1
|
Goncalves-Garcia M, Hamilton DA. Unraveling the complex relationship between prenatal alcohol exposure, hippocampal LTP, and learning and memory. Front Mol Neurosci 2024; 16:1326089. [PMID: 38283699 PMCID: PMC10811250 DOI: 10.3389/fnmol.2023.1326089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Prenatal alcohol exposure (PAE) has been extensively studied for its profound impact on neurodevelopment, synaptic plasticity, and cognitive outcomes. While PAE, particularly at moderate levels, has long-lasting cognitive implications for the exposed individuals, there remains a substantial gap in our understanding of the precise mechanisms underlying these deficits. This review provides a framework for comprehending the neurobiological basis of learning and memory processes that are negatively impacted by PAE. Sex differences, diverse PAE protocols, and the timing of exposure are explored as potential variables influencing the diverse outcomes of PAE on long-term potentiation (LTP). Additionally, potential interventions, both pharmacological and non-pharmacological, are reviewed, offering promising avenues for mitigating the detrimental effects of PAE on cognitive processes. While significant progress has been made, further research is required to enhance our understanding of how prenatal alcohol exposure affects neural plasticity and cognitive functions and to develop effective therapeutic interventions for those impacted. Ultimately, this work aims to advance the comprehension of the consequences of PAE on the brain and cognitive functions.
Collapse
|
2
|
Carreras-Gallo N, Dwaraka VB, Cáceres A, Smith R, Mendez TL, Went H, Gonzalez JR. Impact of tobacco, alcohol, and marijuana on genome-wide DNA methylation and its relationship with hypertension. Epigenetics 2023; 18:2214392. [PMID: 37216580 DOI: 10.1080/15592294.2023.2214392] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Tobacco, alcohol, and marijuana consumption is an important public health problem because of their high use worldwide and their association with the risk of mortality and many health conditions, such as hypertension, which is the commonest risk factor for death throughout the world. A likely pathway of action of substance consumption leading to persistent hypertension is DNA methylation. Here, we evaluated the effects of tobacco, alcohol, and marijuana on DNA methylation in the same cohort (N = 3,424). Three epigenome-wide association studies (EWAS) were assessed in whole blood using the InfiniumHumanMethylationEPIC BeadChip. We also evaluated the mediation of the top CpG sites in the association between substance consumption and hypertension. Our analyses showed 2,569 CpG sites differentially methylated by alcohol drinking and 528 by tobacco smoking. We did not find significant associations with marijuana consumption after correcting for multiple comparisons. We found 61 genes overlapping between alcohol and tobacco that were enriched in biological processes involved in the nervous and cardiovascular systems. In the mediation analysis, we found 66 CpG sites that significantly mediated the effect of alcohol consumption on hypertension. The top alcohol-related CpG site (cg06690548, P-value = 5.9·10-83) mapped to SLC7A11 strongly mediated 70.5% of the effect of alcohol consumption on hypertension (P-value = 0.006). Our findings suggest that DNA methylation should be considered for new targets in hypertension prevention and management, particularly concerning alcohol consumption. Our data also encourage further research into the use of methylation in blood to study the neurological and cardiovascular effects of substance consumption.
Collapse
Affiliation(s)
| | | | - Alejandro Cáceres
- Epidemiology, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Mathematics, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | | | | | - Juan R Gonzalez
- Epidemiology, Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Mathematics, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Mukherjee S, Tarale P, Sarkar DK. Neuroimmune Interactions in Fetal Alcohol Spectrum Disorders: Potential Therapeutic Targets and Intervention Strategies. Cells 2023; 12:2323. [PMID: 37759545 PMCID: PMC10528917 DOI: 10.3390/cells12182323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are a set of abnormalities caused by prenatal exposure to ethanol and are characterized by developmental defects in the brain that lead to various overt and non-overt physiological abnormalities. Growing evidence suggests that in utero alcohol exposure induces functional and structural abnormalities in gliogenesis and neuron-glia interactions, suggesting a possible role of glial cell pathologies in the development of FASD. However, the molecular mechanisms of neuron-glia interactions that lead to the development of FASD are not clearly understood. In this review, we discuss glial cell pathologies with a particular emphasis on microglia, primary resident immune cells in the brain. Additionally, we examine the involvement of several neuroimmune molecules released by glial cells, their signaling pathways, and epigenetic mechanisms responsible for FASD-related alteration in brain functions. Growing evidence suggests that extracellular vesicles (EVs) play a crucial role in the communication between cells via transporting bioactive cargo from one cell to the other. This review emphasizes the role of EVs in the context of neuron-glia interactions during prenatal alcohol exposure. Finally, some potential applications involving nutritional, pharmacological, cell-based, and exosome-based therapies in the treatment of FASD are discussed.
Collapse
Affiliation(s)
- Sayani Mukherjee
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-1573, USA; (S.M.); (P.T.)
- Hormone Laboratory Research Group, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Jonas Lies vei 91B, 5021 Bergen, Norway
| | - Prashant Tarale
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-1573, USA; (S.M.); (P.T.)
| | - Dipak K. Sarkar
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-1573, USA; (S.M.); (P.T.)
| |
Collapse
|
4
|
Carpita B, Migli L, Chiarantini I, Battaglini S, Montalbano C, Carmassi C, Cremone IM, Dell’Osso L. Autism Spectrum Disorder and Fetal Alcohol Spectrum Disorder: A Literature Review. Brain Sci 2022; 12:brainsci12060792. [PMID: 35741677 PMCID: PMC9221419 DOI: 10.3390/brainsci12060792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of conditions associated with the effects of prenatal alcohol exposure and characterized by somatic and neuropsychological alterations. On the other hand, autism spectrum disorder (ASD) is characterized by a multifaceted neurobehavioral syndrome. Since alcohol can affect every stage of brain development, some authors hypothesized that in utero alcohol exposure might be linked to an increased risk of ASD in subjects with genetic vulnerability. The present review aimed to summarize the available literature on the possible association between FASD and ASD, also focusing on the reported clinical overlaps and on the possible shared pathogenic mechanisms. Studies in this field have stressed similarities and differences between the two conditions, leading to controversial results. The available literature also highlighted that both the disorders are often misdiagnosed or underdiagnosed, stressing the need to broaden the perspective, paying specific attention to milder presentations and sub-syndromic traits.
Collapse
|
5
|
Komada M, Nishimura Y. Epigenetics and Neuroinflammation Associated With Neurodevelopmental Disorders: A Microglial Perspective. Front Cell Dev Biol 2022; 10:852752. [PMID: 35646933 PMCID: PMC9133693 DOI: 10.3389/fcell.2022.852752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is a cause of neurodevelopmental disorders such as autism spectrum disorders, fetal alcohol syndrome, and cerebral palsy. Converging lines of evidence from basic and clinical sciences suggest that dysregulation of the epigenetic landscape, including DNA methylation and miRNA expression, is associated with neuroinflammation. Genetic and environmental factors can affect the interaction between epigenetics and neuroinflammation, which may cause neurodevelopmental disorders. In this minireview, we focus on neuroinflammation that might be mediated by epigenetic dysregulation in microglia, and compare studies using mammals and zebrafish.
Collapse
Affiliation(s)
- Munekazu Komada
- Mammalian Embryology, Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan
- *Correspondence: Yuhei Nishimura,
| |
Collapse
|
6
|
Bhatia S, Drake DM, Miller L, Wells PG. Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Res 2019; 111:714-748. [PMID: 31033255 DOI: 10.1002/bdr2.1509] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
Abstract
This review covers molecular mechanisms involving oxidative stress and DNA damage that may contribute to morphological and functional developmental disorders in animal models resulting from exposure to alcohol (ethanol, EtOH) in utero or in embryo culture. Components covered include: (a) a brief overview of EtOH metabolism and embryopathic mechanisms other than oxidative stress; (b) mechanisms within the embryo and fetal brain by which EtOH increases the formation of reactive oxygen species (ROS); (c) critical embryonic/fetal antioxidative enzymes and substrates that detoxify ROS; (d) mechanisms by which ROS can alter development, including ROS-mediated signal transduction and oxidative DNA damage, the latter of which leads to pathogenic genetic (mutations) and epigenetic changes; (e) pathways of DNA repair that mitigate the pathogenic effects of DNA damage; (f) related indirect mechanisms by which EtOH enhances risk, for example by enhancing the degradation of some DNA repair proteins; and, (g) embryonic/fetal pathways like NRF2 that regulate the levels of many of the above components. Particular attention is paid to studies in which chemical and/or genetic manipulation of the above mechanisms has been shown to alter the ability of EtOH to adversely affect development. Alterations in the above components are also discussed in terms of: (a) individual embryonic and fetal determinants of risk and (b) potential risk biomarkers and mitigating strategies. FASD risk is likely increased in progeny which/who are biochemically predisposed via genetic and/or environmental mechanisms, including enhanced pathways for ROS formation and/or deficient pathways for ROS detoxification or DNA repair.
Collapse
Affiliation(s)
- Shama Bhatia
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Danielle M Drake
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | | | - Peter G Wells
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Das SK, McIntyre HD, Alati R, Al Mamun A. Maternal alcohol consumption during pregnancy and its association with offspring renal function at 30 years: Observation from a birth cohort study. Nephrology (Carlton) 2018; 24:21-27. [DOI: 10.1111/nep.13206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Sumon K Das
- Institute for Social Science Research, School of Social ScienceThe University of Queensland Brisbane Queensland Australia
- Nutrition and Clinical Services Devision, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) Dhaka Bangladesh
| | - Harold D McIntyre
- Mater Clinical School, School of MedicineUniversity of Queensland Brisbane Queensland Australia
- Mater Medical Research Institute South Brisbane Queensland Australia
| | - Rosa Alati
- Institute for Social Science Research, School of Social ScienceThe University of Queensland Brisbane Queensland Australia
| | - Abdullah Al Mamun
- Institute for Social Science Research, School of Social ScienceThe University of Queensland Brisbane Queensland Australia
| |
Collapse
|
8
|
Chang Q, Yang H, Wang M, Wei H, Hu F. Role of Microtubule-Associated Protein in Autism Spectrum Disorder. Neurosci Bull 2018; 34:1119-1126. [PMID: 29936584 PMCID: PMC6246838 DOI: 10.1007/s12264-018-0246-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction and communication, along with repetitive and restrictive patterns of behaviors or interests. Normal brain development is crucial to behavior and cognition in adulthood. Abnormal brain development, such as synaptic and myelin dysfunction, is involved in the pathogenesis of ASD. Microtubules and microtubule-associated proteins (MAPs) are important in regulating the processes of brain development, including neuron production and synaptic formation, as well as myelination. Increasing evidence suggests that the level of MAPs are changed in autistic patients and mouse models of ASD. Here, we discuss the roles of MAPs.
Collapse
Affiliation(s)
- Qiaoqiao Chang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Hua Yang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Min Wang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China.
| | - Fengyun Hu
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China.
| |
Collapse
|
9
|
Knopik VS, Marceau K, Bidwell LC, Rolan E. Prenatal substance exposure and offspring development: Does DNA methylation play a role? Neurotoxicol Teratol 2018; 71:50-63. [PMID: 29408446 DOI: 10.1016/j.ntt.2018.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/12/2018] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
Abstract
The period of in utero development is one of the most critical windows during which adverse conditions and exposures may influence the growth and development of the fetus as well as its future postnatal health and behavior. Maternal substance use during pregnancy remains a relatively common but nonetheless hazardous in utero exposure. For example, previous epidemiological studies have associated prenatal substance exposure with reduced birth weight, poor developmental and psychological outcomes, and increased risk for diseases and behavioral disorders (e.g., externalizing behaviors like ADHD, conduct disorder, and substance use) later in life. Researchers are now learning that many of the mechanisms whereby adverse in utero exposures may affect key pathways crucial for proper fetal growth and development are epigenetic in nature, with the majority of work in humans considering DNA methylation specifically. This review will explore the research to date on epigenetic alterations tied to maternal substance use during pregnancy and will also discuss the possible role of DNA methylation in the robust relationship between maternal substance use and later behavioral and developmental sequelae in offspring.
Collapse
Affiliation(s)
- Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA.
| | - Kristine Marceau
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - L Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado, Boulder, CO, USA
| | - Emily Rolan
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
10
|
Schang AL, Sabéran-Djoneidi D, Mezger V. The impact of epigenomic next-generation sequencing approaches on our understanding of neuropsychiatric disorders. Clin Genet 2017; 93:467-480. [DOI: 10.1111/cge.13097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/31/2022]
Affiliation(s)
- A.-L. Schang
- CNRS; UMR7216 Épigénétique et Destin Cellulaire; F-75205 Paris Cedex 13 France
- Univ Paris Diderot; Sorbonne Paris Cité, F-75205 Paris Cedex 13 France
- Département Hospitalo-Universitaire PROTECT; Paris France
| | - D. Sabéran-Djoneidi
- CNRS; UMR7216 Épigénétique et Destin Cellulaire; F-75205 Paris Cedex 13 France
- Univ Paris Diderot; Sorbonne Paris Cité, F-75205 Paris Cedex 13 France
| | - V. Mezger
- CNRS; UMR7216 Épigénétique et Destin Cellulaire; F-75205 Paris Cedex 13 France
- Univ Paris Diderot; Sorbonne Paris Cité, F-75205 Paris Cedex 13 France
| |
Collapse
|
11
|
Wells PG, Bhatia S, Drake DM, Miller-Pinsler L. Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine. ACTA ACUST UNITED AC 2017; 108:108-30. [PMID: 27345013 DOI: 10.1002/bdrc.21134] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 11/06/2022]
Abstract
In utero exposure of mouse progeny to alcohol (ethanol, EtOH) and methamphetamine (METH) causes substantial postnatal neurodevelopmental deficits. One emerging pathogenic mechanism underlying these deficits involves fetal brain production of reactive oxygen species (ROS) that alter signal transduction, and/or oxidatively damage cellular macromolecules like lipids, proteins, and DNA, the latter leading to altered gene expression, likely via non-mutagenic mechanisms. Even physiological levels of fetal ROS production can be pathogenic in biochemically predisposed progeny, and ROS formation can be enhanced by drugs like EtOH and METH, via activation/induction of ROS-producing NADPH oxidases (NOX), drug bioactivation to free radical intermediates by prostaglandin H synthases (PHS), and other mechanisms. Antioxidative enzymes, like catalase in the fetal brain, while low, provide critical protection. Oxidatively damaged DNA is normally rapidly repaired, and fetal deficiencies in several DNA repair proteins, including oxoguanine glycosylase 1 (OGG1) and breast cancer protein 1 (BRCA1), enhance the risk of drug-initiated postnatal neurodevelopmental deficits, and in some cases deficits in untreated progeny, the latter of which may be relevant to conditions like autism spectrum disorders (ASD). Risk is further regulated by fetal nuclear factor erythroid 2-related factor 2 (Nrf2), a ROS-sensing protein that upregulates an array of proteins, including antioxidative enzymes and DNA repair proteins. Imbalances between conceptal pathways for ROS formation, versus those for ROS detoxification and DNA repair, are important determinants of risk. Birth Defects Research (Part C) 108:108-130, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter G Wells
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Shama Bhatia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Danielle M Drake
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Lutfiya Miller-Pinsler
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Gavin DP, Grayson DR, Varghese SP, Guizzetti M. Chromatin Switches during Neural Cell Differentiation and Their Dysregulation by Prenatal Alcohol Exposure. Genes (Basel) 2017; 8:E137. [PMID: 28492482 PMCID: PMC5448011 DOI: 10.3390/genes8050137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 02/07/2023] Open
Abstract
Prenatal alcohol exposure causes persistent neuropsychiatric deficits included under the term fetal alcohol spectrum disorders (FASD). Cellular identity emerges from a cascade of intrinsic and extrinsic (involving cell-cell interactions and signaling) processes that are partially initiated and maintained through changes in chromatin structure. Prenatal alcohol exposure influences neuronal and astrocyte development, permanently altering brain connectivity. Prenatal alcohol exposure also alters chromatin structure through histone and DNA modifications. However, the data linking alcohol-induced differentiation changes with developmental alterations in chromatin structure remain to be elucidated. In the first part of this review, we discuss the sequence of chromatin structural changes involved in neural cell differentiation during normal development. We then discuss the effects of prenatal alcohol on developmental histone modifications and DNA methylation in the context of neurogenesis and astrogliogenesis. We attempt to synthesize the developmental literature with the FASD literature, proposing that alcohol-induced changes to chromatin structure account for altered neurogenesis and astrogliogenesis as well as altered neuron and astrocyte differentiation. Together these changes may contribute to the cognitive and behavioral abnormalities in FASD. Future studies using standardized alcohol exposure paradigms at specific developmental stages will advance the understanding of how chromatin structural changes impact neural cell fate and maturation in FASD.
Collapse
Affiliation(s)
- David P Gavin
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Sajoy P Varghese
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239, USA.
- Veterans Affairs Portland Health Care System, 3710 Southwest US Veterans Hospital Road, Portland, OR 97239, USA.
| |
Collapse
|
13
|
Minkler PE, Stoll MSK, Ingalls ST, Hoppel CL. Correcting false positive medium-chain acyl-CoA dehydrogenase deficiency results from newborn screening; synthesis, purification, and standardization of branched-chain C8 acylcarnitines for use in their selective and accurate absolute quantitation by UHPLC-MS/MS. Mol Genet Metab 2017; 120:363-369. [PMID: 28190699 DOI: 10.1016/j.ymgme.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/18/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022]
Abstract
While selectively quantifying acylcarnitines in thousands of patient samples using UHPLC-MS/MS, we have occasionally observed unidentified branched-chain C8 acylcarnitines. Such observations are not possible using tandem MS methods, which generate pseudo-quantitative acylcarnitine "profiles". Since these "profiles" select for mass alone, they cannot distinguish authentic signal from isobaric and isomeric interferences. For example, some of the samples containing branched-chain C8 acylcarnitines were, in fact, expanded newborn screening false positive "profiles" for medium-chain acyl-CoA dehydrogenase deficiency (MCADD). Using our fast, highly selective, and quantitatively accurate UHPLC-MS/MS acylcarnitine determination method, we corrected the false positive tandem MS results and reported the sample results as normal for octanoylcarnitine (the marker for MCADD). From instances such as these, we decided to further investigate the presence of branched-chain C8 acylcarnitines in patient samples. To accomplish this, we synthesized and chromatographically characterized several branched-chain C8 acylcarnitines (in addition to valproylcarnitine): 2-methylheptanoylcarnitine, 6-methylheptanoylcarnitine, 2,2-dimethylhexanoylcarnitine, 3,3-dimethylhexanoylcarnitine, 3,5-dimethylhexanoylcarnitine, 2-ethylhexanoylcarnitine, and 2,4,4-trimethylpentanoylcarnitine. We then compared their behavior with branched-chain C8 acylcarnitines observed in patient samples and demonstrated our ability to chromographically resolve, and thus distinguish, octanoylcarnitine from branched-chain C8 acylcarnitines, correcting false positive MCADD results from expanded newborn screening.
Collapse
Affiliation(s)
- Paul E Minkler
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Maria S K Stoll
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Stephen T Ingalls
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Charles L Hoppel
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|