chem 2024; 275:116547. [PMID: 38852339 DOI: 10.1016/j.ejmech.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The development of selective modulators of cyclin-dependent kinases (CDKs), a kinase family with numerous members and functional variations, is a significant preclinical challenge. Recent advancements in crystallography have revealed subtle differences in the highly conserved CDK pockets. Exploiting these differences has proven to be an effective strategy for achieving excellent drug selectivity. While previous reports briefly discussed the structural features that lead to selectivity in individual CDK members, attaining inhibitor selectivity requires consideration of not only the specific structures of the target CDK but also the features of off-target members. In this review, we summarize the structure-activity relationships (SARs) that influence selectivity in CDK drug development and analyze the pocket features that lead to selectivity using molecular-protein binding models. In addition, in recent years, novel CDK modulators have been developed, providing more avenues for achieving selectivity. These cases were also included. We hope that these efforts will assist in the development of novel CDK drugs.
Collapse
Affiliation(s)
- Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing, 100084, People's Republic of China
| | - Changhao Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China
| | - Xiaoyu Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Anhua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
6
|
Zhu F, Lu Z, Tang W, Zhao G, Shao Y, Lu B, Ding J, Zheng Y, Fang L, Li H, Wang G, Chen R, Zheng J, Chai D. Adenovirus vaccine targeting kinases induces potent antitumor immunity in solid tumors. J Immunother Cancer 2024; 12:e009869. [PMID: 39209449 PMCID: PMC11367354 DOI: 10.1136/jitc-2024-009869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Targeting kinases presents a potential strategy for treating solid tumors; however, the therapeutic potential of vaccines targeting kinases remains uncertain. METHODS Adenovirus (Ad) vaccines encoding Aurora kinase A (AURKA) or cyclin-dependent kinase 7 (CDK7) were developed, and their therapeutic potentials were investigated by various methods including western blot, flow cytometry, cytotoxic T lymphocyte assay, and enzyme-linked immunospot (ELISpot), in mouse and humanized solid tumor models. RESULTS Co-immunization with Ad-AURKA/CDK7 effectively prevented subcutaneous tumor growth in the Renca, RM-1, MC38, and Hepa1-6 tumor models. In therapeutic tumor models, Ad-AURKA/CDK7 treatment impeded tumor growth and increased immune cell infiltration. Administration of Ad-AURKA/CDK7 promoted the induction and maturation of dendritic cell subsets and augmented multifunctional CD8+ T-cell antitumor immunity. Furthermore, the vaccine induced a long-lasting antitumor effect by promoting the generation of memory CD8+ T cells. Tumor recovery on CD8+ T-cell depletion underscored the indispensable role of these cells in the observed therapeutic effects. The potent efficacy of the Ad-AURKA/CDK7 vaccine was consistently demonstrated in lung metastasis, orthotopic, and humanized tumor models by inducing multifunctional CD8+ T-cell antitumor immune responses. CONCLUSIONS Our findings illustrate that the Ad-AURKA/CDK7 vaccine targeting dual kinases AURKA and CDK7 emerges as a promising and effective therapeutic approach for the treatment of solid tumors.
Collapse
Affiliation(s)
- Fei Zhu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenjing Tang
- Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second Hospital, Huai'an, Jiangsu, China
| | - Guangya Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yingxiang Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bowen Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiage Ding
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Shirasawa M, Nakajima R, Zhou Y, Zhao L, Fikriyanti M, Iwanaga R, Bradford AP, Kurayoshi K, Araki K, Ohtani K. Activation of the CDK7 Gene, Coding for the Catalytic Subunit of the Cyclin-Dependent Kinase (CDK)-Activating Kinase (CAK) and General Transcription Factor II H, by the Trans-Activator Protein Tax of Human T-Cell Leukemia Virus Type-1. Genes (Basel) 2024; 15:1080. [PMID: 39202439 PMCID: PMC11353830 DOI: 10.3390/genes15081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL). The trans-activator protein Tax of HTLV-1 plays crucial roles in leukemogenesis by promoting proliferation of virus-infected cells through activation of growth-promoting genes. However, critical target genes are yet to be elucidated. We show here that Tax activates the gene coding for cyclin-dependent kinase 7 (CDK7), the essential component of both CDK-activating kinase (CAK) and general transcription factor TFIIH. CAK and TFIIH play essential roles in cell cycle progression and transcription by activating CDKs and facilitating transcriptional initiation, respectively. Tax induced CDK7 gene expression not only in human T-cell lines but also in normal peripheral blood lymphocytes (PHA-PBLs) along with increased protein expression. Tax stimulated phosphorylation of CDK2 and RNA polymerase II at sites reported to be mediated by CDK7. Tax activated the CDK7 promoter through the NF-κB pathway, which mainly mediates cell growth promotion by Tax. Knockdown of CDK7 expression reduced Tax-mediated induction of target gene expression and cell cycle progression. These results suggest that the CDK7 gene is a crucial target of Tax-mediated trans-activation to promote cell proliferation by activating CDKs and transcription.
Collapse
Affiliation(s)
- Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama 963-8611, Fukushima, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| |
Collapse
|
8
|
Khan M, Lam SK, Yan S, Feng Y, Chen C, Ko FCF, Ho JCM. The anti-neoplastic impact of thymoquinone from Nigella sativa on small cell lung cancer: In vitro and in vivo investigations. J Cancer Res Ther 2024; 20:1224-1231. [PMID: 39206985 DOI: 10.4103/jcrt.jcrt_883_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/03/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Malignant and aggressive, small cell lung cancer (SCLC) constitutes about 15% of all diagnosed lung cancer cases. With primary therapeutic options such as chemotherapy accompanied by debilitating side effects, interest has been soaring in the therapeutic competencies of herbs. The pharmacological driving force behind the beneficial properties of Nigella sativa is the quinone, thymoquinone (TQ). The anti-cancer effects of TQ on different cancers have been extensively studied. Nonetheless, only one paper in the entire National Center for Biotechnology Information (NCBI) database describes its effects on SCLC. A more detailed investigation is required. METHODS The current study examined the impact of TQ in vitro on five SCLC cell lines and in vivo in a nude mouse xenograft model. The following in vitro effects of TQ on SCLC were evaluated: (a) cell viability; (b) apoptosis; (c) cell cycle arrest; (d) intracellular reactive oxygen species (ROS) levels, and (e) protein expression in concomitant signaling pathways. For the in vivo effects of TQ on SCLC, (a) tumor volume was measured, and (b) selected protein expression in selected concomitant signaling pathways was determined by Western blotting. RESULT In general, TQ reduced cell viability, induced apoptosis and cell cycle arrest, depleted ROS, and altered protein expression in associated signaling pathways. Furthermore, TQ exhibited a tumor-suppressive effect in an H446 SCLC xenograft model. CONCLUSION The cytotoxic impact of TQ arising from anti-cancer mechanisms was elucidated. The positive results obtained in this study warrant further investigation.
Collapse
Affiliation(s)
- Mahjabin Khan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang H, Lin G, Jia S, Wu J, Zhang Y, Tao Y, Huang W, Song M, Ding K, Ma D, Fan M. Design, synthesis and evaluation of thieno[3,2-d]pyrimidine derivatives as novel potent CDK7 inhibitors. Bioorg Chem 2024; 148:107456. [PMID: 38761706 DOI: 10.1016/j.bioorg.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The targeting of cyclin-dependent kinase 7 (CDK7) has become a highly desirable therapeutic approach in the field of oncology due to its dual role in regulating essential biological processes, encompassing cell cycle progression and transcriptional control. We have previously identified a highly selective thieno[3,2-d]pyrimidine-based CDK7 inhibitor with demonstrated efficacy and safety in animal model. In this study, we sought to optimize the thieno[3,2-d]pyrimidine core to discover a novel series of CDK7 inhibitors with improved potency and pharmacokinetic (PK) properties. Through extensive structure-activity relationship (SAR) studies, compound 20 has emerged as the lead candidate due to its potent inhibitory activity against CDK7 and remarkable efficacy on MDA-MB-453 cells, a representative triple negative breast cancer (TNBC) cell line. Furthermore, 20 has demonstrated favorable oral bioavailability and exhibited highly desirable pharmacokinetic (PK) properties, making it a promising lead candidate for further structural optimization.
Collapse
Affiliation(s)
- Hongjin Zhang
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin 300072, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China
| | - Guohao Lin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Suyun Jia
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China
| | - Jianbo Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ying Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yanxin Tao
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Weixue Huang
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China
| | - Meiru Song
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China; Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan 450046, China
| | - Ke Ding
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China.
| | - Dawei Ma
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 20032, China.
| | - Mengyang Fan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
10
|
Gong Y, Li H. CDK7 in breast cancer: mechanisms of action and therapeutic potential. Cell Commun Signal 2024; 22:226. [PMID: 38605321 PMCID: PMC11010440 DOI: 10.1186/s12964-024-01577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Cyclin-dependent kinase 7 (CDK7) serves as a pivotal regulator in orchestrating cellular cycle dynamics and gene transcriptional activity. Elevated expression levels of CDK7 have been ubiquitously documented across a spectrum of malignancies and have been concomitantly correlated with adverse clinical outcomes. This review delineates the biological roles of CDK7 and explicates the molecular pathways through which CDK7 exacerbates the oncogenic progression of breast cancer. Furthermore, we synthesize the extant literature to provide a comprehensive overview of the advancement of CDK7-specific small-molecule inhibitors, encapsulating both preclinical and clinical findings in breast cancer contexts. The accumulated evidence substantiates the conceptualization of CDK7 as a propitious therapeutic target in breast cancer management.
Collapse
Affiliation(s)
- Ying Gong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huiping Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
11
|
Zheng M, Zhang XY, Chen W, Xia F, Yang H, Yuan K, Yang P. Molecules inducing specific cyclin-dependent kinase degradation and their possible use in cancer therapy. Future Med Chem 2024; 16:369-388. [PMID: 38288571 DOI: 10.4155/fmc-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Cyclin-dependent kinases (CDKs) play an important role in the regulation of cell proliferation, and many CDK inhibitors were developed. However, pan-CDK inhibitors failed to be approved due to intolerant toxicity or low efficacy and the use of selective CDK4/6 inhibitors is limited by resistance. Protein degraders have the potential to increase selectivity, efficacy and overcome resistance, which provides a novel strategy for regulating CDKs. In this review, we summarized the function of CDKs in regulating the cell cycle and transcription, and introduced the representative CDK inhibitors. Then we made a detailed introduction about four types of CDKs degraders, including their action mechanisms, research status and application prospects, which could help the development of novel CDKs degraders.
Collapse
Affiliation(s)
- Mingming Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiao-Yu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Weijiao Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fei Xia
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huanaoyu Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
12
|
Zhang H, Lin G, Jia S, Zhang Y, Wu J, Tao Y, Huang W, Song M, Ding K, Ma D, Fan M. Discovery and optimization of thieno[3,2-d]pyrimidine derivatives as highly selective inhibitors of cyclin-dependent kinase 7. Eur J Med Chem 2024; 263:115955. [PMID: 38000213 DOI: 10.1016/j.ejmech.2023.115955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Targeting cyclin-dependent kinase 7 (CDK7) has emerged as a highly sought-after therapeutic strategy in oncology due to its duality of function in regulating biological processes, including cell cycle progression and transcriptional control. Herein, we describe the design, optimization and characterization of a series of thieno[3,2-d]pyrimidine derivatives as potent CDK7 inhibitors. The involvement of thiophene as core structure plays critical role in leading to the remarkable selectivity and incorporation of a fluorine atom into the piperidine ring enhances metabolic stability. Structure-activity relationship (SAR) study generated compound 36 as lead compound with potent inhibitory activity against CDK7 and good kinome selectivity in vitro. Compound 36 demonstrated strong efficacy against a triple negative breast cancer (TNBC) cell line-derived xenograft (CDX) mouse model upon oral administration at 5 mg/kg once daily. Therefore, it exhibits immense potential as a lead candidate for further exploration in the development of cancer therapy.
Collapse
Affiliation(s)
- Hongjin Zhang
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, 300072, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
| | - Guohao Lin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Suyun Jia
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Ying Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jianbo Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yanxin Tao
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Weixue Huang
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Meiru Song
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Ke Ding
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 20032, China.
| | - Dawei Ma
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 20032, China.
| | - Mengyang Fan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China; Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
13
|
Bhurta D, Hossain MM, Bhardwaj M, Showket F, Nandi U, Dar MJ, Bharate SB. Orally bioavailable styryl derivative of rohitukine-N-oxide inhibits CDK9/T1 and the growth of pancreatic cancer cells. Eur J Med Chem 2023; 258:115533. [PMID: 37302342 DOI: 10.1016/j.ejmech.2023.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/14/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
The chromone alkaloid is one of the classical pharmacophores for cyclin-dependent kinases (CDKs) and represents the first CDK inhibitor to reach clinical trials. Rohitukine (1), a chromone alkaloid isolated from Dysoxylum binectariferum inspired the discovery of several clinical candidates. The N-oxide derivative of rohitukine occurs naturally, with no reports on its biological activity. Herein, we report isolation, biological evaluation, and synthetic modification of rohitukine N-oxide for CDK9/T1 inhibition and antiproliferative activity in cancer cells. Rohitukine N-oxide (2) inhibits CDK9/T1 (IC50 7.6 μM) and shows antiproliferative activity in the colon and pancreatic cancer cells. The chloro-substituted styryl derivatives, 2b, and 2l, inhibit CDK9/T1 with IC50 values of 0.17 and 0.15 μM, respectively. These derivatives display cellular antiproliferative activity in HCT 116 (colon) and MIA PaCa-2 (pancreatic) cancer cells with GI50 values of 2.5-9.7 μM with excellent selectivity over HEK293 (embryonic kidney) cells. Both analogs induce cell death in MIA PaCa-2 cells via inducing intracellular ROS production, reducing mitochondrial membrane potential, and inducing apoptosis. These analogs are metabolically stable in liver microsomes and have a decent oral pharmacokinetics in BALB/c mice. The molecular modeling studies indicated their strong binding at the ATP-binding site of CDK7/H and CDK9/T1.
Collapse
Affiliation(s)
- Deendyal Bhurta
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Md Mehedi Hossain
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Mahir Bhardwaj
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Farheen Showket
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Mohd Jamal Dar
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific & Innovative Research, Ghaziabad, 201002, India; Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India.
| |
Collapse
|
14
|
Sterling J, Baker JR, McCluskey A, Munoz L. Systematic literature review reveals suboptimal use of chemical probes in cell-based biomedical research. Nat Commun 2023; 14:3228. [PMID: 37270653 PMCID: PMC10239480 DOI: 10.1038/s41467-023-38952-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Chemical probes have reached a prominent role in biomedical research, but their impact is governed by experimental design. To gain insight into the use of chemical probes, we conducted a systematic review of 662 publications, understood here as primary research articles, employing eight different chemical probes in cell-based research. We summarised (i) concentration(s) at which chemical probes were used in cell-based assays, (ii) inclusion of structurally matched target-inactive control compounds and (iii) orthogonal chemical probes. Here, we show that only 4% of analysed eligible publications used chemical probes within the recommended concentration range and included inactive compounds as well as orthogonal chemical probes. These findings indicate that the best practice with chemical probes is yet to be implemented in biomedical research. To achieve this, we propose 'the rule of two': At least two chemical probes (either orthogonal target-engaging probes, and/or a pair of a chemical probe and matched target-inactive compound) to be employed at recommended concentrations in every study.
Collapse
Affiliation(s)
- Jayden Sterling
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jennifer R Baker
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Adam McCluskey
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lenka Munoz
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
15
|
Pierzynowska K, Gaffke L, Zaucha JM, Węgrzyn G. Transcriptomic Approaches in Studies on and Applications of Chimeric Antigen Receptor T Cells. Biomedicines 2023; 11:biomedicines11041107. [PMID: 37189725 DOI: 10.3390/biomedicines11041107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells are specifically modified T cells which bear recombinant receptors, present at the cell surface and devoted to detect selected antigens of cancer cells, and due to the presence of transmembrane and activation domains, able to eliminate the latter ones. The use of CAR-T cells in anti-cancer therapies is a relatively novel approach, providing a powerful tool in the fight against cancer and bringing new hope for patients. However, despite huge possibilities and promising results of preclinical studies and clinical efficacy, there are various drawbacks to this therapy, including toxicity, possible relapses, restrictions to specific kinds of cancers, and others. Studies desiring to overcome these problems include various modern and advanced methods. One of them is transcriptomics, a set of techniques that analyze the abundance of all RNA transcripts present in the cell at certain moment and under certain conditions. The use of this method gives a global picture of the efficiency of expression of all genes, thus revealing the physiological state and regulatory processes occurring in the investigated cells. In this review, we summarize and discuss the use of transcriptomics in studies on and applications of CAR-T cells, especially in approaches focused on improved efficacy, reduced toxicity, new target cancers (like solid tumors), monitoring the treatment efficacy, developing novel analytical methods, and others.
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Jan M. Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|