1
|
Chen X, Hudson GA, Mineo C, Amer B, Baidoo EEK, Crowe SA, Liu Y, Keasling JD, Scheller HV. Deciphering triterpenoid saponin biosynthesis by leveraging transcriptome response to methyl jasmonate elicitation in Saponaria vaccaria. Nat Commun 2023; 14:7101. [PMID: 37925486 PMCID: PMC10625584 DOI: 10.1038/s41467-023-42877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Methyl jasmonate (MeJA) is a known elicitor of plant specialized metabolism, including triterpenoid saponins. Saponaria vaccaria is an annual herb used in traditional Chinese medicine, containing large quantities of oleanane-type triterpenoid saponins with anticancer properties and structural similarities to the vaccine adjuvant QS-21. Leveraging the MeJA-elicited saponin biosynthesis, we identify multiple enzymes catalyzing the oxidation and glycosylation of triterpenoids in S. vaccaria. This exploration is aided by Pacbio full-length transcriptome sequencing and gene expression analysis. A cellulose synthase-like enzyme can not only glucuronidate triterpenoid aglycones but also alter the product profile of a cytochrome P450 monooxygenase via preference for the aldehyde intermediate. Furthermore, the discovery of a UDP-glucose 4,6-dehydratase and a UDP-4-keto-6-deoxy-glucose reductase reveals the biosynthetic pathway for the rare nucleotide sugar UDP-D-fucose, a likely sugar donor for fucosylation of plant natural products. Our work enables the production and optimization of high-value saponins in microorganisms and plants through synthetic biology approaches.
Collapse
Affiliation(s)
- Xiaoyue Chen
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Graham A Hudson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Charlotte Mineo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
| | - Bashar Amer
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Samantha A Crowe
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Yuzhong Liu
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Henrik V Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Xu YX, Chen YM, Zhang MJ, Ren YY, Wu P, Chen L, Zhang HM, Zhou JL, Xie T. Screening of anti-cancer compounds from Vaccariae Semen by lung cancer A549 cell fishing and UHPLC-LTQ Orbitrap MS. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123851. [PMID: 37619519 DOI: 10.1016/j.jchromb.2023.123851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Vaccariae Semen, derived from the dried ripe seed of Vaccaria segetalis (Neck.) Garcke, has various therapeutic characteristics in traditional Chinese medicine (TCM), containing promoting blood circulation and unblocking meridians. It exhibits significant anti-cancer activity and is therapeutically utilized to treat and reduce chemotherapy adverse effects in cancer patients, notably those with lung cancer. However, the active ingredients responsible for its anti-lung cancer efficacy remain unknown. In this study, we used A549 cell fishing in conjunction with UHPLC-LTQ Orbitrap MS to screen for anti-lung cancer active components in Vaccariae Semen. The cell counting Kit-8 (CCK-8) assay revealed that the n-butanol extract substantially reduced A549 cell growth. Through the cell fishing assay, we found 14 A549 cell-binding compounds in the n-butanol extract, all of which were identified as triterpenoid saponins. The total saponins of Vaccariae Semen were subsequently purified using macroporous adsorption resin (MAR), and they showed a significant inhibitory effect on the proliferation of A549 lung cancer cells, as well as alterations in cell morphology, apoptosis, and fragmentation. In conclusion, saponins were discovered as the key active components responsible for the anti-lung cancer activity of Vaccariae Semen.
Collapse
Affiliation(s)
- Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yi-Min Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Meng-Jiao Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Pu Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hua-Min Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
3
|
Feng Jin, Xueyong Qi. Quaternary Ammonium Salt Strategy and Molecular Docking Studies of Novel 5-Acyl-8-(Arylamino)-Quinolines by Acetyl and Methanesulfonyl Chloride for Dual Evaluation Bioactivity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023; 49:367-375. [PMID: 36852388 PMCID: PMC9945821 DOI: 10.1134/s1068162023020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 02/24/2023]
Abstract
Six quinoline derivatives containing quaternary ammonium salts and acyl chloride groups were synthesized from ethyl 8-chloro-[1,3]dioxolo[4,5-g]quinoline-7-carboxylate in several step. With berberine as the positive control, three human cancer cell lines (HCT-116, Hela and A549) and human normal liver L-02 cell lines were used to evaluate the cytotoxicity of the newly synthesized compounds in vitro. Compound (V-X) showed good antitumor activity, and the test result of compound (VII) was better than that of positive control group. In terms of antibacterial activity, compound (V-X) has obvious inhibitory effect on Staphylococcus aureus (ATCC 29213) and Escherichia coli (ATCC 8739), and its antibacterial activity is about 1-4 times that of positive control amoxicillin and 1-2 times that of ciprofloxacin. Among them, the most effective compounds (VII) and (X) have 4-fold the antibacterial activity of amoxicillin and 2-fold the antibacterial activity of ciprofloxacin. Supplementary Information The online version contains supplementary material available at 10.1134/S1068162023020097.
Collapse
Affiliation(s)
- Feng Jin
- Medical College of Anhui University of Science and Technology, 232001 Huainan, China
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, 212013 Zhenjiang, China
| |
Collapse
|
4
|
Tang ZY, Li Y, Tang YT, Ma XD, Tang ZY. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed Pharmacother 2021; 145:112397. [PMID: 34798468 DOI: 10.1016/j.biopha.2021.112397] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Oleanolic acid (OA, 3 β - hydroxyoleanolic acid-12-en-28-oic acid) is a pentacyclic triterpenoid present in many plants. As a new framework for development of semi synthetic triterpenoids, OA is of great significance in the discovery of anticancer drugs. Some of these derivatives, such as CDDO (2-cyano-3,12-dioxooleana-1, 9 (11)-dien-28-oic acid) have been verified in clinical trials, while other derivatives studied previously, such as SZC014, SZC015 and SZC017 (OA derivatives respectively), are also candidate drugs for cancer treatment. This paper reviews the preclinical studies, literature evidence, target analysis and anticancer mechanism of OA and its derivatives. The mechanism of action of its derivatives mainly includes anti-cancer cell proliferation, inducing tumor cell apoptosis, inducing autophagy, regulating cell cycle regulatory proteins, inhibiting vascular endothelial growth, anti angiogenesis, inhibiting tumor cell migration and invasion. In recent years, the molecular mechanism of OA and its derivatives has been elucidated. These effects seem to be mediated by the alterations in a variety of signaling pathways induced by OA and its derivatives. In conclusion, OA and its derivatives are considered as important candidate drugs for the treatment of cancer, indicating that OA and its derivatives have the potential to be used as anticancer drugs in practice.
Collapse
Affiliation(s)
- Zhong-Yuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, Jilin, PR China
| | - Yang Li
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yu-Ting Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiao-Dong Ma
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ze-Yao Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| |
Collapse
|
5
|
Tian M, Huang Y, Wang X, Cao M, Zhao Z, Chen T, Yuan C, Wang N, Zhang B, Li C, Zhou X. Vaccaria segetalis: A Review of Ethnomedicinal, Phytochemical, Pharmacological, and Toxicological Findings. Front Chem 2021; 9:666280. [PMID: 33996757 PMCID: PMC8117358 DOI: 10.3389/fchem.2021.666280] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
Vaccaria segetalis is a dry mature seed of Vaccaria hispanica (Mill.) Rauschert, which belongs to the genus V. segetalis (Neck.) Garcke. There are multiple medicinal parts of V. segetalis, according to the records, including roots, stems, leaves, flowers, and seeds, which should be used together. Currently, V. segetalis is most frequently used in the treatment of menstruation, dysmenorrhea, breast milk stoppages, and chylorrhea. Numerous studies present historical evidence of the use of V. segetalis to treat several diseases and describe its beneficial effects including prolactin- (PRL-) like, estrogen-like, antitumor, antiangiogenesis, and antioxidant activity. We summarized the period from January 1980 to December 2019 regarding V. segetalis. This review paper indicates that V. segetalis has promising clinical applications. The main active ingredients of the plant have been elucidated in recent years. We summarized the previously and newly discovered pharmacological effects of V. segetalis in addition to its active ingredients, ethnopharmacological uses, and toxicological properties, and provided a focus for future research.
Collapse
Affiliation(s)
- Meng Tian
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yuwen Huang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xin Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Zijiao Zhao
- College of Animal Sciences, Jilin University, Changchun, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chenfeng Yuan
- College of Animal Sciences, Jilin University, Changchun, China
| | - Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Zhang H, Zhu Y, Sun C, Xie Y, Adu-Frimpong M, Deng W, Yu J, Xu X, Han Z, Qi G. GSH responsive nanomedicines self-assembled from small molecule prodrug alleviate the toxicity of cardiac glycosides as potent cancer drugs. Int J Pharm 2020; 575:118980. [DOI: 10.1016/j.ijpharm.2019.118980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022]
|
7
|
Sun C, Li W, Liu Y, Deng W, Adu-Frimpong M, Zhang H, Wang Q, Yu J, Xu X. In vitro/in vivo hepatoprotective properties of 1-O-(4-hydroxymethylphenyl)-α-L-rhamnopyranoside from Moringa oleifera seeds against carbon tetrachloride-induced hepatic injury. Food Chem Toxicol 2019; 131:110531. [PMID: 31136780 DOI: 10.1016/j.fct.2019.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/30/2022]
Abstract
1-O-(4-hydroxymethylphenyl)-α-L-rhamnopyranoside (MPG) is a phenolic glycoside that exists in Moringa oleifera seeds with various health benefits, whereas its hepatoprotective effect is lacking clarification. Herein, MPG was isolated from Moringa oleifera seeds, and its hepatoprotection against CCl4-induced hepatotoxicity in L02 cells and ICR mice was investigated. Toxicity studies showed that MPG did not induce significant changes in organ coefficients and histological analysis, as well as exhibited no cytotoxicity. In vitro studies indicated that MPG substantially increased cell viability and intracellular SOD activities, and significantly inhibited LDH leakage in CCl4-treated cells. In vivo studies demonstrated that MPG significantly alleviated CCl4-induced hepatotoxicity in mice, as indicated by diagnostic indicators of hepatic injury, as well as the histopathological analysis. Moreover, MPG reduced the lipid peroxidation levels and regulated the inflammatory cytokines. Notably, MPG substantially suppressed the significant elevation of ROS production in hepatocytes of mice intoxicated with CCl4. Moreover, TUNEL assay demonstrated that MPG obviously inhibited hepatic apoptosis induced by CCl4. Altogether, these results suggested that MPG has excellent liver-protecting effects against hepatocytotoxicity induced by CCl4 in mice and L02 cells, which can be further developed as a valuable functional food additive or drug for the treatment of hepatic injury.
Collapse
Affiliation(s)
- Congyong Sun
- Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Wenjing Li
- Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Yingkun Liu
- Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Wenwen Deng
- Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Michael Adu-Frimpong
- Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Huiyun Zhang
- Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Qilong Wang
- Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Jiangnan Yu
- Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Ximing Xu
- Key Lab for Drug Delivery & Tissue Regeneration, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
8
|
Gao P, Huang X, Liao T, Li G, Yu X, You Y, Huang Y. Daucosterol induces autophagic-dependent apoptosis in prostate cancer via JNK activation. Biosci Trends 2019; 13:160-167. [PMID: 30944266 DOI: 10.5582/bst.2018.01293] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Plant sterols (phytosterols) have been widely accepted as a natural anti-cancer agent in multiple malignant tumors. This study was designed to investigate the functions of daucosterol in prostate cancer progression and its possible molecular mechanisms. Our results showed that daucosterol inhibited cell proliferation and induced cell cycle arrest. Moreover, daucosterol treatment obviously promoted apoptosis and autophagy. An autophagy inhibitor, 3-methyladenine (3-MA) was proved to counteract daucosterol-triggered autophagy, growth inhibition, and apoptosis, indicating that daucosterol-induced apoptotic response was dependent on autophagy. Additionally, treatment with daucosterol resulted in increased phosphorylation of c-Jun N-terminal kinase (JNK). Furthermore, pre-treatment with a JNK-specific inhibitor SP600125 abated daucosterol-elicited autophagy and apoptotic cell death. Taken together, our findings demonstrated that daucosterol blocked prostate cancer growth at least partly through inducing autophagic-dependent apoptosis via activating JNK signaling, providing a promising candidate for the development of antitumor drugs in prostate cancer treatment.
Collapse
Affiliation(s)
- Ping Gao
- Department of Urology, Hospital of Chengdu University of Traditional Chinese Medicine.,Department of Andrology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Xiaopeng Huang
- Department of Andrology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Tingting Liao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Guangsen Li
- Department of Andrology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Xujun Yu
- Medicine and Life Sciences College, Chengdu University of Traditional Chinese Medicine
| | - Yaodong You
- Department of Andrology, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Yuxing Huang
- Department of Neurosurgery, Hospital of Chengdu University of Traditional Chinese Medicine
| |
Collapse
|
9
|
Chen Y, Qu D, Fu R, Guo M, Qin Y, Guo J, Chen Y. A Tf-modified tripterine-loaded coix seed oil microemulsion enhances anti-cervical cancer treatment. Int J Nanomedicine 2018; 13:7275-7287. [PMID: 30510417 PMCID: PMC6231517 DOI: 10.2147/ijn.s182475] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose A transferrin-modified microemulsion carrying coix seed oil and tripterine (Tf-CT-MEs) was developed for improved tumor-specific accumulation and penetration to enhance cervical cancer treatment. Materials and methods Tripterine-loaded coix seed oil microemulsion (CT-MEs) was prepared through one-step emulsion method. The morphology, size, and zeta potential of CT-MEs and Tf-CT-MEs were examined by transmission electron microscopy and dynamic light scattering. The cellular uptake and mechanisms of HeLa cells were investigated by flow cytometry. Intratumor penetration was investigated using a HeLa three-dimensional (3D) tumor spheroid as the model. The cytotoxicity of the CT-MEs and Tf-CT-MEs against HeLa cells were evaluated by the MTT assay. Additionally, the apoptotic rate of CT-MEs and Tf-CT-MEs inducing apoptosis in HeLa cells was evaluated. Results In the physicochemical characterization, coix seed oil and CT-MEs exhibited a small size (32.47±0.15 nm) and nearly neutral surface charge (−0.36±0.11 mV). After modification with transferrin, the particle size of Tf-CT-MEs slightly increased to 40.02±0.21 nm, but the zeta potential decreased remarkably to -13.63±1.31 mV. The IC50 of Tf-CT-MEs against HeLa cells was 0.7260 µM, which was 2.58-fold lower than that of CT-MEs. In cellular studies, the intracellular fluorescence intensity of fluorescein isothiocyanate (FITC)-labeled Tf-CT-MEs (FITC/Tf-CT-MEs) was 2.28-fold higher than that of FITC-labeled CT-MEs (FITC/CT-MEs). The fluorescence signal of Tf-CT-MEs was observed at 350 µm below the surface of the 3D tumor spheroid. The apoptotic rate of cells treated with Tf-CT-MEs was 1.73- and 2.77-fold higher than that of cells treated with CT-MEs and tripterine, respectively, which was associated with mitochondrial-targeted delivery of tripterine. Moreover, Tf-CT-MEs was capable of significantly downregulating the cellular level of antiapoptotic proteins and arrested cell proliferation in the G2/M phase. Conclusion Taken together, Tf-CT-MEs holds promising potential to be an efficient drug delivery system for combinational therapy of cervical cancer.
Collapse
Affiliation(s)
- Yunyan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China, .,Research Center for Multicomponent of Traditional Chinese Medicine and Microecology, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China, .,Wannan Medical College, Wuhu 241002, China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China, .,Research Center for Multicomponent of Traditional Chinese Medicine and Microecology, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China,
| | - Rongping Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China, .,Research Center for Multicomponent of Traditional Chinese Medicine and Microecology, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China,
| | - Mengfei Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China, .,Research Center for Multicomponent of Traditional Chinese Medicine and Microecology, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China,
| | - Yue Qin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China, .,Research Center for Multicomponent of Traditional Chinese Medicine and Microecology, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China,
| | - Jian Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China, .,Research Center for Multicomponent of Traditional Chinese Medicine and Microecology, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China,
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China, .,Research Center for Multicomponent of Traditional Chinese Medicine and Microecology, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China,
| |
Collapse
|
10
|
Fang Y, Sun J, Zhong X, Hu R, Gao J, Duan G, Ji C, Chen L, Zhang W, Miao C, Aisa HA, Zhang X. ES2 enhances the efficacy of chemotherapeutic agents in ABCB1-overexpressing cancer cells in vitro and in vivo. Pharmacol Res 2018; 129:388-399. [DOI: 10.1016/j.phrs.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022]
|
11
|
Li NN, Meng XS, Men WX, Bao YR, Wang S. Total Flavonoids from Oroxylum indicum Induce Apoptosis via PI3K/Akt/PTEN Signaling Pathway in Liver Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:3021476. [PMID: 29636773 PMCID: PMC5832136 DOI: 10.1155/2018/3021476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Total flavonoids (TF), derived from the seeds of Oroxylum indicum (L.) Vent., possess many pharmacological functions. In the present study, H22-bearing mice and SMMC-7721 models were employed to evaluate the antitumor activity of TF and to and investigate its possible mechanisms both in vitro and in vivo. Cell viability was evaluated by MTT assay; cell apoptosis rate was analyzed via Annexin V-FITC/PI double staining by flow cytometer. Meanwhile, the expressions of apoptosis-related mRNA and proteins were evaluated by RT-PCR and Western blot analysis. The results revealed that TF could significantly inhibit the tumor growth, and the possible mechanism was related to the effect of inducing tumor cells apoptosis through PI3K/Akt/PTEN signaling pathway. This study has provided a theoretical basis for the further development and application of TF as antitumor drugs.
Collapse
Affiliation(s)
- Nan-nan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xian-sheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
- Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China
| | - Wen-xiao Men
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yong-rui Bao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
- Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China
| | - Shuai Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
- Component Medicine Engineering Research Center of Liaoning Province, Dalian 116600, China
- Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian 116600, China
| |
Collapse
|
12
|
Yang L, Zhang Z, Hou J, Jin X, Ke Z, Liu D, Du M, Jia X, Lv H. Targeted delivery of ginsenoside compound K using TPGS/PEG-PCL mixed micelles for effective treatment of lung cancer. Int J Nanomedicine 2017; 12:7653-7667. [PMID: 29089761 PMCID: PMC5655143 DOI: 10.2147/ijn.s144305] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ginsenoside compound K (CK) is one of the effective ingredients in antitumor composition of ginsenoside. However, the poor water solubility and significant efflux have limited the widespread clinical use of CK. In this study, preparation of novel CK-loaded d-alpha-tocopheryl polyethylene glycol 1,000 succinate/poly(ethylene glycol)-poly(ε-caprolactone) mixed micelles (CK-M) is discussed to solve the above problems. Particle size, zeta potential, and morphology were characterized using dynamic light scattering and transmission electron microscopy. CK-M are spherical shaped with an average particle size of 53.07±1.31 nm with high drug loading of 11.19%±0.87% and entrapment efficiency of 94.60%±1.45%. Water solubility of CK was improved to 3.78±0.09 mg/mL, which was ~107.35 times higher than free CK. A549 and PC-9 cells were used to evaluate in vitro cytotoxicity and cellular uptake. IC50 values of CK-M in A549 and PC-9 cells (24 h) were 25.43±2.18 and 18.35±1.90 μg/mL, respectively. Enhanced cellular uptake of CK-M was observed in both cells. Moreover, CK-M promoted tumor cell apoptosis, inhibited tumor cell invasion, metastasis, and efflux through regulation of Bax, Bcl-2, matrix metalloproteinase-2, Caspase-3, and P-glycoprotein. In vivo imaging indicated that CK-M has excellent tumor targeting effect within 24 h, and the relative tumor inhibition rate of CK-M was 52.04%±4.62% compared with control group (P<0.01). Thus, CK-M could be an appropriate delivery agent for enhanced solubility and antitumor effect of CK.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, China.,College of Pharmacy, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Zhenghai Zhang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, China
| | - Jian Hou
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, China.,College of Pharmacy, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Xin Jin
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, China
| | - Zhongcheng Ke
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, China
| | - Dan Liu
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, China
| | - Mei Du
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, China
| | - Xiaobing Jia
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, China.,College of Pharmacy, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Huixia Lv
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu Sheng, China
| |
Collapse
|