1
|
Merckel L, Pomp J, Hackett S, van Lier A, van den Dobbelsteen M, Rasing M, Mohamed Hoesein F, Snoeren L, van Es C, van Rossum P, Fast M, Verhoeff J. Stereotactic body radiotherapy of central lung tumours using a 1.5 T MR-linac: First clinical experiences. Clin Transl Radiat Oncol 2024; 45:100744. [PMID: 38406645 PMCID: PMC10885732 DOI: 10.1016/j.ctro.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/25/2023] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
Background MRI-guidance may aid better discrimination between Organs at Risk (OARs) and target volumes in proximity of the mediastinum. We report the first clinical experiences with Stereotactic Body Radiotherapy (SBRT) of (ultra)central lung tumours on a 1.5 T MR-linac. Materials and Methods Patients with an (ultra)central lung tumour were selected for MR-linac based SBRT treatment. A T2-weighted 3D sequence MRI acquired during free breathing was used for daily plan adaption. Prior to each fraction, contours of Internal Target Volume (ITV) and OARs were deformably propagated and amended by a radiation oncologist. Inter-fractional changes in volumes and coverage of target volumes as well as doses in OARs were evaluated in offline and online treatment plans. Results Ten patients were treated and completed 60 Gy in 8 or 12 fractions. In total 104 fractions were delivered. The median time in the treatment room was 41 min with a median beam-on time of 8.9 min. No grade ≥3 acute toxicity was observed. In two patients, the ITV significantly decreased during treatment (58 % and 37 %, respectively) due to tumour shrinkage. In the other patients, 81 % of online ITVs were within ±15 % of the volume of fraction 1. Comparison with the pre-treatment plan showed that ITV coverage of the online plan was similar in 52 % and improved in 34 % of cases. Adaptation to meet OAR constraints, led to decreased ITV coverage in 14 %. Conclusions We describe the workflow for MR-guided Radiotherapy and the feasibility of using 1.5 T MR-linac for SBRT of (ultra) central lung tumours.
Collapse
Affiliation(s)
- L.G. Merckel
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - J. Pomp
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - S.L. Hackett
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - A.L.H.M.W. van Lier
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - M. van den Dobbelsteen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - M.J.A. Rasing
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | - L.M.W. Snoeren
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - C.A. van Es
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - P.S.N. van Rossum
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - M.F. Fast
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - J.J.C. Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
2
|
Crockett CB, Samson P, Chuter R, Dubec M, Faivre-Finn C, Green OL, Hackett SL, McDonald F, Robinson C, Shiarli AM, Straza MW, Verhoeff JJC, Werner-Wasik M, Vlacich G, Cobben D. Initial Clinical Experience of MR-Guided Radiotherapy for Non-Small Cell Lung Cancer. Front Oncol 2021; 11:617681. [PMID: 33777759 PMCID: PMC7988221 DOI: 10.3389/fonc.2021.617681] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Curative-intent radiotherapy plays an integral role in the treatment of lung cancer and therefore improving its therapeutic index is vital. MR guided radiotherapy (MRgRT) systems are the latest technological advance which may help with achieving this aim. The majority of MRgRT treatments delivered to date have been stereotactic body radiation therapy (SBRT) based and include the treatment of (ultra-) central tumors. However, there is a move to also implement MRgRT as curative-intent treatment for patients with inoperable locally advanced NSCLC. This paper presents the initial clinical experience of using the two commercially available systems to date: the ViewRay MRIdian and Elekta Unity. The challenges and potential solutions associated with MRgRT in lung cancer will also be highlighted.
Collapse
Affiliation(s)
- Cathryn B. Crockett
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Pamela Samson
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Robert Chuter
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Michael Dubec
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Corinne Faivre-Finn
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| | - Olga L. Green
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Sara L. Hackett
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Fiona McDonald
- Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Clifford Robinson
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - Anna-Maria Shiarli
- Department of Radiotherapy, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Michael W. Straza
- Department of Radiation Oncology, Froedtert and the Medical College of Wisconsin, Milwaukee, WI, United States
| | - Joost J. C. Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Maria Werner-Wasik
- Department of Radiation Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Gregory Vlacich
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, United States
| | - David Cobben
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
- Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Image-guided Radiotherapy to Manage Respiratory Motion: Lung and Liver. Clin Oncol (R Coll Radiol) 2020; 32:792-804. [PMID: 33036840 DOI: 10.1016/j.clon.2020.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022]
Abstract
Organ motion as a result of respiratory and cardiac motion poses significant challenges for the accurate delivery of radiotherapy to both the thorax and the upper abdomen. Modern imaging techniques during radiotherapy simulation and delivery now permit better quantification of organ motion, which in turn reduces tumour and organ at risk position uncertainty. These imaging advances, coupled with respiratory correlated radiotherapy delivery techniques, have led to the development of a range of approaches to manage respiratory motion. This review summarises the key strategies of image-guided respiratory motion management with a focus on lung and liver radiotherapy.
Collapse
|
4
|
Thorwarth D. Imaging science and development in modern high-precision radiotherapy. Phys Imaging Radiat Oncol 2019; 12:63-66. [PMID: 33458297 PMCID: PMC7807660 DOI: 10.1016/j.phro.2019.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| |
Collapse
|