1
|
Sakulpanich A, Attrapadung S, Gritsanapan W. Larvicidal activity of Stemona collinsiae root extract against Musca domestica and Chrysomya megacephala. Sci Rep 2023; 13:15689. [PMID: 37735480 PMCID: PMC10514196 DOI: 10.1038/s41598-023-42500-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Musca domestica and Chrysomya megacephala, considered synanthropic insects, are medically important flies, as they transmit vector-borne diseases to humans and animals. In Thailand, Stemona (Stemonaceae) plants have been traditionally used as insecticides. This study was designed to determine the larvicidal activity of S. collinsiae root extract against M. domestica and C. megacephala larvae. A 70% ethanol crude extract from S. collinsiae roots was tested against the third-instar larvae of both species using direct and indirect contact methods. The development and mortality rates of the insects were observed, and the LC values were calculated. The extract caused irregular development in both species, shown as segmental puparia that could not emerge as adult flies. The LC50 values of the extract against M. domestica tested by direct and indirect contact methods were 0.0064 ± 0.0005 mg/larva and 0.0165 ± 0.0002 mg/cm2/larva, respectively. In the case of C. megacephala, the LC50 value determined by the indirect contact method was 1.0500 ± 0.0001 mg/cm2/larva. The ethanolic root extract of S. collinsiae was able to kill the larvae of both species after dermal administration. It is of interest to develop S. collinsiae root extract as a natural fly control biopesticide.
Collapse
Affiliation(s)
- Aurapa Sakulpanich
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani, Thailand.
| | - Siriluck Attrapadung
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wandee Gritsanapan
- Phyto Product Research, 165 Soi Suwandee 3, Rimklongprapa Road, Bangsue, 10800, Bangkok, Thailand.
| |
Collapse
|
2
|
Huang SY, Gao LH, Huang XZ, Huang PQ. Enantioselective Total Syntheses of the Proposed and Revised Structures of Methoxystemofoline: A Stereochemical Revision. J Org Chem 2021; 86:11053-11071. [PMID: 33440938 DOI: 10.1021/acs.joc.0c02667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article describes the full details of our synthetic efforts toward the enantioselective total synthesis of the complex alkaloid methoxystemofoline. The enantioselective construction of the tetracyclic core features: (1) the Keck allylation at the N-α bridgehead carbon to forge the tetrasubstituted stereocenter; (2) an olefin cross-metathesis reaction for the side-chain elongation that is amenable for the synthesis of congeners and analogues; and (3) a regioselective aldol addition reaction with methyl pyruvate that ensured the subsequent regioselective cyclization reaction to construct the fourth ring. Overman's method was employed to install the 5-(alkoxyalky1idene)-3-methyl-tetronate moiety. In the last step, a nonstereoselective reaction resulted in the formation of both the proposed structure of methoxystemofoline and its E-stereoisomer, the natural product (revised structure), in a 1:1 ratio. We suggest to rename the natural product as isomethoxystemofoline, and report for the first time the complete 1H NMR data for this natural product.
Collapse
Affiliation(s)
- Su-Yu Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Long-Hui Gao
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xiong-Zhi Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, PR China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, 345 Lingling Road, Shanghai 200032, PR China
| |
Collapse
|
3
|
Han Q, Wu N, Li HL, Zhang JY, Li X, Deng MF, Zhu K, Wang JE, Duan HX, Yang Q. A Piperine-Based Scaffold as a Novel Starting Point to Develop Inhibitors against the Potent Molecular Target OfChtI. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7534-7544. [PMID: 34185539 DOI: 10.1021/acs.jafc.0c08119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The insect chitinase OfChtI from the agricultural pest Ostrinia furnacalis (Asian corn borer) is a promising target for green insecticide design. OfChtI is a critical chitinolytic enzyme for the cuticular chitin degradation at the stage of molting. In this study, piperine, a natural amide compound isolated from black pepper, Piper nigrum L., was discovered for the first time to have inhibitory activity toward OfChtI. The compound-enzyme interaction was presumed to take place between the piperine benzo[d][1,3] dioxole skeleton and subsite -1 of the substrate-binding pocket of OfChtI. Hence, on the basis of the deduced inhibitory mechanism and crystal structure of the substrate-binding cavity of OfChtI, compounds 5a-f were designed and synthesized by introducing a butenolide scaffold into the lead compound piperine. The enzymatic activity assay indicated that compounds 5a-f (Ki = 1.03-2.04 μM) exhibited approximately 40-80-fold higher inhibitory activity than the lead compound piperine (I) (Ki = 81.45 μM) toward OfChtI. The inhibitory mechanism of the piperonyl butenolide compounds was elucidated by molecular dynamics, which demonstrated that the introduced butenolide skeleton improved the binding affinity to OfChtI. Moreover, the in vivo activity assay indicated that these compounds also displayed moderate insecticidal activity toward O. furnacalis. This work introduces the natural product piperine as a starting point for the development of novel insecticides targeting OfChtI.
Collapse
Affiliation(s)
- Qing Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Nan Wu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Hui-Lin Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jing-Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiang Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ming-Fei Deng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Kai Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jin-E Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hong-Xia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
4
|
Insecticidal activity of Stemona collinsiae root extract against Parasarcophaga ruficornis (Diptera: Sarcophagidae). Acta Trop 2017; 173:62-68. [PMID: 28549911 DOI: 10.1016/j.actatropica.2017.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 01/27/2023]
Abstract
In Thai indigenous knowledge, Stemona plant has traditionally been used as insecticide on plantations. Recently, S. collinsiae extract was showed to be an anti-feedant and growth inhibitor and to exert strong insecticidal activity. Here, the insecticidal activity of S. collinsiae root extract against Parasarcophaga ruficornis is studied. The larvicidal and pupicidal activities of the ethanolic root extract of S. collinsiae were tested using contact toxicity tests, and adulticidal activity was tested using the topical contact toxicity and sugar bait methods The ethanolic extract at concentration ranging of 0.3-320mg/larva for the direct contact toxicity test and from 0.3 to 3.2mg/cm2/larva for the secondary contact toxicity test showed 3.0-51.0 and 1.0-94.0% corrected mortality, respectively. Against third-instar larvae, the LD50 concentrations of the ethanolic extract were 31.7±0.0mg/larva and 1.4±0.0mg/cm2/larva for direct and secondary contact toxicity tests, respectively. Pupae were not eliminated at all concentrations of the ethanolic extract. Against adult flies, which were killed via oral administration, the LD50 concentration of the ethanolic extract was 0.145±0.070g extract/g glucose. Thus, the ethanolic extract of S. collinsiae was capable of eliminating P. ruficornis in larval and adult stages via topical and ingestion administration, respectively.
Collapse
|
5
|
Paradowska K, Polak B, Chomicki A, Ginalska G. Establishment of an effective TLC bioautographic method for the detection of Mycobacterium tuberculosis H37Ra phosphoglucose isomerase inhibition by phosphoenolpyruvate. J Enzyme Inhib Med Chem 2016; 31:1712-7. [DOI: 10.3109/14756366.2016.1151012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Katarzyna Paradowska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland and
| | - Beata Polak
- Department of Physical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Adam Chomicki
- Department of Physical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Grażyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland and
| |
Collapse
|