1
|
Iramina H, Nakamura M, Sasaki M, Mizowaki T. Performance of cone-beam computed tomography imaging during megavoltage beam irradiation under phase-gated conditions. Phys Med 2024; 123:103409. [PMID: 38870644 DOI: 10.1016/j.ejmp.2024.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
PURPOSE Target positions should be acquired during beam delivery for accurate lung stereotactic body radiotherapy. We aimed to perform kilovoltage (kV) imaging during beam irradiation (intra-irradiation imaging) under phase-gated conditions and evaluate its performance. METHODS Catphan 504 and QUASAR respiratory motion phantoms were used to evaluate image quality and target detectability, respectively. TrueBeam STx linac and the Developer Mode was used. The imaging parameters were 125 kVp and 1.2 mAs/projection. Flattened megavoltage (MV) X-ray beam energies 6, 10 and 15 MV and un-flattened beam energies 6 and 10 MV were used with field sizes of 5 × 5 and 15 × 15 cm2 and various frame rates for intra-irradiation imaging. In addition, using a QUASAR phantom, intra-irradiation imaging was performed during intensity-modulated plan delivery. The root-mean-square error (RMSE) of the CT-number for the inserted rods, image noise, visual assessment, and contrast-to-noise ratio (CNR) were evaluated. RESULTS The RMSEs of intra-irradiation cone-beam computed tomography (CBCT) images under gated conditions were 50-230 Hounsfield Unit (HU) (static < 30 HU). The noise of the intra-irradiation CBCT images under gated conditions was 15-35 HU, whereas that of the standard CBCT images was 8.8-27.2 HU. Lower frame rates exhibited large RMSEs and noise; however, the iterative reconstruction algorithm (IR) was effective at improving these values. Approximately 7 fps with the IR showed an equivalent CNR of 15 fps without the IR. The target was visible on all the gated intra-irradiation CBCT images. CONCLUSION Several image quality improvements are required; however, intra-irradiated CBCT images showed good visual target detection.
Collapse
Affiliation(s)
- Hiraku Iramina
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Mitsuhiro Nakamura
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Makoto Sasaki
- Division of Clinical Radiology Service, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
2
|
Meng YJ, Mankuzhy NP, Chawla M, Lee RP, Yorke ED, Zhang Z, Gelb E, Lim SB, Cuaron JJ, Wu AJ, Simone CB, Gelblum DY, Lovelock DM, Harris W, Rimner A. A Prospective Study on Deep Inspiration Breath Hold Thoracic Radiation Therapy Guided by Bronchoscopically Implanted Electromagnetic Transponders. Cancers (Basel) 2024; 16:1534. [PMID: 38672616 PMCID: PMC11048337 DOI: 10.3390/cancers16081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Electromagnetic transponders bronchoscopically implanted near the tumor can be used to monitor deep inspiration breath hold (DIBH) for thoracic radiation therapy (RT). The feasibility and safety of this approach require further study. METHODS We enrolled patients with primary lung cancer or lung metastases. Three transponders were implanted near the tumor, followed by simulation with DIBH, free breathing, and 4D-CT as backup. The initial gating window for treatment was ±5 mm; in a second cohort, the window was incrementally reduced to determine the smallest feasible gating window. The primary endpoint was feasibility, defined as completion of RT using transponder-guided DIBH. Patients were followed for assessment of transponder- and RT-related toxicity. RESULTS We enrolled 48 patients (35 with primary lung cancer and 13 with lung metastases). The median distance of transponders to tumor was 1.6 cm (IQR 0.6-2.8 cm). RT delivery ranged from 3 to 35 fractions. Transponder-guided DIBH was feasible in all but two patients (96% feasible), where it failed because the distance between the transponders and the antenna was >19 cm. Among the remaining 46 patients, 6 were treated prone to keep the transponders within 19 cm of the antenna, and 40 were treated supine. The smallest feasible gating window was identified as ±3 mm. Thirty-nine (85%) patients completed one year of follow-up. Toxicities at least possibly related to transponders or the implantation procedure were grade 2 in six patients (six incidences, cough and hemoptysis), grade 3 in three patients (five incidences, cough, dyspnea, pneumonia, and supraventricular tachycardia), and grade 4 pneumonia in one patient (occurring a few days after implantation but recovered fully and completed RT). Toxicities at least possibly related to RT were grade 2 in 18 patients (41 incidences, most commonly cough, fatigue, and pneumonitis) and grade 3 in four patients (seven incidences, most commonly pneumonia), and no patients had grade 4 or higher toxicity. CONCLUSIONS Bronchoscopically implanted electromagnetic transponder-guided DIBH lung RT is feasible and safe, allowing for precise tumor targeting and reduced normal tissue exposure. Transponder-antenna distance was the most common challenge due to a limited antenna range, which could sometimes be circumvented by prone positioning.
Collapse
Affiliation(s)
- Yuzhong Jeff Meng
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Nikhil P. Mankuzhy
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Mohit Chawla
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (M.C.); (R.P.L.)
| | - Robert P. Lee
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (M.C.); (R.P.L.)
| | - Ellen D. Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Zhigang Zhang
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Emily Gelb
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Seng Boh Lim
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - John J. Cuaron
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Abraham J. Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Charles B. Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
- New York Proton Center, New York, NY 10035, USA; (C.B.S.II)
| | - Daphna Y. Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Dale Michael Lovelock
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Wendy Harris
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
- Department of Radiation Oncology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106 Freiburg, Germany
| |
Collapse
|
3
|
Tanaka H, Ono T, Ueda K, Karita M, Manabe Y, Kajima M, Sera T, Fujimoto K, Yuasa Y, Shiinoki T. Deep inspiration breath hold real-time tumor-tracking radiation therapy (DBRT) as a novel stereotactic body radiation therapy approach for lung tumors. Sci Rep 2024; 14:2400. [PMID: 38287139 PMCID: PMC10825222 DOI: 10.1038/s41598-024-53020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Radiotherapy with deep inspiration breath hold (DIBH) reduces doses to the lungs and organs at risk. The stability of breath holding and reproducibility of tumor location are higher during expiration than during inspiration; therefore, we developed an irradiation method combining DIBH and real-time tumor-tracking radiotherapy (RTRT) (DBRT). Nine patients were enrolled in this study. Fiducial markers were placed near tumors using bronchoscopy. Treatment planning computed tomography (CT) was performed thrice during DIBH, assisted by spirometer-based device. Each CT scan was fused using fiducial markers. Gross tumor volume (GTV) was contoured for each dataset and summed to create GTVsum; adding a 5-mm margin around GTVsum generated the planning target volume. The prescribed dose was mainly 42 Gy in four fractions. The treatment plan was created using DIBH CT (DBRT-plan), with a similar treatment plan created for expiratory CT for cases for which DBRT could not be performed (conv-plan). Vx defined as the volume of the lung received x Gy, and the mean lung dose, V20, V10, and V5 were evaluated. DBRT was completed in all patients. Mean dose, V20, and V10 were significantly lower in the DBRT-plan than in the conv-plan (all p = 0.003). Mean rates of decrease for mean dose, V20, and V10 were 14.0%, 27.6%, and 19.1%, respectively. No significant difference was observed in V5. We developed DBRT, a stereotactic body radiation therapy performed with the DIBH technique; it combines a spirometer-based breath-hold support system with an RTRT system. All patients who underwent DBRT completed the procedure without any technical or mechanical complications. This is a promising methodology that may significantly reduce lung doses.
Collapse
Affiliation(s)
- Hidekazu Tanaka
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan.
| | - Taiki Ono
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Kazushi Ueda
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Masako Karita
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Yuki Manabe
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Miki Kajima
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Tatsuhiro Sera
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Koya Fujimoto
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Yuki Yuasa
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| | - Takehiro Shiinoki
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, 755-8505, Japan
| |
Collapse
|
4
|
Cheng JC, Buduhan G, Venkataraman S, Tan L, Sasaki D, Bashir B, Ahmed N, Kidane B, Sivananthan G, Koul R, Leylek A, Butler J, McCurdy B, Wong R, Kim JO. Endobronchially Implanted Real-Time Electromagnetic Transponder Beacon-Guided, Respiratory-Gated SABR for Moving Lung Tumors: A Prospective Phase 1/2 Cohort Study. Adv Radiat Oncol 2023; 8:101243. [PMID: 37408673 PMCID: PMC10318214 DOI: 10.1016/j.adro.2023.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 07/07/2023] Open
Abstract
Purpose Endobronchial electromagnetic transponder beacons (EMT) provide real-time, precise positional data of moving lung tumors. We report results of a phase 1/2, prospective, single-arm cohort study evaluating the treatment planning effects of EMT-guided SABR for moving lung tumors. Methods and Materials Eligible patients were adults, Eastern Cooperative Oncology Group 0 to 2, with T1-T2N0 non-small cell lung cancer or pulmonary metastasis ≤4 cm with motion amplitude ≥5 mm. Three EMTs were endobronchially implanted using navigational bronchoscopy. Four-dimensional free-breathing computed tomography simulation scans were obtained, and end-exhalation phases were used to define the gating window internal target volume. A 3-mm expansion of gating window internal target volume defined the planning target volume (PTV). EMT-guided, respiratory-gated (RG) SABR was delivered (54 Gy/3 fractions or 48 Gy/4 fractions) using volumetric modulated arc therapy. For each RG-SABR plan, a 10-phase image-guided SABR plan was generated for dosimetric comparison. PTV/organ-at-risk (OAR) metrics were tabulated and analyzed using the Wilcoxon signed-rank pair test. Treatment outcomes were evaluated using RECIST (Response Evaluation Criteria in Solid Tumours; version 1.1). Results Of 41 patients screened, 17 were enrolled and 2 withdrew from the study. Median age was 73 years, with 7 women. Sixty percent had T1/T2 non-small cell lung cancer and 40% had M1 disease. Median tumor diameter was 1.9 cm with 73% of targets located peripherally. Mean respiratory tumor motion was 1.25 cm (range, 0.53-4.04 cm). Thirteen tumors were treated with EMT-guided SABR and 47% of patients received 48 Gy in 4 fractions while 53% received 54 Gy in 3 fractions. RG-SABR yielded an average PTV reduction of 46.9% (P < .005). Lung V5, V10, V20, and mean lung dose had mean relative reductions of 11.3%, 20.3%, 31.1%, and 20.3%, respectively (P < .005). Dose to OARs was significantly reduced (P < .05) except for spinal cord. At 6 months, mean radiographic tumor volume reduction was 53.5% (P < .005). Conclusions EMT-guided RG-SABR significantly reduced PTVs of moving lung tumors compared with image-guided SABR. EMT-guided RG-SABR should be considered for tumors with large respiratory motion amplitudes or those located in close proximity to OARs.
Collapse
Affiliation(s)
- Jui Chih Cheng
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gordon Buduhan
- Thoracic Surgery, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Lawrence Tan
- Thoracic Surgery, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Sasaki
- Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Bashir Bashir
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Naseer Ahmed
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Biniam Kidane
- Thoracic Surgery, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gokulan Sivananthan
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rashmi Koul
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ahmet Leylek
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James Butler
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Boyd McCurdy
- Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Ralph Wong
- Medical Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julian O. Kim
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Guo B, Stephans K, Woody N, Antolak A, Moazzezi M, Xia P. Online verification of breath-hold reproducibility using kV-triggered imaging for liver stereotactic body radiation therapy. J Appl Clin Med Phys 2023; 24:e14045. [PMID: 37211920 PMCID: PMC10476975 DOI: 10.1002/acm2.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/23/2023] Open
Abstract
PURPOSE To introduce a new technique for online breath-hold verification for liver stereotactic body radiation therapy (SBRT) based on kilovoltage-triggered imaging and liver dome positions. MATERIAL AND METHODS Twenty-five liver SBRT patients treated with deep inspiration breath-hold were included in this IRB-approved study. To verify the breath-hold reproducibility during treatment, a KV-triggered image was acquired at the beginning of each breath-hold. The liver dome position was visually compared with the expected upper/lower liver boundaries created by expanding/contracting the liver contour 5 mm in the superior-inferior direction. If the liver dome was within the boundaries, delivery continued; otherwise, beam was held manually, and the patient was instructed to take another breath-hold until the liver dome fell within boundaries. The liver dome was delineated on each triggered image. The mean distance between the delineated liver dome to the projected planning liver contour was defined as liver dome position error edome . The mean and maximum edome of each patient were compared between no breath-hold verification (all triggered images) and with online breath-hold verification (triggered images without beam-hold). RESULTS Seven hundred thirteen breath-hold triggered images from 92 fractions were analyzed. For each patient, an average of 1.5 breath-holds (range 0-7 for all patients) resulted in beam-hold, accounting for 5% (0-18%) of all breath-holds; online breath-hold verification reduced the mean edome from 3.1 mm (1.3-6.1 mm) to 2.7 mm (1.2-5.2 mm) and the maximum edome from 8.6 mm (3.0-18.0 mm) to 6.7 mm (3.0-9.0 mm). The percentage of breath-holds with edome >5 mm was reduced from 15% (0-42%) without breath-hold verification to 11% (0-35%) with online breath-hold verification. online breath-hold verification eliminated breath-holds with edome >10 mm, which happened in 3% (0-17%) of all breath-holds. CONCLUSION It is clinically feasible to monitor the reproducibility of each breath-hold during liver SBRT treatment using triggered images and liver dome. Online breath-hold verification improves the treatment accuracy for liver SBRT.
Collapse
Affiliation(s)
- Bingqi Guo
- Department of Radiation OncologyTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| | - Kevin Stephans
- Department of Radiation OncologyTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| | - Neil Woody
- Department of Radiation OncologyTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| | - Alexander Antolak
- Department of Radiation OncologyTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| | - Mojtaba Moazzezi
- Department of Radiation OncologyTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| | - Ping Xia
- Department of Radiation OncologyTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
6
|
Nguyen D, Reinoso R, Farah J, Yossi S, Lorchel F, Passerat V, Louet E, Pouchard I, Khodri M, Barbet N. Reproducibility of surface-based deep inspiration breath-hold technique for lung stereotactic body radiotherapy on a closed-bore gantry linac. Phys Imaging Radiat Oncol 2023; 26:100448. [PMID: 37252251 PMCID: PMC10213090 DOI: 10.1016/j.phro.2023.100448] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Background and purpose Tumor motion and delivery efficiency are two main challenges of lung stereotactic body radiotherapy (SBRT). The present work implemented the deep inspiration breath hold technique (DIBH) with surface guided radiation therapy (SGRT) on closed-bore linacs and investigated the correlation between SGRT data and internal target position. Materials and methods Thirteen lung SBRT patients treated in DIBH using a closed-bore gantry linac and a ring-mounted SGRT system were retrospectively analysed. Visual coaching was used to achieve DIBH with a ± 1 mm threshold window in the anterior-posterior direction. Three kV-CBCTs were added to the treatment workflow and examined offline to verify intra-fraction tumor position. Surface-based DIBH was analysed using SGRT treatment reports and an in-house python script. Data from 73 treatment sessions and 175 kV-CBCTs were studied. Correlations between target and surface positions were studied with Linear Mixed Models. Results Median intra-fraction tumor motion was 0.8 mm (range: 0.7-1.3 mm) in the anterior-posterior direction, 1.2 mm (range: 1-1.7 mm) in the superior-inferior direction, and 1 mm (range: 0.7-1.1 mm) in the left-right direction, with rotations of <1° (range: 0.6°-1.1°) degree in all three directions. Planned target volumes and healthy lung volumes receiving 12.5 Gy and 13.5 Gy were reduced on average by 67% and 54%, respectively. Conclusions Lung SBRT in DIBH with the ring-mounted SGRT system proved reproducible. The surface monitoring provided by SGRT was found to be a reliable surrogate for internal target motion. Moreover, the implementation of DIBH technique helped reduce target volumes and lung doses.
Collapse
Affiliation(s)
- Daniel Nguyen
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Rebeca Reinoso
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Jad Farah
- Vision RT Ltd., Dove House, Arcadia Avenue, London N3 2JU, United Kingdom
| | - Sena Yossi
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Fabrice Lorchel
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Victor Passerat
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Estelle Louet
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Isabelle Pouchard
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Mustapha Khodri
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| | - Nicolas Barbet
- ORLAM’s Group, Department of Radiation Oncology, Mâcon, Villeurbanne, Lyon, France
| |
Collapse
|
7
|
Tanabe Y, Tanaka H. Statistical evaluation of the effectiveness of dual amplitude-gated stereotactic body radiotherapy using fiducial markers and lung volume. Phys Imaging Radiat Oncol 2022; 24:82-87. [PMID: 36267878 PMCID: PMC9576976 DOI: 10.1016/j.phro.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Approximately 30% of the fiducial markers demonstrated a low correlation on comparing lung volumes. Monitoring of lung volume can achieve stable tracking of lung tumors. Dual monitoring by employing the marker and lung volume may possibly avoid the deterioration of monitoring accuracy.
Background and purpose The low tracking accuracy of lung stereotactic body radiotherapy (SBRT) risks reduced treatment efficacy. We used four-dimensional computed tomography (4DCT) images to determine the correlation between changes in fiducial marker positions and lung volume for lung tumors, and we evaluated the effectiveness of the combined use of these images in lung SBRT. Materials and methods Data of 30 patients who underwent fiducial marker placement were retrospectively analyzed. We calculated the motion amplitudes of the center of gravity coordinates of the lung tumor and fiducial markers in each phase and the ipsilateral, contralateral, and bilateral lung volumes using 4DCT. Moreover, we calculated the cross-correlation coefficient between the fiducial marker position and the lung volume changes waveform for the motion amplitude waveform of the lung tumor over three gating windows (all phases, ≤2 mm3, and ≤3 mm3). Results Compared with the lung volume, approximately 30 % of the fiducial markers demonstrated a low correlation with the lung tumor. In the ≤2 mm3 and ≤3 mm3 gating windows, the cross-correlation coefficients between the lung tumor and the optimal marker (r > 0.9: 83 % and 86 %) were significantly different for all fiducial markers (r > 0.9: 39 %, 53 %) and the ipsilateral (r > 0.9: 35 % and 40 %), contralateral (r > 0.9: 44 % and 41 %), and bilateral (r > 0.9: 39 % and 45 %) lung volumes. Conclusions Some of the fiducial markers showed a low correlation with the lung tumor. This study indicated that the combined use of lung volume monitoring can improve tracking accuracy.
Collapse
Affiliation(s)
- Yoshinori Tanabe
- Department of Radiological Technology, Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama-shi, 700-8558, Japan,Corresponding author.
| | - Hidekazu Tanaka
- Department of Radiation Oncology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
8
|
Mørkeset ST, Lervåg C, Lund JÅ, Jensen C. Clinical experience of volumetric-modulated flattening filter free stereotactic body radiation therapy of lesions in the lung with deep inspiration breath-hold. J Appl Clin Med Phys 2022; 23:e13733. [PMID: 35867387 PMCID: PMC9512343 DOI: 10.1002/acm2.13733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 11/05/2022] Open
Abstract
This clinical study aimed to evaluate lung cancer patients' ability to perform deep inspiration breath-hold (DIBH) during CT simulation and throughout the treatment course of stereotactic body radiation therapy (SBRT). In addition, target sizes, organ at risk (OAR) sizes, and doses to the respective volumes in filter-free volumetric-modulated arc therapy plans performed under free-breathing (FB) and DIBH conditions were evaluated. Twenty-one patients with peripheral lesions were included, of which 13 were eligible for SBRT. All patients underwent training for breath-hold during CT, and if they complied with the requirements, two CT scans were obtained: CT scan in DIBH and a four-dimensional CT scan in FB. The treatment plans in FB and DIBH were generated, and the dose parameters and volume sizes were compared. The endpoints for evaluation were patient compliance, target dose coverage, and doses to the OARs. This clinical study showed high patient DIBH compliance during both CT simulation and treatment for patients with lung cancer. A significant reduction in target volumes was achieved with SBRT in DIBH, in addition to significantly decreased doses to the heart, chest wall, and lungs. DIBH in SBRT of lung lesions is feasible, and a routine to manage intra-fractional deviation should be established upon implementation.
Collapse
Affiliation(s)
- Siri T Mørkeset
- Department of Oncology and Rehabilitation, Møre and Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway
| | - Christoffer Lervåg
- Department of Oncology and Rehabilitation, Møre and Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway
| | - Jo-Åsmund Lund
- Department of Oncology and Rehabilitation, Møre and Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway.,Department of Health Sciences in Ålesund, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Ålesund, Norway
| | - Christer Jensen
- Department of Health Sciences in Ålesund, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Ålesund, Norway.,Department of Medicine and Healthcare, Møre and Romsdal Hospital Trust, Ålesund Hospital, Ålesund, Norway
| |
Collapse
|
9
|
Harris W, Yorke E, Li H, Czmielewski C, Chawla M, Lee RP, Hotca-Cho A, McKnight D, Rimner A, Lovelock DM. Can bronchoscopically implanted anchored electromagnetic transponders be used to monitor tumor position and lung inflation during deep inspiration breath-hold lung radiotherapy? Med Phys 2022; 49:2621-2630. [PMID: 35192211 PMCID: PMC9007909 DOI: 10.1002/mp.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To evaluate the efficacy of using bronchoscopically implanted anchored electromagnetic transponders (EMTs) as surrogates for 1) tumor position and 2) repeatability of lung inflation during deep-inspiration breath-hold (DIBH) lung radiotherapy. METHODS 41 patients treated with either hypofractionated (HF) or conventional (CF) lung radiotherapy on an IRB approved prospective protocol using coached DIBH were evaluated for this study. Three anchored EMTs were bronchoscopically implanted into small airways near or within the tumor. DIBH treatment was gated by tracking the EMT positions. Breath-hold cone-beam-CTs (CBCTs) were acquired prior to every HF treatment or weekly for CF patients. Retrospectively, rigid registrations between each CBCT and the breath-hold planning CT were performed to match to 1) spine 2) EMTs and 3) tumor. Absolute differences in registration between EMTs and spine were analyzed to determine surrogacy of EMTs for lung inflation. Differences in registration between EMTs and tumor were analyzed to determine surrogacy of EMTs for tumor position. The stability of the EMTs was evaluated by analyzing the difference between inter-EMT displacements recorded at treatment from that of the plan for the CF patients, as well as the geometric residual (GR) recorded at the time of treatment. RESULTS 219 CBCTs were analyzed. The average differences between EMT centroid and spine registration among all CBCTs were 0.45±0.42cm, 0.29±0.28cm, and 0.18±0.15cm in superior-inferior (SI), anterior-posterior (AP) and lateral directions, respectively. Only 59% of CBCTs had differences in registration <0.5cm for EMT centroid compared to spine, indicating that lung inflation is not reproducible from simulation to treatment. The average differences between EMT centroid and tumor registration among all CBCTs were 0.13±0.13cm, 0.14±0.13cm and 0.12±0.12cm in SI, AP and lateral directions, respectively. 95% of CBCTs resulted in <0.5cm change between EMT centroid and tumor registration, indicating that EMT positions correspond well with tumor position during treatments. Six out of the 7 recorded CF patients had average differences in inter-EMT displacements to be ≤0.26cm and average GR ≤0.22cm, indicating that the EMTs are stable throughout treatment. CONCLUSIONS Bronchoscopically implanted anchored EMTs are good surrogates for tumor position and are reliable for maintaining tumor position when tracked during DIBH treatment, as long as the tumor size and shape are stable. Large differences in registration between EMTs and spine for many treatments suggest that lung inflation achieved at simulation is often not reproduced. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wendy Harris
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Henry Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Christian Czmielewski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Mohit Chawla
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Robert P Lee
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Alexandra Hotca-Cho
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Dominique McKnight
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - D Michael Lovelock
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| |
Collapse
|
10
|
Hardcastle N, Briggs A, Caillet V, Angelis G, Chrystall D, Jayamanne D, Shepherd M, Harris B, Haddad C, Eade T, Keall P, Booth J. Quantification of the geometric uncertainty when using implanted markers as a surrogate for lung tumor motion. Med Phys 2021; 48:2724-2732. [PMID: 33626183 DOI: 10.1002/mp.14788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Fiducial markers are used as surrogates for tumor location during radiation therapy treatment. Developments in lung fiducial marker and implantation technology have provided a means to insert markers endobronchially for tracking of lung tumors. This study quantifies the surrogacy uncertainty (SU) when using endobronchially implanted markers as a surrogate for lung tumor position. METHODS We evaluated SU for 17 patients treated in a prospective electromagnetic-guided MLC tracking trial. Tumor and markers were segmented on all phases of treatment planning 4DCTs and all frames of pretreatment kilovoltage fluoroscopy acquired from lateral and frontal views. The difference in tumor and marker position relative to end-exhale position was calculated as the SU for both imaging methods and the distributions of uncertainties analyzed. RESULTS The mean (range) tumor motion amplitude in the 4DCT scan was 5.9 mm (1.7-11.7 mm) in the superior-inferior (SI) direction, 2.2 mm (0.9-5.5 mm) in the left-right (LR) direction, and 3.9 mm (1.2-12.9 mm) in the anterior-posterior (AP) direction. Population-based analysis indicated symmetric SU centered close to 0 mm, with maximum 5th/95th percentile values over all axes of -2.0 mm/2.1 mm with 4DCT, and -2.3/1.3 mm for fluoroscopy. There was poor correlation between the SU measured with 4DCT and that measured with fluoroscopy on a per-patient basis. We observed increasing SU with increasing surrogate motion. Based on fluoroscopy analysis, the mean (95% CI) SU was 5% (2%-8%) of the motion magnitude in the SI direction, 16% (6%-26%) of the motion magnitude in the LR direction, and 33% (23%-42%) of the motion magnitude in the AP direction. There was no dependence of SU on marker distance from the tumor. CONCLUSION We have quantified SU due to use of implanted markers as surrogates for lung tumor motion. Population 95th percentile range are up to 2.3 mm, indicating the approximate contribution of SU to total geometric uncertainty. SU was relatively small compared with the SI motion, but substantial compared with LR and AP motion. Due to uncertainty in estimations of patient-specific SU, it is recommended that population-based margins are used to account for this component of the total geometric uncertainty.
Collapse
Affiliation(s)
- Nicholas Hardcastle
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Adam Briggs
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd St Leonards, NSW, 2065, Australia
| | - Vincent Caillet
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd St Leonards, NSW, 2065, Australia.,ACRF Image X Institute, School of Medicine, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Giorgios Angelis
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd St Leonards, NSW, 2065, Australia.,School of Physics, University of Sydney, Camperdown, NSW, 2042, Australia
| | - Danielle Chrystall
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd St Leonards, NSW, 2065, Australia
| | - Dasantha Jayamanne
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd St Leonards, NSW, 2065, Australia.,School of Medicine, University of Sydney, Camperdown, NSW, 2042, Australia
| | - Meegan Shepherd
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd St Leonards, NSW, 2065, Australia
| | - Ben Harris
- School of Medicine, University of Sydney, Camperdown, NSW, 2042, Australia.,Dept Respiratory and Sleep Medicine, Royal North Shore Hospital, Reserve Rd, St Leonards, NSW, 2065, Australia
| | - Carol Haddad
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd St Leonards, NSW, 2065, Australia
| | - Thomas Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd St Leonards, NSW, 2065, Australia.,School of Medicine, University of Sydney, Camperdown, NSW, 2042, Australia
| | - Paul Keall
- ACRF Image X Institute, School of Medicine, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jeremy Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Reserve Rd St Leonards, NSW, 2065, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, NSW, 2042, Australia
| |
Collapse
|
11
|
Capaldi DPI, Skinner LB, Dubrowski P, Zhang H, Xing L, Chuang CF, Loo BW, Bush KK, Fahimian BP, Yu AS. A robotically assisted 3D printed quality assurance lung phantom for Calypso. Phys Med Biol 2021; 66. [PMID: 33657537 DOI: 10.1088/1361-6560/abebaa] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/03/2021] [Indexed: 11/11/2022]
Abstract
Purpose. Radiation dose delivered to targets located near the upper-abdomen or in the thorax are significantly affected by respiratory-motion. Relatively large-margins are commonly added to compensate for this motion, limiting radiation-dose-escalation. Internal-surrogates of target motion, such as a radiofrequency (RF) tracking system, i.e. Calypso®System, are used to overcome this challenge and improve normal-tissue sparing. RF tracking systems consist of implanting transponders in the vicinity of the tumor to be tracked using radiofrequency-waves. Unfortunately, although the manufacture provides a universal quality-assurance (QA) phantom, QA-phantoms specifically for lung-applications are limited, warranting the development of alternative solutions to fulfil the tests mandated by AAPM's TG142. Accordingly, our objective was to design and develop a motion-phantom to evaluate Calypso for lung-applications that allows the Calypso®Beacons to move in different directions to better simulate truelung-motion.Methods and Materials.A Calypso lung QA-phantom was designed, and 3D-printed. The design consists of three independent arms where the transponders were attached. A pinpoint-chamber with a buildup-cap was also incorporated. A 4-axis robotic arm was programmed to drive the motion-phantom to mimic breathing. After acquiring a four-dimensional-computed-tomography (4DCT) scan of the motion-phantom, treatment-plans were generated and delivered on a Varian TrueBeam®with Calypso capabilities. Stationary and gated-treatment plans were generated and delivered to determine the dosimetric difference between gated and non-gated treatments. Portal cine-images were acquired to determine the temporal-accuracy of delivery by calculating the difference between the observed versus expected transponders locations with the known speed of the transponders' motion.Results.Dosimetric accuracy is better than the TG142 tolerance of 2%. Temporal accuracy is greater than, TG142 tolerance of 100 ms for beam-on, but less than 100 ms for beam-hold.Conclusions.The robotic QA-phantom designed and developed in this study provides an independent phantom for performing Calypso lung-QA for commissioning and acceptance testing of Calypso for lung treatments.
Collapse
Affiliation(s)
- Dante P I Capaldi
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Lawrie B Skinner
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Piotr Dubrowski
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Hao Zhang
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Lei Xing
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Cynthia F Chuang
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Billy W Loo
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Karl K Bush
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Benjamin P Fahimian
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Amy S Yu
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
12
|
Sarkar V, Szegedi M, Paxton A, Nelson G, Rassiah-Szegedi P, Reddy CB, Tao R, Hitchcock YJ, Kokeny KE, Salter BJ. Erratum: "Preliminary clinical experience with Calypso anchored beacons for tumor tracking in lung SBRT" [Med. Phys. (2020)]. Med Phys 2020; 48:533. [PMID: 33616947 DOI: 10.1002/mp.14376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/29/2020] [Accepted: 05/21/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Vikren Sarkar
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Martin Szegedi
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Adam Paxton
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Geoff Nelson
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Prema Rassiah-Szegedi
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Chakravarthy B Reddy
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Randa Tao
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ying J Hitchcock
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kristine E Kokeny
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Bill J Salter
- Department of Radiation Oncology, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|