1
|
Sasi A, Ahuja V, Das CJ, Arora U, Garg P, Razik A, Kedia S, Das P, Jadon RS, Soneja M, Wig N. Assessment of CT perfusion indices of the clinicoradiological response to anti-tubercular therapy in patients with intestinal tuberculosis. Clin Radiol 2023; 78:e1081-e1086. [PMID: 37839945 DOI: 10.1016/j.crad.2023.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023]
Abstract
AIM To explore the possibility of using a novel technique, CT perfusion imaging, to monitor the response to anti-tubercular therapy (ATT) in patients with intestinal tuberculosis. MATERIALS AND METHODS A prospective observational study was performed in adults with treatment naive-intestinal tuberculosis. Clinical, endoscopic, and conventional radiological findings of patients were compared at baseline and post-ATT. CT perfusion imaging was performed with recording of six perfusion parameters (blood flow, blood volume, mean transit time, time to peak, maximum peak intensity, and permeability/blood flow extraction). RESULTS Twenty-two patients (13 women, 59%) with a median age of 25 years were recruited. The terminal ileum and ileocaecal junction were the most frequent sites of involvement (59%), with multiple segments of the intestine being involved in 16 patients (73%). Median duration of ATT was 6 months (range 6-10 months). Complete clinical response was observed in 22/22 (100%) patients, endoscopic response in 12/12 (100%) patients, and radiological response in 10/13 (76%) patients. There was a significant decrease in mean blood flow, blood volume, maximum peak intensity, and an increase in mean transit time and time to peak on follow-up CT perfusion imaging performed after 6 months of ATT. CONCLUSION Significant alterations in CT perfusion parameters were demonstrated following treatment, consistent with a decline in inflammation and vascularity. CT perfusion imaging of the bowel is a novel means to assess the radiological response to ATT in intestinal tuberculosis, although at the cost of a higher dose of radiation exposure.
Collapse
Affiliation(s)
- A Sasi
- Department of Medicine, AIIMS, Delhi, India
| | - V Ahuja
- Department of Gastroenterology and Human Nutrition, AIIMS, Delhi, India
| | - C J Das
- Department of Radiodiagnosis, AIIMS, Delhi, India
| | - U Arora
- Department of Medicine, AIIMS, Delhi, India
| | - P Garg
- Department of Medicine, AIIMS, Delhi, India
| | - A Razik
- Department of Radiodiagnosis, AIIMS, Delhi, India
| | - S Kedia
- Department of Gastroenterology and Human Nutrition, AIIMS, Delhi, India
| | - P Das
- Department of Pathology, AIIMS, Delhi, India
| | | | - M Soneja
- Department of Medicine, AIIMS, Delhi, India.
| | - N Wig
- Department of Medicine, AIIMS, Delhi, India
| |
Collapse
|
2
|
Kroeze SGC, Pavic M, Stellamans K, Lievens Y, Becherini C, Scorsetti M, Alongi F, Ricardi U, Jereczek-Fossa BA, Westhoff P, But-Hadzic J, Widder J, Geets X, Bral S, Lambrecht M, Billiet C, Sirak I, Ramella S, Giovanni Battista I, Benavente S, Zapatero A, Romero F, Zilli T, Khanfir K, Hemmatazad H, de Bari B, Klass DN, Adnan S, Peulen H, Salinas Ramos J, Strijbos M, Popat S, Ost P, Guckenberger M. Metastases-directed stereotactic body radiotherapy in combination with targeted therapy or immunotherapy: systematic review and consensus recommendations by the EORTC-ESTRO OligoCare consortium. Lancet Oncol 2023; 24:e121-e132. [PMID: 36858728 DOI: 10.1016/s1470-2045(22)00752-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 03/02/2023]
Abstract
Stereotactic body radiotherapy (SBRT) for patients with metastatic cancer, especially when characterised by a low tumour burden (ie, oligometastatic disease), receiving targeted therapy or immunotherapy has become a frequently practised and guideline-supported treatment strategy. Despite the increasing use in routine clinical practice, there is little information on the safety of combining SBRT with modern targeted therapy or immunotherapy and a paucity of high-level evidence to guide clinical management. A systematic literature review was performed to identify the toxicity profiles of combined metastases-directed SBRT and targeted therapy or immunotherapy. These results served as the basis for an international Delphi consensus process among 28 interdisciplinary experts who are members of the European Society for Radiotherapy and Oncology (ESTRO) and European Organisation for Research and Treatment of Cancer (EORTC) OligoCare consortium. Consensus was sought about risk mitigation strategies of metastases-directed SBRT combined with targeted therapy or immunotherapy; a potential need for and length of interruption to targeted therapy or immunotherapy around SBRT delivery; and potential adaptations of radiation dose and fractionation. Results of this systematic review and consensus process compile the best available evidence for safe combination of metastases-directed SBRT and targeted therapy or immunotherapy for patients with metastatic or oligometastatic cancer and aim to guide today's clinical practice and the design of future clinical trials.
Collapse
Affiliation(s)
- Stephanie G C Kroeze
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland; Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Matea Pavic
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Karin Stellamans
- Department of Radiation Oncology, AZ Groeninge Campus Kennedylaan, Kortrijk, Belgium
| | - Yolande Lievens
- Department of Radiation Oncology, Ghent University Hospital and Ghent University, Gent, Belgium
| | - Carlotta Becherini
- Department of Radiation Oncology, Careggi University Hospital, Florence, Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Filippo Alongi
- Advanced Radiation Oncology department, IRCCS Sacro Cuore don Calabria Hospital, Negrar di Valpolicella, Italy; Department of Radiation Oncology, University of Brescia, Brescia, Italy
| | | | - Barbara Alicja Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Paulien Westhoff
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jasna But-Hadzic
- Department of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Joachim Widder
- Department of Radiation Oncology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Xavier Geets
- Department of Radiation Oncology, Cliniques universitaires Saint-Luc, MIRO-IREC Lab, Université catholique de Louvain, Brussels, Belgium
| | - Samuel Bral
- Department of Radiation Oncology, Onze-Lieve-Vrouwziekenhuis, Aalst, Belgium
| | - Maarten Lambrecht
- Department of Radiotherapy-Oncology, Leuvens Kanker Instituut, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | | | - Igor Sirak
- Department of Oncology and Radiotherapy, University Hospital, Hradec Králové, Czech Republic
| | - Sara Ramella
- Department of Radiation Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | | | - Sergi Benavente
- Department of Radiation Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Almudena Zapatero
- Department of Radiation Oncology, Hospital Universitario de La Princesa, Health Research Institute, Madrid, Spain
| | - Fabiola Romero
- Department of Radiation Oncology, Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Thomas Zilli
- Department of Radiation Oncology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kaouthar Khanfir
- Department of Radiation Oncology, Hôpital Valais, Sion, Switzerland
| | - Hossein Hemmatazad
- Department of Radiation Oncology, Inselspital University Hospital, Bern, Switzerland; Department of Radiation Oncology, University of Bern, Bern, Switzerland
| | - Berardino de Bari
- Service Radio-Oncologie Neuchåtel Hôpital Network, La Chaux-de-Fonds, Switzerland
| | - Desiree N Klass
- Institute of Radiation Oncology, Cantonal Hospital Graubünden, Chur, Switzerland
| | - Shaukat Adnan
- Department of Oncology, Aberdeen Royal Infirmary, UK
| | - Heike Peulen
- Department of Radiation Oncology, Catharina Hospital, Eindhoven, Netherlands
| | - Juan Salinas Ramos
- Radiation Oncology Department, Santa Lucia General University Hospital, Cartagena, Spain
| | - Michiel Strijbos
- Department of Oncology, GasthuisZusters Antwerpen, Antwerpen, Belgium
| | | | - Piet Ost
- Department of Radiation Oncology, Iridium Netwerk, Antwerp, Belgium
| | | |
Collapse
|
3
|
Garbino N, Brancato V, Salvatore M, Cavaliere C. A Systematic Review on the Role of the Perfusion Computed Tomography in Abdominal Cancer. Dose Response 2021; 19:15593258211056199. [PMID: 34880716 PMCID: PMC8647276 DOI: 10.1177/15593258211056199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background and purpose Perfusion Computed Tomography (CTp) is an imaging technique which allows
quantitative and qualitative evaluation of tissue perfusion through dynamic
CT acquisitions. Since CTp is still considered a research tool in the field
of abdominal imaging, the aim of this work is to provide a systematic
summary of the current literature on CTp in the abdominal region to clarify
the role of this technique for abdominal cancer applications. Materials and Methods A systematic literature search of PubMed, Web of Science, and Scopus was
performed to identify original articles involving the use of CTp for
clinical applications in abdominal cancer since 2011. Studies were included
if they reported original data on CTp and investigated the clinical
applications of CTp in abdominal cancer. Results Fifty-seven studies were finally included in the study. Most of the included
articles (33/57) dealt with CTp at the level of the liver, while a low
number of studies investigated CTp for oncologic diseases involving UGI
tract (8/57), pancreas (8/57), kidneys (3/57), and colon–rectum (5/57). Conclusions Our study revealed that CTp could be a valuable functional imaging tool in
the field of abdominal oncology, particularly as a biomarker for monitoring
the response to anti-tumoral treatment.
Collapse
|
4
|
Thüring J, Kuhl CK, Barabasch A, Hitpass L, Bode M, Bünting N, Bruners P, Krämer NA. Signal changes in T2-weighted MRI of liver metastases under bevacizumab-A practical imaging biomarker? PLoS One 2020; 15:e0230553. [PMID: 32231380 PMCID: PMC7108712 DOI: 10.1371/journal.pone.0230553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/28/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE The purpose of this study was to investigate signal changes in T2-weighted magnetic resonance imaging of liver metastases under treatment with and without bevacizumab-containing chemotherapy and to compare these signal changes to tumor contrast enhancement. MATERIALS AND METHODS Retrospective analysis of 44 patients, aged 36-84 years, who underwent liver magnetic resonance imaging including T2-weighted and dynamic contrast enhancement sequences. Patients received bevacizumab-containing (n = 22) or conventional cytotoxic chemotherapy (n = 22). Magnetic resonance imaging was obtained at baseline and at three follow-ups (on average 3, 6 and 9 months after initial treatment). Three independent readers rated the T2 signal intensity and the relative contrast enhancement of the metastases on a 5-point scale. RESULTS T2 signal intensity of metastases treated with bevacizumab showed a significant (p<0.001) decrease in T2 signal intensity after initial treatment and exhibit compared to conventionally treated metastases significantly (p<0.001 for each follow-up) hypointense (bevacizumab: 0.70 ± 0.83 before vs. -1.55 ± 0.61, -1.91 ± 0.62, and -1.97 ± 0.52; cytotoxic: 0.73 ± 0.79 before vs. -0.69 ± 0.81, -0.71 ± 0.68, and -0.75 ± 0.65 after 3, 6, and 9 months, respectively). T2 signal intensity was strongly correlated with tumor contrast enhancement (r = 0.71; p<0.001). Intra-observer agreement for T2-signal intensity was substantial (κ = 0.75). The agreement for tumoral contrast enhancement between the readers was considerably lower (κ = 0.39). CONCLUSION Liver metastases exhibit considerably hypointense in T2-weighted imaging after treatment with bevacizumab, in contrast to conventionally treated liver metastases. Therefore, T2-weighted imaging seems to reflect the effect of bevacizumab.
Collapse
Affiliation(s)
- Johannes Thüring
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Christiane Katharina Kuhl
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Alexandra Barabasch
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Lea Hitpass
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Maike Bode
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Nina Bünting
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Philipp Bruners
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Nils Andreas Krämer
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
5
|
Mouawad M, Biernaski H, Brackstone M, Lock M, Yaremko B, Shmuilovich O, Kornecki A, Ben Nachum I, Muscedere G, Lynn K, Prato FS, Thompson RT, Gaede S, Gelman N. DCE-MRI assessment of response to neoadjuvant SABR in early stage breast cancer: Comparisons of single versus three fraction schemes and two different imaging time delays post-SABR. Clin Transl Radiat Oncol 2020; 21:25-31. [PMID: 32021911 PMCID: PMC6993055 DOI: 10.1016/j.ctro.2019.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To determine the effect of dose fractionation and time delay post-neoadjuvant stereotactic ablative radiotherapy (SABR) on dynamic contrast-enhanced (DCE)-MRI parameters in early stage breast cancer patients. MATERIALS AND METHODS DCE-MRI was acquired in 17 patients pre- and post-SABR. Five patients were imaged 6-7 days post-21 Gy/1fraction (group 1), six 16-19 days post-21 Gy/1fraction (group 2), and six 16-18 days post-30 Gy/3 fractions every other day (group 3). DCE-MRI scans were performed using half the clinical dose of contrast agent. Changes in the surrounding tissue were quantified using a signal-enhancement threshold metric that characterizes changes in signal-enhancement volume (SEV). Tumour response was quantified using Ktrans and ve (Tofts model) pre- and post-SABR. Significance was assessed using a Wilcoxin signed-rank test. RESULTS All group 1 and 4/6 group 2 patients' SEV increased post-SABR. All group 3 patients' SEV decreased. The mean Ktrans increased for group 1 by 76% (p = 0.043) while group 2 and 3 decreased 15% (p = 0.028) and 34% (p = 0.028), respectively. For ve, there was no significant change in Group 1 (p = 0.35). Groups 2 showed an increase of 24% (p = 0.043), and Group 3 trended toward an increase (23%, p = 0.08). CONCLUSION Kinetic parameters measured 2.5 weeks post-SABR in both single fraction and three fraction groups were indicative of response but only the single fraction protocol led to enhancement in the surrounding tissue. Our results also suggest that DCE-MRI one-week post-SABR may be too early for response assessment, at least for single fraction SABR, whereas 2.5 weeks appears sufficiently long to minimize confounding acute effects.
Collapse
Affiliation(s)
- Matthew Mouawad
- Medical Biophysics, Western University, London, Ontario, Canada
| | | | - Muriel Brackstone
- Medical Biophysics, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
- St. Joseph’s Health Care, London, Ontario, Canada
| | - Michael Lock
- London Health Sciences Centre, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Brian Yaremko
- London Health Sciences Centre, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Olga Shmuilovich
- Lawson Health Research Institute, London, Ontario, Canada
- St. Joseph’s Health Care, London, Ontario, Canada
- Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Anat Kornecki
- Lawson Health Research Institute, London, Ontario, Canada
- St. Joseph’s Health Care, London, Ontario, Canada
- Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Ilanit Ben Nachum
- Lawson Health Research Institute, London, Ontario, Canada
- St. Joseph’s Health Care, London, Ontario, Canada
- Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Giulio Muscedere
- Lawson Health Research Institute, London, Ontario, Canada
- St. Joseph’s Health Care, London, Ontario, Canada
- Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Kalan Lynn
- Lawson Health Research Institute, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
- St. Joseph’s Health Care, London, Ontario, Canada
| | - Frank S. Prato
- Medical Biophysics, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- St. Joseph’s Health Care, London, Ontario, Canada
- Department of Medical Imaging, Western University, London, Ontario, Canada
| | - R. Terry Thompson
- Medical Biophysics, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Stewart Gaede
- Medical Biophysics, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Neil Gelman
- Medical Biophysics, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Imaging, Western University, London, Ontario, Canada
| |
Collapse
|
6
|
Thorwarth D. Imaging science and development in modern high-precision radiotherapy. Phys Imaging Radiat Oncol 2019; 12:63-66. [PMID: 33458297 PMCID: PMC7807660 DOI: 10.1016/j.phro.2019.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| |
Collapse
|