1
|
Feng YR, Zhang Q, Miao JK, Yang T, Chen J, Chen HY, Mou QH, Xiang XL, Long D, Wei QH, Wu Y, Li TY. Association of the retinol to all-trans retinoic acid pathway with autism spectrum disorder. World J Pediatr 2024; 20:1043-1058. [PMID: 38789720 DOI: 10.1007/s12519-024-00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex group of neurodevelopmental disorders. Research has highlighted a close association between the retinoic acid (RA) signaling pathway and ASD. This study investigates alterations in the vitamin A (VA, retinol) to RA metabolic pathway in children with ASD and speculates on the underlying reasons for these changes. We propose a subtype characterized by downregulated RA signaling in ASD, laying the groundwork for precise diagnosis and treatment research. METHODS We included 489 children with ASD and 280 typically developing (TD) children. Those with ASD underwent evaluations of core symptoms and neuro-developmental levels, which were conducted by professional developmental behavior physicians using assessment scales. Serum VA and all-trans RA (atRA) levels were determined by high-performance liquid chromatography and ultra-high-performance liquid chromatography-tandem mass spectrometry. The expression levels and concentrations of enzyme molecules such as retinol dehydrogenase 10 were assessed using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Children with ASD exhibited reduced serum atRA, accompanied by a downregulation of atRA synthesis enzymes. The reduction in serum atRA levels was linked not only to VA levels but also to the aberrant expression of metabolic enzymes responsible for atRA. Furthermore, the serum atRA levels in children with ASD were more strongly correlated with core symptoms and neurodevelopmental levels than VA levels. CONCLUSION Children with ASD exhibited a dual regulation of reduced serum atRA levels, influenced by both VA levels and abnormal expression of atRA metabolic enzymes.
Collapse
Affiliation(s)
- Yu-Ru Feng
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Qian Zhang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Jing-Kun Miao
- Department of Pediatrics, Women and Children' Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
| | - Ting Yang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Jie Chen
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Hong-Yu Chen
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Qiu-Hong Mou
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Xue-Li Xiang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Dan Long
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Qiu-Hong Wei
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Yuan Wu
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China
| | - Ting-Yu Li
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No 136, 2nd Zhongshan Rd, Yuzhong District, Chongqing, China.
| |
Collapse
|
2
|
Chen Y, Zhang Z, Pan F, Li P, Yao W, Chen Y, Xiong L, Wang T, Li Y, Huang G. Pericytes recruited by CCL28 promote vascular normalization after anti-angiogenesis therapy through RA/RXRA/ANGPT1 pathway in lung adenocarcinoma. J Exp Clin Cancer Res 2024; 43:210. [PMID: 39075504 PMCID: PMC11285179 DOI: 10.1186/s13046-024-03135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND It has been proposed that anti-angiogenesis therapy could induce tumor "vascular normalization" and further enhance the efficacy of chemotherapy, radiotherapy, target therapy, and immunotherapy for nearly twenty years. However, the detailed molecular mechanism of this phenomenon is still obscure. METHOD Overexpression and knockout of CCL28 in human lung adenocarcinoma cell line A549 and murine lung adenocarcinoma cell line LLC, respectively, were utilized to establish mouse models. Single-cell sequencing was performed to analyze the proportion of different cell clusters and metabolic changes in the tumor microenvironment (TME). Immunofluorescence and multiplex immunohistochemistry were conducted in murine tumor tissues and clinical biopsy samples to assess the percentage of pericytes coverage. Primary pericytes were isolated from lung adenocarcinoma tumor tissues using magnetic-activated cell sorting (MACS). These pericytes were then treated with recombinant human CCL28 protein, followed by transwell migration assays and RNA sequencing analysis. Changes in the secretome and metabolome were examined, and verification of retinoic acid metabolism alterations in pericytes was conducted using quantitative real-time PCR, western blotting, and LC-MS technology. Chromatin immunoprecipitation followed by quantitative PCR (ChIP-qPCR) was employed to validate the transcriptional regulatory ability and affinity of RXRα to specific sites at the ANGPT1 promoter. RESULTS Our study showed that after undergoing anti-angiogenesis treatment, the tumor exhibited a state of ischemia and hypoxia, leading to an upregulation in the expression of CCL28 in hypoxic lung adenocarcinoma cells by the hypoxia-sensitive transcription factor CEBPB. Increased CCL28 could promote tumor vascular normalization through recruiting and metabolic reprogramming pericytes in the tumor microenvironment. Mechanistically, CCL28 modified the retinoic acid (RA) metabolism and increased ANGPT1 expression via RXRα in pericytes, thereby enhancing the stability of endothelial cells. CONCLUSION We reported the details of the molecular mechanisms of "vascular normalization" after anti-angiogenesis therapy for the first time. Our work might provide a prospective molecular marker for guiding the clinical arrangement of combination therapy between anti-angiogenesis treatment and other therapies.
Collapse
Affiliation(s)
- Ying Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zhiyong Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Fan Pan
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
- Department of Medical Oncology, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Pengfei Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Weiping Yao
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
- Department of Medical Oncology, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yuxi Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Lei Xiong
- Department of Cardio-Thoracic Surgery, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Medical Schoolof, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Yan Li
- Department of Respiratory Critical Care Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China.
| | - Guichun Huang
- Department of Medical Oncology, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, Jiangsu, 210008, China.
- Department of Oncology, Medical School, Zhongda Hospital, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Ugodnikov A, Persson H, Simmons CA. Bridging barriers: advances and challenges in modeling biological barriers and measuring barrier integrity in organ-on-chip systems. LAB ON A CHIP 2024; 24:3199-3225. [PMID: 38689569 DOI: 10.1039/d3lc01027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Biological barriers such as the blood-brain barrier, skin, and intestinal mucosal barrier play key roles in homeostasis, disease physiology, and drug delivery - as such, it is important to create representative in vitro models to improve understanding of barrier biology and serve as tools for therapeutic development. Microfluidic cell culture and organ-on-a-chip (OOC) systems enable barrier modelling with greater physiological fidelity than conventional platforms by mimicking key environmental aspects such as fluid shear, accurate microscale dimensions, mechanical cues, extracellular matrix, and geometrically defined co-culture. As the prevalence of barrier-on-chip models increases, so does the importance of tools that can accurately assess barrier integrity and function without disturbing the carefully engineered microenvironment. In this review, we first provide a background on biological barriers and the physiological features that are emulated through in vitro barrier models. Then, we outline molecular permeability and electrical sensing barrier integrity assessment methods, and the related challenges specific to barrier-on-chip implementation. Finally, we discuss future directions in the field, as well important priorities to consider such as fabrication costs, standardization, and bridging gaps between disciplines and stakeholders.
Collapse
Affiliation(s)
- Alisa Ugodnikov
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Henrik Persson
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
| | - Craig A Simmons
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| |
Collapse
|
4
|
Kawczak P, Feszak I, Brzeziński P, Bączek T. Structure-Activity Relationships and Therapeutic Applications of Retinoids in View of Potential Benefits from Drug Repurposing Process. Biomedicines 2024; 12:1059. [PMID: 38791021 PMCID: PMC11117600 DOI: 10.3390/biomedicines12051059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Vitamin A, an essential micronutrient, is integral to various biological processes crucial for organismal development and maintenance. Dietary sources of vitamin A encompass preformed retinol, retinyl esters, and provitamin A carotenoids. Retinoic acid (RA), a key component, plays pivotal roles in vision, cell proliferation, apoptosis, immune function, and gene regulation. Drug repurposing, an effective strategy for identifying new therapeutic applications for existing drugs, has gained prominence in recent years. This review seeks to provide a comprehensive overview of the current research landscape surrounding retinoids and drug repurposing. The scope of this review encompasses a comprehensive examination of retinoids and their potential for repurposing in various therapeutic contexts. Despite their efficacy in treating dermatological conditions, concerns about toxicity persist, driving the search for safer and more potent retinoids. The molecular mechanisms underlying retinoid activity involve binding to retinoic acid receptors (RARs) and retinoid X receptors (RXRs), leading to transcriptional regulation of target genes. This review seeks to shed light on the possibilities for repurposing retinoids to cover a wider spectrum of therapeutic uses by exploring recent scientific progress. It also aims to offer a more comprehensive understanding of the therapeutic prospects of retinoids and the broader impact of drug repositioning in contemporary medicine.
Collapse
Affiliation(s)
- Piotr Kawczak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | - Igor Feszak
- Department of Nursing, Faculty of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
| | - Piotr Brzeziński
- Department of Physiotherapy and Medical Emergency, Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
- Department of Dermatology, Voivodeship Specialist Hospital, 76-200 Słupsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
- Department of Nursing, Faculty of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
| |
Collapse
|
5
|
DiKun KM, Tang XH, Fu L, Choi ME, Lu C, Gudas LJ. Retinoic acid receptor α activity in proximal tubules prevents kidney injury and fibrosis. Proc Natl Acad Sci U S A 2024; 121:e2311803121. [PMID: 38330015 PMCID: PMC10873609 DOI: 10.1073/pnas.2311803121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by a gradual loss of kidney function and affects ~13.4% of the global population. Progressive tubulointerstitial fibrosis, driven in part by proximal tubule (PT) damage, is a hallmark of late stages of CKD and contributes to the development of kidney failure, for which there are limited treatment options. Normal kidney development requires signaling by vitamin A (retinol), which is metabolized to retinoic acid (RA), an endogenous agonist for the RA receptors (RARα, β, γ). RARα levels are decreased in a mouse model of diabetic nephropathy and restored with RA administration; additionally, RA treatment reduced fibrosis. We developed a mouse model in which a spatiotemporal (tamoxifen-inducible) deletion of RARα in kidney PT cells of adult mice causes mitochondrial dysfunction, massive PT injury, and apoptosis without the use of additional nephrotoxic substances. Long-term effects (3 to 4.5 mo) of RARα deletion include increased PT secretion of transforming growth factor β1, inflammation, interstitial fibrosis, and decreased kidney function, all of which are major features of human CKD. Therefore, RARα's actions in PTs are crucial for PT homeostasis, and loss of RARα causes injury and a key CKD phenotype.
Collapse
Affiliation(s)
- Krysta M. DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
- Weill Cornell Graduate School of Medical Sciences, New York, NY10065
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
| | - Leiping Fu
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
| | - Mary E. Choi
- New York Presbyterian Hospital, New York, NY10065
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY10065
| | | | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY10065
- Weill Cornell Graduate School of Medical Sciences, New York, NY10065
- Department of Urology, New York, NY10065
| |
Collapse
|