1
|
Courtney PT, Valle LF, Raldow AC, Steinberg ML. MRI-Guided Radiation Therapy-An Emerging and Disruptive Process of Care: Healthcare Economic and Policy Considerations. Semin Radiat Oncol 2024; 34:4-13. [PMID: 38105092 DOI: 10.1016/j.semradonc.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
MRI-guided radiation therapy (MRgRT) is an emerging, innovative technology that provides opportunities to transform and improve the current clinical care process in radiation oncology. As with many new technologies in radiation oncology, careful evaluation from a healthcare economic and policy perspective is required for its successful implementation. In this review article, we describe the current evidence surrounding MRgRT, framing it within the context of value within the healthcare system. Additionally, we highlight areas in which MRgRT may disrupt the current process of care, and discuss the evidence thresholds and timeline required for the widespread adoption of this promising technology.
Collapse
Affiliation(s)
- P Travis Courtney
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Luca F Valle
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Ann C Raldow
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Michael L Steinberg
- Department of Radiation Oncology, University of California, Los Angeles, CA.
| |
Collapse
|
2
|
Scherman J, af Wetterstedt S, Persson E, Olsson LE, Jamtheim Gustafsson C. Geometric impact and dose estimation of on-patient placement of a lightweight receiver coil in a clinical magnetic resonance imaging-only radiotherapy workflow for prostate cancer. Phys Imaging Radiat Oncol 2023; 26:100433. [PMID: 37063614 PMCID: PMC10091035 DOI: 10.1016/j.phro.2023.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Background and Purpose For pelvic magnetic resonance imaging (MRI)-only radiotherapy the use of receiver coil bridges (CB) is recommended to avoid deformation of the patient. Development in coil technology has enabled lightweight, flexible coils. In this work we evaluate the effects of a lightweight coil in a pelvic MRI-only radiotherapy workflow. Materials and Methods Twenty-one patients, referred to prostate MRI-only radiotherapy, were included. Images were acquired with and without CB. Anatomical deformation from the on-patient coil placement was measured in the anterior-posterior (AP) and left-right (LR) direction. The change in signal-to-noise ratio (SNR) was measured in phantom and in vivo.The clinical treatment plan, created on the image with CB, was transferred and recalculated on the image without the CB. Dose metrics for the targets (planning- and clinical target volume) and organs at risks (OAR) were analyzed. Results There was a statistically significant increase in SNR in-vivo (median 21 %, p = 0.002) when removing the CB. Anatomical differences after removing the CB in patients were -1.5 mm in AP (median change) and + 2.5 mm in LR direction. Dosimetric differences for the target structures were clinically negligible, but statistically significant. The difference in target mean doses were 0.2 % (both p = 0.004) of the prescribed dose. No dosimetric differences were observed for the OAR, except for the penile bulb. Conclusions We concluded that anatomical change and dosimetric differences, originating from scanning without CB were minor. The CB can thereby be removed from the workflow, enabling easier patient positioning and increased SNR when using lightweight coils.
Collapse
Affiliation(s)
- Jonas Scherman
- Department of Hematology, Oncology, and Radiation Physics Skåne University Hospital, Klinikgatan 5, Lund 221 85, Sweden
| | - Sacha af Wetterstedt
- Department of Hematology, Oncology, and Radiation Physics Skåne University Hospital, Klinikgatan 5, Lund 221 85, Sweden
| | - Emilia Persson
- Department of Hematology, Oncology, and Radiation Physics Skåne University Hospital, Klinikgatan 5, Lund 221 85, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Carl Bertil Laurells gata 9, Malmö 205 02, Sweden
| | - Lars E. Olsson
- Department of Hematology, Oncology, and Radiation Physics Skåne University Hospital, Klinikgatan 5, Lund 221 85, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Carl Bertil Laurells gata 9, Malmö 205 02, Sweden
| | - Christian Jamtheim Gustafsson
- Department of Hematology, Oncology, and Radiation Physics Skåne University Hospital, Klinikgatan 5, Lund 221 85, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Carl Bertil Laurells gata 9, Malmö 205 02, Sweden
| |
Collapse
|
3
|
Wyatt JJ, Pearson RA, Frew J, Walker C, Richmond N, Wilkinson M, Wilkes K, Driver S, West S, Karen P, Brooks-Pearson RL, Ainslie D, Wilkins E, McCallum HM. The first patients treated with MR-CBCT soft-tissue matching in a MR-only prostate radiotherapy pathway. Radiography (Lond) 2023; 29:347-354. [PMID: 36736147 DOI: 10.1016/j.radi.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Magnetic Resonance (MR)-only radiotherapy for prostate cancer has previously been reported using fiducial markers for on-treatment verification. MR-Cone Beam Computed Tomography (CBCT) soft-tissue matching does not require invasive fiducial markers and enables MR-only treatments to other pelvic cancers. This study evaluated the first clinical implementation of MR-only prostate radiotherapy using MR-CBCT soft-tissue matching. METHODS Twenty prostate patients were treated with MR-only radiotherapy using a synthetic (s)CT-optimised plan with MR-CBCT soft-tissue matching. Two MR sequences were acquired: small Field Of View (FOV) for target delineation and large FOV for organs at risk delineation, sCT generation and on-treatment verification. Patients also received a CT for validation. The prostate was independently contoured on the small FOV MR, copied to the registered CT and modified if there were MR-CT soft-tissue alignment differences (MR-CT volume). This was compared to the MR-only volume with a paired t-test. The treatment plan was recalculated on CT and the doses compared. Independent offline CT-CBCT matches for 5/20 fractions were performed by three therapeutic radiographers using the MR-only contours and compared to the online MR-CBCT matches using two one-sided paired t-tests for equivalence within ±1 mm. RESULTS The MR-only volumes were significantly smaller than MR-CT (p = 0.003), with a volume ratio 0.92 ± 0.02 (mean ± standard error). The sCT isocentre dose difference to CT was 0.2 ± 0.1%. MR-CBCT soft-tissue matching was equivalent to CT-CBCT (p < 0.001), with differences of 0.1 ± 0.2 mm (vertical), -0.1 ± 0.2 mm (longitudinal) and 0.0 ± 0.1 mm (lateral). CONCLUSIONS MR-only radiotherapy with soft-tissue matching has been successfully clinically implemented. It produced significantly smaller target volumes with high dosimetric and on-treatment matching accuracy. IMPLICATIONS FOR PRACTICE MR-only prostate radiotherapy can be safely delivered without using invasive fiducial markers. This enables MR-only radiotherapy to be extended to other pelvic cancers where fiducial markers cannot be used.
Collapse
Affiliation(s)
- J J Wyatt
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle, UK.
| | - R A Pearson
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - J Frew
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - C Walker
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - N Richmond
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - M Wilkinson
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - K Wilkes
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - S Driver
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - S West
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - P Karen
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - R L Brooks-Pearson
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - D Ainslie
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - E Wilkins
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - H M McCallum
- Northern Centre for Cancer Care, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| |
Collapse
|
4
|
Nabian N, Ghalehtaki R, Couñago F. Necessity of Pelvic Lymph Node Irradiation in Patients with Recurrent Prostate Cancer after Radical Prostatectomy in the PSMA PET/CT Era: A Narrative Review. Biomedicines 2022; 11:biomedicines11010038. [PMID: 36672547 PMCID: PMC9855373 DOI: 10.3390/biomedicines11010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022] Open
Abstract
The main prostate cancer (PCa) treatments include surgery or radiotherapy (with or without ADT). However, none of the suggested treatments eliminates the risk of lymph node metastases. Conventional imaging methods, including MRI and CT scanning, are not sensitive enough for the diagnosis of lymph node metastases; however, the novel imaging method, PSMA PET/CT scanning, has provided valuable information about the pelvic LN involvement in patients with recurrent PCa (RPCa) after radical prostatectomy. The high sensitivity and negative predictive value enable accurate N staging in PCa patients. In this narrative review, we summarize the evidence on the treatment and extent of radiation in prostate-only or whole-pelvis radiation in patients with positive and negative LN involvement on PSMA PET/CT scans.
Collapse
Affiliation(s)
- Naeim Nabian
- Radiation Oncology Research Center, Cancer Research Institute, Tehran University of Medical Sciences, Tehran P.O. Box 1419733141, Iran
- Department of Radiation Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran P.O. Box 1419733141, Iran
| | - Reza Ghalehtaki
- Radiation Oncology Research Center, Cancer Research Institute, Tehran University of Medical Sciences, Tehran P.O. Box 1419733141, Iran
- Department of Radiation Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran P.O. Box 1419733141, Iran
- Correspondence:
| | - Felipe Couñago
- Department of Radiation Oncology, San Francisco de Asís and La Milagrosa Hospitals, GenesisCare, 28010 Madrid, Spain
| |
Collapse
|
5
|
Persson E, Svanberg N, Scherman J, Jamtheim Gustafsson C, Fridhammar A, Hjalte F, Bäck S, Nilsson P, Gunnlaugsson A, Olsson LE. MRI-only radiotherapy from an economic perspective: Can new techniques in prostate cancer treatment be cost saving? Clin Transl Radiat Oncol 2022; 38:183-187. [DOI: 10.1016/j.ctro.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
|
6
|
Tetar SU, Bruynzeel AM, Verweij L, Bohoudi O, Slotman BJ, Rosario T, Palacios MA, Lagerwaard FJ. Magnetic resonance imaging-guided radiotherapy for intermediate- and high-risk prostate cancer: Trade-off between planning target volume margin and online plan adaption. Phys Imaging Radiat Oncol 2022; 23:92-96. [PMID: 35844255 PMCID: PMC9283928 DOI: 10.1016/j.phro.2022.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Magnetic resonance-guided radiotherapy with daily plan adaptation for intermediate- and high-risk prostate cancer is time and labor intensive. Fifty adapted plans with 3 mm planning target volume (PTV)-margin were compared with non-adapted plans using 3 or 5 mm margins. Adequate (V95% ≥ 95%) prostate coverage was achieved in 49 fractions with 5 mm PTV without plan adaptation, however, coverage of the seminal vesicles (SV) was insufficient in 15 of 50 fractions. There was no insufficient coverage for prostate and SV using plan adaptation with 3 mm. Hence, daily adaptation is recommended to obtain adequate SV-coverage when using 3 mm PTV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Frank J. Lagerwaard
- Corresponding author at: Amsterdam UMC, location VUmc, Postbox 7057, 1007 MB Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Vanhanen A, Reinikainen P, Kapanen M. Radiation-induced prostate swelling during SBRT of the prostate. Acta Oncol 2022; 61:698-704. [PMID: 35435111 DOI: 10.1080/0284186x.2022.2062682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Reduced planning target volume (PTV) margins are commonly used in stereotactic body radiotherapy (SBRT) of the prostate. In addition, MR-only treatment planning is becoming more common in prostate radiotherapy and compared to CT-MRI-based contouring results in notable smaller clinical target volume (CTV). Tight PTV margins coupled with MR-only planning raise a concern whether the margins are adequate enough to cover possible volumetric changes of the prostate. The aim of this study was to evaluate the volumetric change of the prostate and its effect on PTV margin during 5x7.25 Gy SBRT of the prostate. MATERIAL AND METHODS Twenty patients were included in the study. Three MRI scans, first prior to treatment (baseline), second after third fraction (mid-treatment) and third after fifth fraction (end-treatment) were acquired for each patient. Prostate contours were delineated on each MRI scan and used to assess the prostate volume and maximum prostate diameter on left-right (LR), anterior-posterior (AP) and superior-inferior (SI) directions at baseline, mid- and end-treatment. RESULTS Median (IQR) change in the prostate volume relative to the baseline was 12.0% (3.1, 17.7) and 9.2% (2.0, 18.9) at the mid- and end-treatment, respectively, and the change was statistically significant (p = 0.004 and p = 0.020, respectively). Compared to the baseline, median increase in the maximum LR, SI and AP prostate diameters were 0.8, 2.3 and 1.5 mm at mid-treatment, and 0.5, 2.5 and 2.3 mm at end-treatment, respectively. CONCLUSION If prostate contouring is based solely on MRI (e.g., in MR-only protocol), additional margin of 1-2 mm should be considered to account for prostate swelling. The study is part of clinical trial NCT02319239.
Collapse
Affiliation(s)
- Antti Vanhanen
- Department of Oncology, Unit of Radiotherapy, Tampere University Hospital, Tampere, Finland
- Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, Tampere, Finland
| | - Petri Reinikainen
- Department of Oncology, Unit of Radiotherapy, Tampere University Hospital, Tampere, Finland
| | - Mika Kapanen
- Department of Medical Physics, Medical Imaging Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
8
|
Srinivasan S, Dasgupta A, Chatterjee A, Baheti A, Engineer R, Gupta T, Murthy V. The Promise of Magnetic Resonance Imaging in Radiation Oncology Practice in the Management of Brain, Prostate, and GI Malignancies. JCO Glob Oncol 2022; 8:e2100366. [PMID: 35609219 PMCID: PMC9173575 DOI: 10.1200/go.21.00366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Magnetic resonance imaging (MRI) has a key role to play at multiple steps of the radiotherapy (RT) treatment planning and delivery process. Development of high-precision RT techniques such as intensity-modulated RT, stereotactic ablative RT, and particle beam therapy has enabled oncologists to escalate RT dose to the target while restricting doses to organs at risk (OAR). MRI plays a critical role in target volume delineation in various disease sites, thus ensuring that these high-precision techniques can be safely implemented. Accurate identification of gross disease has also enabled selective dose escalation as a means to widen the therapeutic index. Morphological and functional MRI sequences have also facilitated an understanding of temporal changes in target volumes and OAR during a course of RT, allowing for midtreatment volumetric and biological adaptation. The latest advancement in linear accelerator technology has led to the incorporation of an MRI scanner in the treatment unit. MRI-guided RT provides the opportunity for MRI-only workflow along with online adaptation for either target or OAR or both. MRI plays a key role in post-treatment response evaluation and is an important tool for guiding decision making. In this review, we briefly discuss the RT-related applications of MRI in the management of brain, prostate, and GI malignancies.
Collapse
Affiliation(s)
- Shashank Srinivasan
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Akshay Baheti
- Department of Radiodiagnosis, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Reena Engineer
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vedang Murthy
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
9
|
Zwart LG, Ong F, ten Asbroek LA, van Dieren EB, Koch SA, Bhawanie A, de Wit E, Dasselaar JJ. Cone-beam computed tomography-guided online adaptive radiotherapy is feasible for prostate cancer patients. Phys Imaging Radiat Oncol 2022; 22:98-103. [PMID: 35602545 PMCID: PMC9115122 DOI: 10.1016/j.phro.2022.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022] Open
Abstract
Online adaptive radiotherapy (oART) is achievable within twenty minutes. Cone-beam computed tomography-guided oART is feasible in daily clinical practice. The adapted plan was always preferred over the scheduled plan.
Background and purpose Studies have shown the potential of cone-beam computed tomography (CBCT)-guided online adaptive radiotherapy (oART) for prostate cancer patients in a simulation environment. The aim of this study was to evaluate the feasibility of the clinical implementation of CBCT-guided oART for prostate cancer patients. Materials and methods Between February and July 2020, eleven prostate cancer patients were treated with CBCT-guided oART using a fractionation scheme of 20 × 3 Gy to the prostate and 20 × 2.7/3.0 Gy to the seminal vesicles for more advanced stages. The on-couch adaptive workflow consisted of influencer (prostate, seminal vesicles, rectum, bladder) review, target review, scheduled (re-calculated) and adapted (re-optimized) plan generation, an independent QA procedure and treatment delivery. Treatment time, proportion of adapted fractions and reasons for plan adaptation were evaluated. Results Mean total treatment time (±SD) from CBCT acquisition to end of treatment delivery was 17.5 ± 3.2 min (range: 10.8–28.8 min). In all 220 fractions, the PTV coverage was increased for the adapted plan compared to the scheduled plan. The V60Gy of bladder and rectum were below the constraints (<5% and <3%) for both scheduled and adapted plans in 171 out of 220 fractions and for the adapted plan only in 30 out of 220 fractions. In 19 out of 220 fractions, the V60Gy of the bladder and/or rectum was above the constraint for the adapted plan. Conclusions The clinical implementation of CBCT-guided oART is feasible for prostate cancer patients. The adaptive workflow is possible within twenty minutes on average with a dedicated team.
Collapse
|
10
|
Bernstein D, Taylor A, Nill S, Imseeh G, Kothari G, Llewelyn M, De Paepe KN, Rockall A, Shiarli AM, Oelfke U. An Inter-observer Study to Determine Radiotherapy Planning Target Volumes for Recurrent Gynaecological Cancer Comparing Magnetic Resonance Imaging Only With Computed Tomography-Magnetic Resonance Imaging. Clin Oncol (R Coll Radiol) 2021; 33:307-313. [PMID: 33640196 PMCID: PMC8051139 DOI: 10.1016/j.clon.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
AIMS Target delineation uncertainty is arguably the largest source of geometric uncertainty in radiotherapy. Several factors can affect it, including the imaging modality used for delineation. It is accounted for by applying safety margins to the target to produce a planning target volume (PTV), to which treatments are designed. To determine the margin, the delineation uncertainty is measured as the delineation error, and then a margin recipe used. However, there is no published evidence of such analysis for recurrent gynaecological cancers (RGC). The aims of this study were first to quantify the delineation uncertainty for RGC gross tumour volumes (GTVs) and to calculate the associated PTV margins and then to quantify the difference in GTV, delineation uncertainty and PTV margin, between a computed tomography-magnetic resonance imaging (CT-MRI) and MRI workflow. MATERIALS AND METHODS Seven clinicians delineated the GTV for 20 RGC tumours on co-registered CT and MRI datasets (CT-MRI) and on MRI alone. The delineation error, the standard deviation of distances from each clinician's outline to a reference, was measured and the required PTV margin determined. Differences between using CT-MRI and MRI alone were assessed. RESULTS The overall delineation error and the resulting margin were 3.1 mm and 8.5 mm, respectively, for CT-MRI, reducing to 2.5 mm and 7.1 mm, respectively, for MRI alone. Delineation errors and therefore the theoretical margins, varied widely between patients. MRI tumour volumes were on average 15% smaller than CT-MRI tumour volumes. DISCUSSION This study is the first to quantify delineation error for RGC tumours and to calculate the corresponding PTV margin. The determined margins were larger than those reported in the literature for similar patients, bringing into question both current margins and margin calculation methods. The wide variation in delineation error between these patients suggests that applying a single population-based margin may result in PTVs that are suboptimal for many. Finally, the reduced tumour volumes and safety margins suggest that patients with RGC may benefit from an MRI-only treatment workflow.
Collapse
Affiliation(s)
- D Bernstein
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.
| | - A Taylor
- Gynaecology Unit, Royal Marsden NHS Foundation Trust, London, UK
| | - S Nill
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, London, UK
| | - G Imseeh
- Gynaecology Unit, Royal Marsden NHS Foundation Trust, London, UK; Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, London, UK
| | - G Kothari
- Gynaecology Unit, Royal Marsden NHS Foundation Trust, London, UK; Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - M Llewelyn
- Gynaecology Unit, Royal Marsden NHS Foundation Trust, London, UK
| | - K N De Paepe
- Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, London, UK; Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - A Rockall
- Department of Radiology, Royal Marsden NHS Foundation Trust, London, UK; Department of Surgery and Cancer, Imperial College London, London, UK
| | - A-M Shiarli
- Gynaecology Unit, Royal Marsden NHS Foundation Trust, London, UK
| | - U Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, London, UK
| |
Collapse
|
11
|
Kavaluus H, Nousiainen K, Kaijaluoto S, Seppälä T, Saarilahti K, Tenhunen M. Determination of acceptance criteria for geometric accuracy of magnetic resonance imaging scanners used in radiotherapy planning. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 17:58-64. [PMID: 33898780 PMCID: PMC8058029 DOI: 10.1016/j.phro.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/23/2022]
Abstract
Geometric accuracy of MRI-scanners in radiotherapy planning must be evaluated. Phantom acquisitions with standard and clinical sequences were performed. Geometric distortions were determined in several volumes of interest. We recommend acceptance criteria for MRI-scanners in radiotherapy planning. Explicit and simple acceptance criteria enable effective regulatory inspections.
Background and Purpose Magnetic resonance imaging is increasingly used in radiotherapy planning; yet, the performance of the utilized scanners is rarely regulated by any authority. The aim of this study was to determine the geometric accuracy of several magnetic resonance imaging scanners used for radiotherapy planning, and to establish acceptance criteria for such scanners. Materials and Methods The geometric accuracy of five different scanners was measured with three sequences using a commercial large-field-of-view phantom. The distortion magnitudes were determined in spherical volumes around the scanner isocenter and in cylindrical volumes along scanner z-axis. The repeatability of the measurements was determined on a single scanner with two quality assurance sequences with three single-setup and seven repeated-setup measurements. Results For all scanners and sequences except one, the mean and median distortion magnitude was <1 mm and <2 mm in spherical volumes with diameters of 400 mm and 500 mm, respectively. For all sequences maximum distortion was <2 mm in spherical volume with diameter of 300 mm. The mean standard deviation of marker-by-marker distortion magnitudes over repeated acquisitions was ≤0.6 mm with both tested sequences. Conclusions All tested scanners were geometrically accurate for their current use in radiotherapy planning. The acceptance criteria of geometric accuracy for regulatory inspections of a supervising authority could be set according to these results.
Collapse
Affiliation(s)
- Henna Kavaluus
- Radiation and Nuclear Safety Authority, STUK, Laippatie 4, FI-00880 Helsinki, Finland.,HUS Cancer Center, Helsinki University Hospital and University of Helsinki, P.O. Box 180, FI-00029 Helsinki, Finland.,Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Katri Nousiainen
- Radiation and Nuclear Safety Authority, STUK, Laippatie 4, FI-00880 Helsinki, Finland.,HUS Cancer Center, Helsinki University Hospital and University of Helsinki, P.O. Box 180, FI-00029 Helsinki, Finland.,Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland.,HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, B.O. Box 340, FI-00029 Helsinki, Finland
| | - Sampsa Kaijaluoto
- Radiation and Nuclear Safety Authority, STUK, Laippatie 4, FI-00880 Helsinki, Finland
| | - Tiina Seppälä
- HUS Cancer Center, Helsinki University Hospital and University of Helsinki, P.O. Box 180, FI-00029 Helsinki, Finland
| | - Kauko Saarilahti
- HUS Cancer Center, Helsinki University Hospital and University of Helsinki, P.O. Box 180, FI-00029 Helsinki, Finland
| | - Mikko Tenhunen
- HUS Cancer Center, Helsinki University Hospital and University of Helsinki, P.O. Box 180, FI-00029 Helsinki, Finland
| |
Collapse
|
12
|
Persson E, Jamtheim Gustafsson C, Ambolt P, Engelholm S, Ceberg S, Bäck S, Olsson LE, Gunnlaugsson A. MR-PROTECT: Clinical feasibility of a prostate MRI-only radiotherapy treatment workflow and investigation of acceptance criteria. Radiat Oncol 2020; 15:77. [PMID: 32272943 PMCID: PMC7147064 DOI: 10.1186/s13014-020-01513-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Retrospective studies on MRI-only radiotherapy have been presented. Widespread clinical implementations of MRI-only workflows are however limited by the absence of guidelines. The MR-PROTECT trial presents an MRI-only radiotherapy workflow for prostate cancer using a new single sequence strategy. The workflow incorporated the commercial synthetic CT (sCT) generation software MriPlanner™ (Spectronic Medical, Helsingborg, Sweden). Feasibility of the workflow and limits for acceptance criteria were investigated for the suggested workflow with the aim to facilitate future clinical implementations. METHODS An MRI-only workflow including imaging, post imaging tasks, treatment plan creation, quality assurance and treatment delivery was created with questionnaires. All tasks were performed in a single MR-sequence geometry, eliminating image registrations. Prospective CT-quality assurance (QA) was performed prior treatment comparing the PTV mean dose between sCT and CT dose-distributions. Retrospective analysis of the MRI-only gold fiducial marker (GFM) identification, DVH- analysis, gamma evaluation and patient set-up verification using GFMs and cone beam CT were performed. RESULTS An MRI-only treatment was delivered to 39 out of 40 patients. The excluded patient was too large for the predefined imaging field-of-view. All tasks could successfully be performed for the treated patients. There was a maximum deviation of 1.2% in PTV mean dose was seen in the prospective CT-QA. Retrospective analysis showed a maximum deviation below 2% in the DVH-analysis after correction for rectal gas and gamma pass-rates above 98%. MRI-only patient set-up deviation was below 2 mm for all but one investigated case and a maximum of 2.2 mm deviation in the GFM-identification compared to CT. CONCLUSIONS The MR-PROTECT trial shows the feasibility of an MRI-only prostate radiotherapy workflow. A major advantage with the presented workflow is the incorporation of a sCT-generation method with multi-vendor capability. The presented single sequence approach are easily adapted by other clinics and the general implementation procedure can be replicated. The dose deviation and the gamma pass-rate acceptance criteria earlier suggested was achievable, and these limits can thereby be confirmed. GFM-identification acceptance criteria are depending on the choice of identification method and slice thickness. Patient positioning strategies needs further investigations to establish acceptance criteria.
Collapse
Affiliation(s)
- Emilia Persson
- Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Klinikgatan 5, 221 85, Lund, Sweden.
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Inga-Marie Nilssons gata 49, 205 02, Malmö, Sweden.
| | - Christian Jamtheim Gustafsson
- Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Klinikgatan 5, 221 85, Lund, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Inga-Marie Nilssons gata 49, 205 02, Malmö, Sweden
| | - Petra Ambolt
- Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Klinikgatan 5, 221 85, Lund, Sweden
| | - Silke Engelholm
- Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Klinikgatan 5, 221 85, Lund, Sweden
| | - Sofie Ceberg
- Department of Medical Radiation Physics, Lund University, Barngatan 4, 222 85, Lund, Sweden
| | - Sven Bäck
- Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Klinikgatan 5, 221 85, Lund, Sweden
| | - Lars E Olsson
- Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Klinikgatan 5, 221 85, Lund, Sweden
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Inga-Marie Nilssons gata 49, 205 02, Malmö, Sweden
| | - Adalsteinn Gunnlaugsson
- Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Klinikgatan 5, 221 85, Lund, Sweden
| |
Collapse
|
13
|
Thorwarth D. Imaging science and development in modern high-precision radiotherapy. Phys Imaging Radiat Oncol 2019; 12:63-66. [PMID: 33458297 PMCID: PMC7807660 DOI: 10.1016/j.phro.2019.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| |
Collapse
|
14
|
Grosu AL, van der Heide UA. Imaging for radiation treatment planning and monitoring in prostate Cancer: Precision, personalization, individualization of therapy. Phys Imaging Radiat Oncol 2019; 11:61-62. [PMID: 33458279 PMCID: PMC7807567 DOI: 10.1016/j.phro.2019.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|