1
|
Inoue A, Ohnishi T, Nishikawa M, Ohtsuka Y, Kusakabe K, Yano H, Tanaka J, Kunieda T. A Narrative Review on CD44's Role in Glioblastoma Invasion, Proliferation, and Tumor Recurrence. Cancers (Basel) 2023; 15:4898. [PMID: 37835592 PMCID: PMC10572085 DOI: 10.3390/cancers15194898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
High invasiveness is a characteristic of glioblastoma (GBM), making radical resection almost impossible, and thus, resulting in a tumor with inevitable recurrence. GBM recurrence may be caused by glioma stem-like cells (GSCs) that survive many kinds of therapy. GSCs with high expression levels of CD44 are highly invasive and resistant to radio-chemotherapy. CD44 is a multifunctional molecule that promotes the invasion and proliferation of tumor cells via various signaling pathways. Among these, paired pathways reciprocally activate invasion and proliferation under different hypoxic conditions. Severe hypoxia (0.5-2.5% O2) upregulates hypoxia-inducible factor (HIF)-1α, which then activates target genes, including CD44, TGF-β, and cMET, all of which are related to tumor migration and invasion. In contrast, moderate hypoxia (2.5-5% O2) upregulates HIF-2α, which activates target genes, such as vascular endothelial growth factor (VEGF)/VEGFR2, cMYC, and cyclin D1. All these genes are related to tumor proliferation. Oxygen environments around GBM can change before and after tumor resection. Before resection, the oxygen concentration at the tumor periphery is severely hypoxic. In the reparative stage after resection, the resection cavity shows moderate hypoxia. These observations suggest that upregulated CD44 under severe hypoxia may promote the migration and invasion of tumor cells. Conversely, when tumor resection leads to moderate hypoxia, upregulated HIF-2α activates HIF-2α target genes. The phenotypic transition regulated by CD44, leading to a dichotomy between invasion and proliferation according to hypoxic conditions, may play a crucial role in GBM recurrence.
Collapse
Affiliation(s)
- Akihiro Inoue
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| | - Takanori Ohnishi
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
- Department of Neurosurgery, Advanced Brain Disease Center, Washoukai Sadamoto Hospital, 1-6-1 Takehara, Matsuyama 790-0052, Ehime, Japan
| | - Masahiro Nishikawa
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| | - Yoshihiro Ohtsuka
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| | - Kosuke Kusakabe
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicene, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (H.Y.); (J.T.)
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicene, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (H.Y.); (J.T.)
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon 791-0295, Ehime, Japan; (M.N.); (Y.O.); (K.K.); (T.K.)
| |
Collapse
|
2
|
Slepak TI, Guyot M, Walters W, Eichberg DG, Ivan ME. Dual role of the adhesion G-protein coupled receptor ADRGE5/CD97 in glioblastoma invasion and proliferation. J Biol Chem 2023; 299:105105. [PMID: 37517698 PMCID: PMC10481366 DOI: 10.1016/j.jbc.2023.105105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023] Open
Abstract
CD97, an adhesion G-protein coupled receptor highly expressed in glioblastoma (GBM), consists of two noncovalently bound domains: the N-terminal fragment (NTF) and C-terminal fragment. The C-terminal fragment contains a GPCR domain that couples to Gα12/13, while the NTF interacts with extracellular matrix components and other receptors. We investigated the effects of changing CD97 levels and its function on primary patient-derived GBM stem cells (pdGSCs) in vitro and in vivo. We created two functional mutants: a constitutively active ΔNTF and the noncleavable dominant-negative H436A mutant. The CD97 knockdown in pdGSCs decreased, while overexpression of CD97 increased tumor size. Unlike other constructs, the ΔNTF mutant promoted tumor cell proliferation, but the tumors were comparable in size to those with CD97 overexpression. As expected, the GBM tumors overexpressing CD97 were very invasive, but surprisingly, the knockdown did not inhibit invasiveness and even induced it in noninvasive U87 tumors. Importantly, our results indicate that NTF was present in the tumor core cells but absent in the pdGSCs invading the brain. Furthermore, the expression of noncleavable H436A mutant led to large tumors that invade by sending massive protrusions, but the invasion of individual tumor cells was substantially reduced. These data suggest that NTF association with CD97 GPCR domain inhibits individual cell dissemination but not overall tumor invasion. However, NTF dissociation facilitates pdGSCs brain infiltration and may promote tumor proliferation. Thus, the interplay between two functional domains regulates CD97 activity resulting in either enhanced cell adhesion or stimulation of tumor cell invasion and proliferation.
Collapse
Affiliation(s)
- Tatiana I Slepak
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, USA
| | - Manuela Guyot
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, USA
| | - Winston Walters
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, USA
| | - Daniel G Eichberg
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA
| | - Michael E Ivan
- Department of Neurosurgery, University of Miami Hospital, University of Miami, Coral Gables, USA; Sylvester Comprehensive Cancer Center, University of Miami, Coral Gables, USA.
| |
Collapse
|
3
|
Teixeira SA, Burim RV, Viapiano MS, Bidinotto LT, Nagashi Marie SK, Fleury Malheiros SM, Oba-Shinjo SM, Andrade AF, Carlotti CG. Alpha2beta1 Integrin Polymorphism in Diffuse Astrocytoma Patients. Front Oncol 2022; 12:914156. [PMID: 35936750 PMCID: PMC9353741 DOI: 10.3389/fonc.2022.914156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Integrins are heterodimeric transmembrane glycoproteins resulting from the non-covalent association of an α and β chain. The major integrin receptor for collagen/laminin, α2β1 is expressed on a wide variety of cell types and plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Integrin-triggered signaling pathways promote the invasion and survival of glioma cells by modifying the brain microenvironment. In this study, we investigated the association of a specific genetic polymorphism of integrin α2β1 with the incidence of diffusely infiltrating astrocytoma and the progression of these tumors. Single-nucleotide polymorphism in intron 7 of the integrin ITGA2 gene was examined in 158 patients and 162 controls using polymerase chain reaction and restriction enzyme analysis. The ITGA2 genotype +/+ (with a BglII restriction site in both alleles) exhibited higher frequency in grade II astrocytoma compared to control (P = 0.02) whereas the genotype -/- (lacking the BglII site) correlated with the poorest survival rate (P = 0.04). In addition, in silico analyses of ITGA2 expression from low-grade gliomas (LGG, n = 515) and glioblastomas (GBM, n = 159) indicated that the higher expression of ITGA2 in LGG was associated with poor overall survival (P < 0.0001). However, the distribution of integrin ITGA2 BglII genotypes (+/+, +/-, -/-) was not significantly different between astrocytoma subgroups III and IV (P = 0.65, 0.24 and 0.33; 0.29, 0.48, 0.25, respectively) compared to control. These results suggest a narrow association between the presence of this SNP and indicate that further studies with larger samples are warranted to analyze the relation between tumor grade and overall survival, highlighting the importance of determining these polymorphisms for prognosis of astrocytomas.
Collapse
Affiliation(s)
- Silvia A Teixeira
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Regislaine V Burim
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, University of São Paulo (USP), Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo, Brazil
| | - Mariano S Viapiano
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Lucas T Bidinotto
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
- Department of Pathology, School of Medicine, UNESP- Univ. Estadual Paulista, Botucatu, Brazil
- Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, Brazil
| | - Suely K Nagashi Marie
- Department of Neurology, Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Suzana M Fleury Malheiros
- Department of Neurology, Faculty of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Sueli M Oba-Shinjo
- Department of Internal Medicine, Faculty of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Augusto F Andrade
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Carlos G Carlotti
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
4
|
Baiula M, Caligiana A, Bedini A, Zhao J, Santino F, Cirillo M, Gentilucci L, Giacomini D, Spampinato S. Leukocyte Integrin Antagonists as a Novel Option to Treat Dry Age-Related Macular Degeneration. Front Pharmacol 2021; 11:617836. [PMID: 33584300 PMCID: PMC7878375 DOI: 10.3389/fphar.2020.617836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/30/2020] [Indexed: 11/28/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial degenerative disease that leads to irreversible blindness. AMD affects the macula, the central part of the retina responsible for sharp central vision. Retinal pigment epithelium (RPE) is the main cellular type affected in dry AMD. RPE cells form a monolayer between the choroid and the neuroretina and are in close functional relationship with photoreceptors; moreover, RPE cells are part of the blood retina barrier that is disrupted in ocular diseases such as AMD. During ocular inflammation lymphocytes and macrophages are recruited, contact RPE and produce pro-inflammatory cytokines, which play an important role in AMD pathogenesis. The interaction between RPE and immune cells is mediated by leukocyte integrins, heterodimeric transmembrane receptors, and adhesion molecules, including VCAM-1 and ICAM-1. Within this frame, this study aimed to characterize RPE-leukocytes interaction and to investigate any potentially beneficial effects induced by integrin antagonists (DS-70, MN27 and SR714), developed in previous studies. ARPE-19 cells were co-cultured for different incubation times with Jurkat cells and apoptosis and necrosis levels were analyzed by flow cytometry. Moreover, we measured the mRNA levels of the pro-inflammatory cytokine IL-1β and the expression of adhesion molecules VCAM-1 and ICAM-1. We found that RPE-lymphocyte interaction increased apoptosis and necrosis levels in RPE cells and the expression of IL-1β. This interaction was mediated by the binding of α4β1 and αLβ2 integrins to VCAM-1 and ICAM-1, respectively. The blockade of RPE-lymphocyte interaction with blocking antibodies highlighted the pivotal role played by integrins. Therefore, α4β1 and αLβ2 integrin antagonists were employed to disrupt RPE-lymphocyte crosstalk. Small molecule integrin antagonists proved to be effective in reducing RPE cell death and expression of IL-1β, demonstrating that integrin antagonists could protect RPE cells from detrimental effects induced by the interaction with immune cells recruited to the retina. Overall, the leukocyte integrin antagonists employed in the present study may represent a novel opportunity to develop new drugs to fight dry AMD.
Collapse
Affiliation(s)
- Monica Baiula
- Laboratory of Cellular and Molecular Pharmacology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alberto Caligiana
- Laboratory of Cellular and Molecular Pharmacology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Andrea Bedini
- Laboratory of Cellular and Molecular Pharmacology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Junwei Zhao
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Federica Santino
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Martina Cirillo
- Laboratory of Design and Synthesis of Biologically Active Compounds, Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Daria Giacomini
- Laboratory of Design and Synthesis of Biologically Active Compounds, Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Santi Spampinato
- Laboratory of Cellular and Molecular Pharmacology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Specilization School of Hospital Pharmacy, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Combination therapy of cold atmospheric plasma (CAP) with temozolomide in the treatment of U87MG glioblastoma cells. Sci Rep 2020; 10:16495. [PMID: 33020527 PMCID: PMC7536419 DOI: 10.1038/s41598-020-73457-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Cold atmospheric plasma (CAP) technology, a relatively novel technique mainly investigated as a stand-alone cancer treatment method in vivo and in vitro, is being proposed for application in conjunction with chemotherapy. In this study, we explore whether CAP, an ionized gas produced in laboratory settings and that operates at near room temperature, can enhance Temozolomide (TMZ) cytotoxicity on a glioblastoma cell line (U87MG). Temozolomide is the first line of treatment for glioblastoma, one of the most aggressive brain tumors that remains incurable despite advancements with treatment modalities. The cellular response to a single CAP treatment followed by three treatments with TMZ was monitored with a cell viability assay. According to the cell viability results, CAP treatment successfully augmented the effect of a cytotoxic TMZ dose (50 μM) and further restored the effect of a non-cytotoxic TMZ dose (10 μM). Application of CAP in conjunction TMZ increased DNA damage measured by the phosphorylation of H2AX and induced G2/M cell cycle arrest. These findings were supported by additional data indicating reduced cell migration and increased αvβ3 and αvβ5 cell surface integrin expression as a result of combined CAP–TMZ treatment. The data presented in this study serve as evidence that CAP technology can be a suitable candidate for combination therapy with existing chemotherapeutic drugs. CAP can also be investigated in future studies for sensitizing glioblastoma cells to TMZ and other drugs available in the market.
Collapse
|
6
|
Fibronectin induces capacitation-associated events through the endocannabinoid system in bull sperm. Theriogenology 2020; 153:91-101. [DOI: 10.1016/j.theriogenology.2020.04.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 01/29/2023]
|
7
|
Schomberg J, Wang Z, Farhat A, Guo KL, Xie J, Zhou Z, Liu J, Kovacs B, Liu-Smith F. Luteolin inhibits melanoma growth in vitro and in vivo via regulating ECM and oncogenic pathways but not ROS. Biochem Pharmacol 2020; 177:114025. [PMID: 32413425 DOI: 10.1016/j.bcp.2020.114025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Luteolin inhibited growth of several cancer cells in vitro in previous studies, with limited in vivo studies, and no comprehensive understanding of molecular mechanisms at genomics level. This study identified luteolin as an effective agent to inhibit melanoma cell growth in vitro and in vivo. Molecular studies and genomic profiling were used to identify the mechanism of action of luteolin in melanoma cells. As a ROS (reactive oxygen species) scavenger, luteolin unexpectedly induced ROS; but co-treatment with antioxidants NAC or mito-TEMPO did not rescue cell growth inhibition, although the levels of ROS levels were reduced. Next, we profiled luteolin-induced differentially expressed genes (DEGs) in 4 melanoma cell lines using RNA-Seq, and performed pathway analysis using a combination of bioinformatics software including PharmetRx which was especially effective in discovering pharmacological pathways for potential drugs. Our results show that luteolin induces changes in three main aspects: the cell-cell interacting pathway (extracellular matrix, ECM), the oncogenic pathway and the immune response signaling pathway. Based on these results, we further validated that luteolin was especially effective in inhibiting cell proliferation when cells were seeded at low density, concomitantly with down-regulation of fibronectin accumulation. In conclusion, through extensive DEG profiling in a total of 4 melanoma cell lines, we found that luteolin-mediated growth inhibition in melanoma cells was perhaps not through ROS induction, but likely through simultaneously acting on multiple pathways including the ECM (extracellular matrix) pathway, the oncogenic signaling and the immune response pathways. Further investigations on the mechanisms of this promising compound are warranted and likely result in application to cancer patients as its safety pharmacology has been validated in autism patients.
Collapse
Affiliation(s)
- John Schomberg
- Afecta Pharmaceuticals, Inc., 2102 Business Center Dr, Irvine, CA 92612, United States.
| | - Zi Wang
- Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
| | - Ahmed Farhat
- Department of Medicine, University of California Irvine, Irvine, CA 92697, United States.
| | - Katherine L Guo
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90024, United States.
| | - Jun Xie
- Department of Medicine, University of California Irvine, Irvine, CA 92697, United States; Department of Epidemiology, University of California Irvine, Irvine, CA 92697, United States
| | - Zhidong Zhou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, United States.
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
| | - Bruce Kovacs
- Afecta Pharmaceuticals, Inc., 2102 Business Center Dr, Irvine, CA 92612, United States.
| | - Feng Liu-Smith
- Department of Medicine, University of California Irvine, Irvine, CA 92697, United States; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, United States; Department of Epidemiology, University of California Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
8
|
Alpha6-Integrin Regulates FGFR1 Expression through the ZEB1/YAP1 Transcription Complex in Glioblastoma Stem Cells Resulting in Enhanced Proliferation and Stemness. Cancers (Basel) 2019; 11:cancers11030406. [PMID: 30909436 PMCID: PMC6468800 DOI: 10.3390/cancers11030406] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor in adults and is known to be particularly aggressive and resistant to anti-cancer therapies, mainly due to the presence of GBM stem cells (GBMSC). By in vitro approaches supported by analysis from patients' databases, we determined how α6-integrin and Fibroblast Growth Factor Receptor 1 (FGFR1) work in concert to regulate proliferation and stemness of GBMSC. We showed that α6-integrin regulates the expression of FGFR1 and its target gene Fokhead Box M1 (FOXM1) via the ZEB1/YAP1 transcription complex. These results were in accordance with the positive correlation observed in GBM between α6-integrin expression and its target genes ZEB1/YAP1, FGFR1, and FOXM1 in the databases, TCGA and Rembrandt. In addition, the clinical data demonstrate that GBM patients with high levels of the five genes signature, including α6-integrin, ZEB1/YAP1, FGFR1 and FOXM1, have a significantly shorter overall survival. In vitro, we observed a similar decrease in the expression of stemness-related factors, neurospheres forming capacity, as well as spheroids growth when α6-integrin or FGFR1 was blocked individually with specific siRNA, whereas the combination of both siRNA led to a significantly higher inhibition of spheres formation. These data suggest that co-administration of anti-FGFR1 and anti-α6-integrin could provide an improved therapeutic response in GBMSC.
Collapse
|
9
|
Khan AR, Yang X, Fu M, Zhai G. Recent progress of drug nanoformulations targeting to brain. J Control Release 2018; 291:37-64. [PMID: 30308256 DOI: 10.1016/j.jconrel.2018.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
|
10
|
Kowalski-Chauvel A, Modesto A, Gouaze-Andersson V, Baricault L, Gilhodes J, Delmas C, Lemarie A, Toulas C, Cohen-Jonathan-Moyal E, Seva C. Alpha-6 integrin promotes radioresistance of glioblastoma by modulating DNA damage response and the transcription factor Zeb1. Cell Death Dis 2018; 9:872. [PMID: 30158599 PMCID: PMC6115442 DOI: 10.1038/s41419-018-0853-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/30/2022]
Abstract
Radiotherapy is the cornerstone of glioblastoma (GBM) standard treatment. However, radioresistance of cancer cells leads to an inevitable recurrence. In the present study, we showed that blocking α6-integrin in cells derived from GBM biopsy specimens cultured as neurospheres, sensitized cells to radiation. In cells downregulated for α6-integrin expression, we observed a decrease in cell survival after irradiation and an increase in radio-induced cell death. We also demonstrated that inhibition of α6-integrin expression affects DNA damage checkpoint and repair. Indeed, we observed a persistence of γ-H2AX staining after IR and the abrogation of the DNA damage-induced G2/M checkpoint, likely through the downregulation of the checkpoint kinase CHK1 and its downstream target Cdc25c. We also showed that α6-integrin contributes to GBM radioresistance by controlling the expression of the transcriptional network ZEB1/OLIG2/SOX2. Finally, the clinical data from TCGA and Rembrandt databases demonstrate that GBM patients with high levels of the five genes signature, including α6-integrin and its targets, CHK1, ZEB1, OLIG2 and SOX2, have a significantly shorter overall survival. Our study suggest that α6-integrin is an attractive therapeutic target to overcome radioresistance of GBM cancer cells.
Collapse
Affiliation(s)
- Aline Kowalski-Chauvel
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
| | - Anouchka Modesto
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
- IUCT-oncopole, Toulouse, France
| | - Valerie Gouaze-Andersson
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
| | - Laurent Baricault
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
| | | | - Caroline Delmas
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
- IUCT-oncopole, Toulouse, France
| | - Anthony Lemarie
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
| | - Christine Toulas
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
- IUCT-oncopole, Toulouse, France
| | - Elizabeth Cohen-Jonathan-Moyal
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France
- IUCT-oncopole, Toulouse, France
| | - Catherine Seva
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier, Toulouse III, France.
| |
Collapse
|
11
|
Klapproth E, Dickreuter E, Zakrzewski F, Seifert M, Petzold A, Dahl A, Schröck E, Klink B, Cordes N. Whole exome sequencing identifies mTOR and KEAP1 as potential targets for radiosensitization of HNSCC cells refractory to EGFR and β1 integrin inhibition. Oncotarget 2018; 9:18099-18114. [PMID: 29719593 PMCID: PMC5915060 DOI: 10.18632/oncotarget.24266] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/09/2018] [Indexed: 12/26/2022] Open
Abstract
Intrinsic and acquired resistances are major obstacles in cancer therapy. Genetic characterization is commonly used to identify predictive or prognostic biomarker signatures and potential cancer targets in samples from therapy-naïve patients. By far less common are such investigations to identify specific, predictive and/or prognostic gene signatures in patients or cancer cells refractory to a specific molecular-targeted intervention. This, however, might have a great value to foster the development of tailored, personalized cancer therapy. Based on our identification of a differential radiosensitization by single and combined β1 integrin (AIIB2) and EGFR (Cetuximab) targeting in more physiological, three-dimensional head and neck squamous cell carcinoma (HNSCC) cell cultures, we performed comparative whole exome sequencing, phosphoproteome analyses and RNAi knockdown screens in responder and non-responder cell lines. We found a higher rate of gene mutations with putative protein-changing characteristics in non-responders and different mutational profiles of responders and non-responders. These profiles allow stratification of HNSCC patients and identification of potential targets to address treatment resistance. Consecutively, pharmacological inhibition of mTOR and KEAP1 effectively diminished non-responder insusceptibility to β1 integrin and EGFR targeting for radiosensitization. Our data pinpoint the added value of genetic biomarker identification after selection for cancer subgroup responsiveness to targeted therapies.
Collapse
Affiliation(s)
- Erik Klapproth
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ellen Dickreuter
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Falk Zakrzewski
- German Cancer Consortium (DKTK), Dresden 01307, Germany
- German Cancer Research Center (DKFZ), Dresden partner site, Heidelberg 69120, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Dresden 01307, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, Dresden 01307, Germany
- National Center for Tumor Diseases (NCT), Dresden 01307, Germany
| | - Andreas Petzold
- Deep Sequencing Group, BIOTEChnology Center, Technische Universität Dresden, Dresden 01307, Germany
| | - Andreas Dahl
- Deep Sequencing Group, BIOTEChnology Center, Technische Universität Dresden, Dresden 01307, Germany
| | - Evelin Schröck
- German Cancer Consortium (DKTK), Dresden 01307, Germany
- German Cancer Research Center (DKFZ), Dresden partner site, Heidelberg 69120, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Dresden 01307, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Barbara Klink
- German Cancer Consortium (DKTK), Dresden 01307, Germany
- German Cancer Research Center (DKFZ), Dresden partner site, Heidelberg 69120, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Dresden 01307, Germany
- Deep Sequencing Group, BIOTEChnology Center, Technische Universität Dresden, Dresden 01307, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Nils Cordes
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Dresden 01307, Germany
- German Cancer Research Center (DKFZ), Dresden partner site, Heidelberg 69120, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden 01328, Germany
| |
Collapse
|
12
|
Zhang R, Elkhooly TA, Huang Q, Liu X, Yang X, Yan H, Xiong Z, Ma J, Feng Q, Shen Z. A dual-layer macro/mesoporous structured TiO 2 surface improves the initial adhesion of osteoblast-like cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:443-451. [DOI: 10.1016/j.msec.2017.04.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/12/2022]
|
13
|
Luxenburg C, Geiger B. Multiscale View of Cytoskeletal Mechanoregulation of Cell and Tissue Polarity. Handb Exp Pharmacol 2017; 235:263-284. [PMID: 27807694 DOI: 10.1007/164_2016_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of cells to generate, maintain, and repair tissues with complex architecture, in which distinct cells function as coherent units, relies on polarity cues. Polarity can be described as an asymmetry along a defined axis, manifested at the molecular, structural, and functional levels. Several types of cell and tissue polarities were described in the literature, including front-back, apical-basal, anterior-posterior, and left-right polarity. Extensive research provided insights into the specific regulators of each polarization process, as well as into generic elements that affect all types of polarities. The actin cytoskeleton and the associated adhesion structures are major regulators of most, if not all, known forms of polarity. Actin filaments exhibit intrinsic polarity and their ability to bind many proteins including the mechanosensitive adhesion and motor proteins, such as myosins, play key roles in cell polarization. The actin cytoskeleton can generate mechanical forces and together with the associated adhesions, probe the mechanical, structural, and chemical properties of the environment, and transmit signals that impact numerous biological processes, including cell polarity. In this article we highlight novel mechanisms whereby the mechanical forces and actin-adhesion complexes regulate cell and tissue polarity in a variety of natural and experimental systems.
Collapse
Affiliation(s)
- Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
14
|
Marzotto M, Bonafini C, Olioso D, Baruzzi A, Bettinetti L, Di Leva F, Galbiati E, Bellavite P. Arnica montana Stimulates Extracellular Matrix Gene Expression in a Macrophage Cell Line Differentiated to Wound-Healing Phenotype. PLoS One 2016; 11:e0166340. [PMID: 27832158 PMCID: PMC5104438 DOI: 10.1371/journal.pone.0166340] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/26/2016] [Indexed: 12/31/2022] Open
Abstract
Arnica montana (Arnica m.) is used for its purported anti-inflammatory and tissue healing actions after trauma, bruises, or tissue injuries, but its cellular and molecular mechanisms are largely unknown. This work tested Arnica m. effects on gene expression using an in vitro model of macrophages polarized towards a "wound-healing" phenotype. The monocyte-macrophage human THP-1 cell line was cultured and differentiated with phorbol-myristate acetate and Interleukin-4, then exposed for 24h to Arnica m. centesimal (c) dilutions 2c, 3c, 5c, 9c, 15c or Control. Total RNA was isolated and cDNA libraries were sequenced with a NextSeq500 sequencer. Genes with significantly positive (up-regulated) or negative (down-regulated) fold changes were defined as differentially expressed genes (DEGs). A total of 20 DEGs were identified in Arnica m. 2c treated cells. Of these, 7 genes were up-regulated and 13 were down-regulated. The most significantly up-regulated function concerned 4 genes with a conserved site of epidermal growth factor-like region (p<0.001) and three genes of proteinaceous extracellular matrix, including heparin sulphate proteoglycan 2 (HSPG2), fibrillin 2 (FBN2), and fibronectin (FN1) (p<0.01). Protein assay confirmed a statistically significant increase of fibronectin production (p<0.05). The down-regulated transcripts derived from mitochondrial genes coding for some components of electron transport chain. The same groups of genes were also regulated by increasing dilutions of Arnica m. (3c, 5c, 9c, 15c), although with a lower effect size. We further tested the healing potential of Arnica m. 2c in a scratch model of wound closure based on the motility of bone marrow-derived macrophages and found evidence of an accelerating effect on cell migration in this system. The results of this work, taken together, provide new insights into the action of Arnica m. in tissue healing and repair, and identify extracellular matrix regulation by macrophages as a therapeutic target.
Collapse
Affiliation(s)
- Marta Marzotto
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Clara Bonafini
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Debora Olioso
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Anna Baruzzi
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Laura Bettinetti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Francesca Di Leva
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Elisabetta Galbiati
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - Paolo Bellavite
- Department of Medicine, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| |
Collapse
|
15
|
Paolillo M, Serra M, Schinelli S. Integrins in glioblastoma: Still an attractive target? Pharmacol Res 2016; 113:55-61. [PMID: 27498157 DOI: 10.1016/j.phrs.2016.08.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 02/08/2023]
Abstract
Integrin-mediated signaling pathways have been found to promote the invasiveness and survival of glioma cells by modifying the brain microenvironment to support the formation of the tumoral niche. A variety of cells in the niche express integrin receptors, including tumor-associated macrophages, fibroblasts, endothelial cells and pericytes. In particular, RGD-binding integrins have been demonstrated to have an important role in the epithelial-mesenchymal transition process, considered the first step in the infiltration of tissue by cancer cells and molecular markers of which have been found in glioma cells. In simultaneous research, Small Molecule Integrin Antagonists (SMIA) yielded initially promising results in in vitro and in vivo studies, leading to clinical trials to test their safety and efficacy in combination with other anticancer drugs in the treatment of several tumor types. The initially high expectations, especially because of their antiangiogenic activity, which appeared to be a winning strategy against GBM, were not confirmed and this cast serious doubts on the real benefits to be gained from the use of SMIA for the treatment of cancer in humans. In this review, we provide an overview of recent findings concerning the functional roles of integrins, especially RGD-binding integrins, in the processes related to glioma cells survival and brain tissue infiltration. These findings disclose a new scenario in which recently developed SMIA might become useful tools to hinder glioblastoma cell dissemination.
Collapse
Affiliation(s)
- Mayra Paolillo
- Department of Drug Sciences, University of Pavia, Pavia, Italy.
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|