1
|
Abe C, Higuchi O, Matsumoto A, Miyazawa T. Determination of intracellular ascorbic acid using tandem mass spectrometry. Analyst 2022; 147:2640-2643. [DOI: 10.1039/d1an02160e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ascorbic acid is involved in a variety of biological events.
Collapse
Affiliation(s)
- Chizumi Abe
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ohki Higuchi
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
- Biodynamic Plant Institute Co. Ltd, Hokudai Business Spring Bldg, Nishi 12-2-101, Kita 21 joh, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa 243-0435, Japan
| | - Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
2
|
Muñoz-Montesino C, Peña E, Roa FJ, Sotomayor K, Escobar E, Rivas CI. Transport of Vitamin C in Cancer. Antioxid Redox Signal 2021; 35:61-74. [PMID: 33607936 DOI: 10.1089/ars.2020.8166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: Vitamin C is a powerful antioxidant that has an intricate relationship with cancer and has been studied for more than 60 years. However, the specific mechanisms that allow malignant cells to uptake, metabolize, and compartmentalize vitamin C remain unclear. In normal human cells, two different transporter systems are responsible for its acquisition: glucose transporters (GLUTs) transport the oxidized form of vitamin C (dehydroascorbic acid) and sodium-coupled ascorbic acid transporters (SVCTs) transport the reduced form (ascorbic acid [AA]). In this study, we review the mechanisms described for vitamin C uptake and metabolization in cancer. Recent Advances: Several studies performed recently in vivo and in vitro have provided the scientific community a better understanding of the differential capacities of cancer cells to acquire vitamin C: tumors from different origins do not express SVCTs in the plasma membrane and are only able to acquire vitamin C in its oxidized form. Interestingly, cancer cells differentially express a mitochondrial form of SVCT2. Critical Issues: Why tumors have reduced AA uptake capacity at the plasma membrane, but develop the capacity of AA transport within mitochondria, remains a mystery. However, it shows that understanding vitamin C physiology in tumor survival might be key to decipher the controversies in its relationship with cancer. Future Directions: A comprehensive analysis of the mechanisms by which cancer cells acquire, compartmentalize, and use vitamin C will allow the design of new therapeutic approaches in human cancer. Antioxid. Redox Signal. 35, 61-74.
Collapse
Affiliation(s)
- Carola Muñoz-Montesino
- Departamento de Fisiología and Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Eduardo Peña
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco J Roa
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Kirsty Sotomayor
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Elizabeth Escobar
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Coralia I Rivas
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
3
|
Fiorani M, Guidarelli A, Cantoni O. Mitochondrial reactive oxygen species: the effects of mitochondrial ascorbic acid vs untargeted and mitochondria-targeted antioxidants. Int J Radiat Biol 2020; 97:1055-1062. [PMID: 31976796 DOI: 10.1080/09553002.2020.1721604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022]
Abstract
PREMISE Mitochondria represent critical sites for reactive oxygen species (ROS) production, which dependent on concentration is responsible for the regulation of both physiological and pathological processes. PURPOSE Antioxidants in mitochondria regulate the redox balance, prevent mitochondrial damage and dysfunction and maintain a physiological ROS-dependent signaling. The aim of the present review is to provide critical elements for addressing this issue in the context of various pharmacological approaches using antioxidants targeted or non-targeted to mitochondria. Furthermore, this review focuses on the mitochondrial antioxidant effects of ascorbic acid (AA), providing clues on the complexities associated with the cellular uptake and subcellular distribution of the vitamin. CONCLUSIONS Antioxidants that are not specifically targeted to mitochondria fail to accumulate in significant amounts in critical sites of mitochondrial ROS production and may eventually interfere with the ensuing physiological signaling. Mitochondria-targeted antioxidants are more effective, but are expected to interfere with the mitochondrial ROS-dependent physiologic signaling. AA promotes multiple beneficial effects in mitochondria. The complex regulation of vitamin C uptake in these organelles likely contributes to its versatile antioxidant response, thereby providing a central role to the vitamin for adequate control of mitochondrial dysfunction associated with increased mitochondrial ROS production.
Collapse
Affiliation(s)
- Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
4
|
Ferrada L, Salazar K, Nualart F. Metabolic control by dehydroascorbic acid: Questions and controversies in cancer cells. J Cell Physiol 2019; 234:19331-19338. [DOI: 10.1002/jcp.28637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Luciano Ferrada
- Departamento de Biología Celular, Laboratorio de Neurobiología y células madres Neuro‐CellTT, Centro de Microscopía Avanzada CMA BIOBIO, Facultad de Ciencias Biológicas Universidad de Concepción Concepción Chile
| | - Katterine Salazar
- Departamento de Biología Celular, Laboratorio de Neurobiología y células madres Neuro‐CellTT, Centro de Microscopía Avanzada CMA BIOBIO, Facultad de Ciencias Biológicas Universidad de Concepción Concepción Chile
| | - Francisco Nualart
- Departamento de Biología Celular, Laboratorio de Neurobiología y células madres Neuro‐CellTT, Centro de Microscopía Avanzada CMA BIOBIO, Facultad de Ciencias Biológicas Universidad de Concepción Concepción Chile
| |
Collapse
|
5
|
Cantoni O, Guidarelli A, Fiorani M. Mitochondrial Uptake and Accumulation of Vitamin C: What Can We Learn from Cell Culture Studies? Antioxid Redox Signal 2018; 29:1502-1515. [PMID: 28699359 DOI: 10.1089/ars.2017.7253] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The mitochondrial fraction of l-ascorbic acid (AA) is of critical importance for the regulation of the redox status of these organelles and for cell survival. Recent Advances: Most cell types take up AA by the high-affinity sodium-dependent vitamin C transporter 2 (SVCT2) sensitive to inhibition by dehydroascorbic acid (DHA). DHA can also be taken up by glucose transporters (GLUTs) and then reduced back to AA. DHA concentrations, normally very low in biological fluids, may only become significant next to superoxide-releasing cells. Very little is known about the mechanisms mediating the mitochondrial transport of the vitamin. CRITICAL ISSUES Information on AA transport is largely derived from studies using cultured cells and is therefore conditioned by possible cell culture effects as overexpression of SVCT2 in the plasma membrane and mitochondria. Mitochondrial SVCT2 is susceptible to inhibition by DHA and transports AA with a low affinity as a consequence of the restrictive ionic conditions. In some cells, however, high-affinity mitochondrial transport of AA is observed. Mitochondrial uptake of DHA may take place through GLUTs, an event followed by its prompt reduction to AA in the matrix. Intracellular levels of DHA are, however, normally very low. FUTURE DIRECTIONS We need to establish, or rule out, the role and significance of mitochondrial SVCT2 in vivo. The key question for mitochondrial DHA transport is instead related to its very low intracellular concentrations.
Collapse
Affiliation(s)
- Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo ," Urbino, Italy
| |
Collapse
|
6
|
Fiorani M, Guidarelli A, Capellacci V, Cerioni L, Crinelli R, Cantoni O. The dual role of mitochondrial superoxide in arsenite toxicity: Signaling at the boundary between apoptotic commitment and cytoprotection. Toxicol Appl Pharmacol 2018. [DOI: 10.1016/j.taap.2018.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Differentiation of Promonocytic U937 Cells to Monocytes Is Associated with Reduced Mitochondrial Transport of Ascorbic Acid. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4194502. [PMID: 29576847 PMCID: PMC5822789 DOI: 10.1155/2018/4194502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/30/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
Abstract
Growth of promonocytic U937 cells in the presence of DMSO promotes their differentiation to monocytes. After 4 days of culture in differentiating medium, these cells ceased to proliferate, displayed downregulated ryanodine receptor expression, and responded to specific stimuli with enhanced NADPH-oxidase-derived superoxide formation or cytosolic phospholipase A2-dependent arachidonic acid release. We found that the 4-day differentiation process is also associated with downregulated SVCT2 mRNA expression, in the absence of apparent changes in SVCT2 protein expression and transport rate of ascorbic acid (AA). Interestingly, under the same conditions, these cells accumulated lower amounts of the vitamin in their mitochondria, with an ensuing reduced response to external stimuli sensitive to the mitochondrial fraction of AA. Further analyses demonstrated an unexpected increase in mitochondrial SVCT2 protein expression, however, associated with reduced SVCT2-dependent AA uptake in isolated mitochondria. A decrease in the transporter Vmax, with no change in affinity, was found to account for this response. Differentiation of promonocytic cells to monocytes is therefore characterized by decreased SVCT2 mRNA expression that, even prior to the onset of SVCT2 protein downregulation or apparent changes in plasma membrane transport activity, impacts on the mitochondrial accumulation of the vitamin through a decreased Vmax of the transporter.
Collapse
|
8
|
Guidarelli A, Fiorani M, Cerioni L, Scotti M, Cantoni O. Arsenite induces DNA damage via mitochondrial ROS and induction of mitochondrial permeability transition. Biofactors 2017; 43:673-684. [PMID: 28703385 DOI: 10.1002/biof.1375] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023]
Abstract
Arsenite is an established DNA-damaging agent and human carcinogen. We initially selected conditions in which the metalloid causes DNA strand scission in the absence of detectable apoptotic DNA degradation in U937 cells. This response was suppressed by catalase and by treatments (rotenone and ascorbic acid), or manipulations (respiration-deficient phenotype), preventing the mitochondrial formation of O2-. ( mitoO2-.). MitoO2-., and its dismutation product, H2 O2 , are therefore critically involved in the arsenite-dependent DNA-damaging response. We then established a link between mitoO2-./H2 O2 and mitochondrial permeability transition (MPT), and found that this second event also promoted the formation of DNA-damaging species. As a consequence, the DNA damage induced by arsenite, in addition to being abolished by the aforementioned treatments/manipulations, was also significantly reduced by the MPT inhibitor cyclosporin A (CsA). A CsA-sensitive induction of p53 mRNA expression was also detected. Finally, evidence of CsA-sensitive DNA strand scission was also obtained in MCF-7, HT22, and NCTC-2544 cells. MitoO2-./H2 O2 therefore directly mediates DNA damage induced by arsenite and indirectly promotes the formation of additional DNA-damaging species via the induction of MPT. © 2017 BioFactors, 43(5):673-684, 2017.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", 61029, Urbino, Italy
| | - Mara Fiorani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", 61029, Urbino, Italy
| | - Liana Cerioni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", 61029, Urbino, Italy
| | - Maddalena Scotti
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", 61029, Urbino, Italy
| | - Orazio Cantoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", 61029, Urbino, Italy
| |
Collapse
|