1
|
Chen Q, Xu N, Zhao C, He Y, Kam SHT, Wu X, Huang P, Yang M, Wong CTT, Radis-Baptista G, Tang B, Fan G, Gong G, Lee SMY. A new invertebrate NPY-like polypeptide, ZoaNPY, from the Zoanthus sociatus, as a novel ligand of human NPY Y2 receptor rescues vascular insufficiency via PLC/PKC and Src- FAK-dependent signaling pathways. Pharmacol Res 2024; 203:107173. [PMID: 38580186 DOI: 10.1016/j.phrs.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Our recent multi-omics studies have revealed rich sources of novel bioactive proteins and polypeptides from marine organisms including cnidarians. In the present study, we initially conducted a transcriptomic analysis to review the composition profile of polypeptides from Zoanthus sociatus. Then, a newly discovered NPY-like polypeptide-ZoaNPY was selected for further in silico structural, binding and virtually pharmacological studies. To evaluate the pro-angiogenic effects of ZoaNPY, we employed an in vitro HUVECs model and an in vivo zebrafish model. Our results indicate that ZoaNPY, at 1-100 pmol, enhances cell survival, migration and tube formation in the endothelial cells. Besides, treatment with ZoaNPY could restore a chemically-induced vascular insufficiency in zebrafish embryos. Western blot results demonstrated the application of ZoaNPY could increase the phosphorylation of proteins related to angiogenesis signaling including PKC, PLC, FAK, Src, Akt, mTOR, MEK, and ERK1/2. Furthermore, through molecular docking and surface plasmon resonance (SPR) verification, ZoaNPY was shown to directly and physically interact with NPY Y2 receptor. In view of this, all evidence showed that the pro-angiogenic effects of ZoaNPY involve the activation of NPY Y2 receptor, thereby activating the Akt/mTOR, PLC/PKC, ERK/MEK and Src- FAK-dependent signaling pathways. Furthermore, in an excision wound model, the treatment with ZoaNPY was shown to accelerate the wound healing process in mice. Our findings provide new insights into the discovery and development of novel pro-angiogenic drugs derived from NPY-like polypeptides in the future.
Collapse
Affiliation(s)
- Qian Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Yulin He
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China
| | - Sandy Hio Tong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Xue Wu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Pan Huang
- Kunming Institute of Zoology, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Min Yang
- Kunming Institute of Zoology, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Clarence Tsun Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999077, Hong Kong, SAR China
| | | | - Benqin Tang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China.
| |
Collapse
|
2
|
Gong G, Kam H, Bai Y, Cheang WS, Wu S, Cheng X, Giesy JP, Lee SMY. 6-benzylaminopurine causes endothelial dysfunctions to human umbilical vein endothelial cells and exacerbates atorvastatin-induced cerebral hemorrhage in zebrafish. ENVIRONMENTAL TOXICOLOGY 2024; 39:1258-1268. [PMID: 37929299 DOI: 10.1002/tox.24012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/26/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
6-benzylaminopurine (6-BA), a multifunctional plant growth regulator, which is frequently used worldwide to improve qualities of various crops, is an important ingredient in production of "toxic bean sprouts." Although there is no direct evidence of adverse effects, its hazardous effects, as well as joint toxicity with other chemicals, have received particular attention and aroused furious debate between proponents and environmental regulators. By use of human umbilical vein endothelial cells (HUVECs), adverse effects of 6-BA to human-derived cells were first demonstrated in this study. A total of 25-50 mg 6-BA/L inhibited proliferation, migration, and formation of tubular-like structures by 50% in vitro. Results of Western blot analyses revealed that exposure to 6-BA differentially modulated the MAPK signal transduction pathway in HUVECs. Specifically, 6-BA decreased phosphorylation of MEK and ERK, but increased phosphorylation of JNK and P38. In addition, 6-BA exacerbated atorvastatin-induced cerebral hemorrhage via increasing hemorrhagic occurrence by 60% and areas by 4 times in zebrafish larvae. In summary, 6-BA elicited toxicity to the endothelial system of HUVECs and zebrafish. This was due, at least in part, to discoordination of MAPK signaling pathway, which should pose potential risks to the cerebral vascular system.
Collapse
Affiliation(s)
- Guiyi Gong
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yubin Bai
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shuilong Wu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Xiaoning Cheng
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - John P Giesy
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Toxicology Centre, University of Saskatchewan, Saskatchewan, Canada
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Environmental Sciences, Baylor University, Waco, Texas, United States
| |
Collapse
|
3
|
Saberi A, Kouhjani M, Mohammadi M, Hosta-Rigau L. Novel scaffold platforms for simultaneous induction osteogenesis and angiogenesis in bone tissue engineering: a cutting-edge approach. J Nanobiotechnology 2023; 21:351. [PMID: 37770928 PMCID: PMC10536787 DOI: 10.1186/s12951-023-02115-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Despite the recent advances in the development of bone graft substitutes, treatment of critical size bone defects continues to be a significant challenge, especially in the elderly population. A current approach to overcome this challenge involves the creation of bone-mimicking scaffolds that can simultaneously promote osteogenesis and angiogenesis. In this context, incorporating multiple bioactive agents like growth factors, genes, and small molecules into these scaffolds has emerged as a promising strategy. To incorporate such agents, researchers have developed scaffolds incorporating nanoparticles, including nanoparticulate carriers, inorganic nanoparticles, and exosomes. Current paper provides a summary of the latest advancements in using various bioactive agents, drugs, and cells to synergistically promote osteogenesis and angiogenesis in bone-mimetic scaffolds. It also discusses scaffold design properties aimed at maximizing the synergistic effects of osteogenesis and angiogenesis, various innovative fabrication strategies, and ongoing clinical studies.
Collapse
Affiliation(s)
- Arezoo Saberi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Kouhjani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Feriani A, Tir M, Aldahmash W, Mnafgui K, Hichem A, Gómez-Caravaca AM, Del Mar Contreras M, Taamalli A, Alwasel S, Segura-Carretero A, Tlili N, Harrath AH. In vivo evaluation and molecular docking studies of Schinus molle L. fruit extract protective effect against isoproterenol-induced infarction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80910-80925. [PMID: 35729379 DOI: 10.1007/s11356-022-21422-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The aim of the current study was to assess the potential cardiopreventive effect of the methanolic extract of S. molle L. (MESM) on isoproterenol-induced infarction in rats. The biomolecules content was evaluated using HPLC-DAD-ESI-QTOF-MS/MS analysis. On the 29th and 30th days, two successive injections of isoproterenol (ISO) were given to Wistar rats to provoke myocardial infarction following pretreatment with either MESM (60 mg/kg b.w) or Pidogrel (Pid; 2 mg/kg b.w.). A total of sixteen phenolics were identified with masazino-flavanone as the most prevalent compound (1726.12 µg/g dm). Results showed that MESM offered cardioprevention by normalizing the ST segment and reducing the elevated cardiac risk parameters. The altered lipid biomarkers together with the plasma ionic levels were improved. Additionally, MESM inhibited the cardiac oxidative stress generated by ISO injection though enhancing antioxidant enzymes (GSH, CAT, SOD and GPX) which reduced lipid peroxidation and protein oxidation. MESM reduced myocardial apoptosis by significantly repressing mRNA expressions of Caspase-3 and Bax, with an upregulated Bcl-2 expression. Moreover, MESM reduced DNA fragmentation as well as the infarct size observed by TTC staining. In addition, MESM exhibited an antifibrotic effect by downregulating TGF-1β expression and reducing collagen deposition in myocardial tissue, as confirmed by Trichrom Masson analysis. The histopathological findings revealed less muscle separation and fewer inflammatory cells in the ISO + MESM-treated rats. Results of the docking simulation indicated that catechin in MESM was inhibitory mainly due to hydrogen bonding interactions with PDI, ACE and TGF-β1 proteins which could highlight the antithrombotic and antifibrotic capacity of MESM.
Collapse
Affiliation(s)
- Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, University of Gafsa, Gafsa, Tunisia
| | - Meriam Tir
- Laboratoire d'Ecologie, de Biologie Et de Physiologie Des Organismes Aquatiques, LR18ES41, Faculté Des Sciences de Tunis, Université Tunis EL Manar, 2092, Tunis, Tunisia
| | - Waleed Aldahmash
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kais Mnafgui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Alimi Hichem
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, University of Gafsa, Gafsa, Tunisia
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, EdificioBioregión, 18016, Granada, Spain
| | - María Del Mar Contreras
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Amani Taamalli
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cédria, BP. 901, 2050, Hammam-Lif, Tunisia
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, EdificioBioregión, 18016, Granada, Spain
| | - Nizar Tlili
- Institut Supérieur Des Sciences Et Technologies de L'Environnement, Université de Carthage, Carthage, Tunisia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
5
|
Zhang LL, Sheng F, He Y, Yang Y, Hu YF, Li W, Li P, Wu MY, Gong Y, Zhang Y, Zou L. Buxue Yimu Pills improve angiogenesis and blood flow in experimental zebrafish and rat models. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115002. [PMID: 35065249 DOI: 10.1016/j.jep.2022.115002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buxue Yimu Pills (BYP) is a well-known traditional Chinese medicine prescription which is clinical used in gynecology and obstetrics, and is documented to exhibit therapeutic potential to defective angiogenesis and impaired blood flow. AIM OF THE STUDY This study aimed to investigate the effects and biological mechanisms of BYP in improvement of defective angiogenesis and impaired blood flow which represent major health issues associated with various diseases including postpartum or abortion complications. MATERIALS AND METHODS In this study, VEGFR tyrosine kinase inhibitor II (VRI) was used to establish blood vessel loss model in Tg(fli-1a:EGFP) zebrafish embryos. Blood vessel loss was calculated, and quantitative real-time PCR (qRT-PCR) assay was performed to detect gene expression. Mifepristone and misoprostol were applied to construct a medical-induced incomplete abortion rats model. Whole blood viscosity indexes, hemorheology and coagulation function of the rats were investigated. Immunohistochemistry analysis was used for evaluation of the uterine tissues. RESULTS BYP treatment significantly promoted angiogenesis as evidenced by the restoration of VRI-induced blood vessel loss in zebrafish embryos. BYP treatment effectively reversed VRI-induced down-regulation of the VEGFRs (Kdr, Kdrl and Flt1). Furthermore, BYP administration significantly suppressed the increase of whole blood viscosity indexes, and remarkably shortened the levels of prothrombin time and activated partial thromboplastin time in the medical-induced incomplete abortion rats, indicating the improvement of hemorheology and coagulation function. Immunohistochemistry analysis suggested that BYP administration increased the expression level of VEGFR2 in uterus tissues of the rats. CONCLUSION BYP exhibits therapeutic effects in promoting angiogenesis and blood circulation, and mitigating blood stasis, supporting its clinical application for postpartum or abortion complications.
Collapse
Affiliation(s)
- Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Yong Yang
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Ying-Fan Hu
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Wei Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Meng-Yao Wu
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Yun Gong
- Department of Pharmacology, Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China.
| |
Collapse
|
6
|
Li Z, Huo X, Chen K, Yang F, Tan W, Zhang Q, Yu H, Li C, Zhou D, Chen H, Zhao B, Wang Y, Chen Z, Du X. Profilin 2 and Endothelial Exosomal Profilin 2 Promote Angiogenesis and Myocardial Infarction Repair in Mice. Front Cardiovasc Med 2022; 9:781753. [PMID: 35479278 PMCID: PMC9036097 DOI: 10.3389/fcvm.2022.781753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, wherein myocardial infarction (MI) is the most dangerous one. Promoting angiogenesis is a prospective strategy to alleviate MI. Our previous study indicated that profilin 2 (PFN2) may be a novel target associated with angiogenesis. Further results showed higher levels of serum PFN2 and exosomal PFN2 in patients, mice, and pigs with MI. In this study, we explored whether PFN2 and endothelial cell (EC)-derived exosomal PFN2 could increase angiogenesis and be beneficial for the treatment of MI. Serum PFN2, exosomes, and exosomal PFN2 were elevated in rats with MI. PFN2 and exosomes from PFN2-overexpressing ECs (OE-exo) enhanced EC proliferation, migration, and tube formation ability. OE-exo also significantly increased the vessel number in zebrafish and protected the ECs from inflammatory injury. Moreover, OE-exo-treated mice with MI showed improvement in motor ability, ejection fraction, left ventricular shortening fraction, and left ventricular mass, as well as increased vessel numbers in the MI location, and decreased infarction volume. Mechanistically, PI3K might be the upstream regulator of PFN2, while ERK might be the downstream regulator in the PI3K-PFN2-ERK axis. Taken together, our findings demonstrate that PFN2 and exosomal PFN2 promote EC proliferation, migration, and tube formation through the PI3K-PFN2-ERK axis. Exosomal PFN2 may be a valuable target in the repair of MI injury via angiogenesis.
Collapse
Affiliation(s)
- Zhenkun Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Dalian, China
| | - Fenghua Yang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Weijiang Tan
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Qi Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haixu Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Deshan Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Hao Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Zhenwen Chen
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- *Correspondence: Xiaoyan Du
| |
Collapse
|
7
|
Feriani A, Bizzarri M, Tir M, Aldawood N, Alobaid H, Allagui MS, Dahmash W, Tlili N, Mnafgui K, Alwasel S, Harrath AH. High-fat diet-induced aggravation of cardiovascular impairment in permethrin-treated Wistar rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112461. [PMID: 34224971 DOI: 10.1016/j.ecoenv.2021.112461] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/12/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
This study characterized the impact of post-weaning high-fat diet (HFD) and/or permethrin (PER) treatment on heart dysfunction and fibrosis, as well as atherogenic risk, in rats by investigating interactions between HFD and PER. Our results revealed that HFD and/or PER induced remarkable cardiotoxicity by promoting cardiac injury, biomarker leakage into the plasma and altering heart rate and electrocardiogram pattern, as well as plasma ion levels. HFD and/or PER increased plasma total cholesterol, triacylglycerols, and low-density lipoprotein (LDL) cholesterol levels but significantly reduced high-density lipoprotein (HDL) cholesterol. Cardiac content of peroxidation malonaldehyde, protein carbonyls, and reactive oxygen species were remarkably elevated, while glutathione levels and superoxide dismutase, catalase and glutathione peroxidase activities were inhibited in animals receiving a HFD and/or PER. Furthermore, cardiac DNA fragmentation and upregulation of Bax and caspase-3 gene expression supported the ability of HFD and/or PER to induce apoptosis and inflammation in rat hearts. High cardiac TGF-β1 expression explained the profibrotic effects of PER either with the standard diet or HFD. Masson's Trichrome staining clearly demonstrated that HFD and PER could cause cardiac fibrosis. Additionally, increased oxidized LDL and the presence of several lipid droplets in arterial tissues highlighted the atherogenic effects of HFD and/or PER in rats. Such PER-induced cardiac and vascular dysfunctions were aggravated by and associated with a HFD, implying that obese individuals may be more vulnerable to PER exposure. Collectively, post-weaning exposure to HFD and/or PER may promote heart failure and fibrosis, demonstrating the pleiotropic effects of exposure to environmental factors early in life.
Collapse
Affiliation(s)
- Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112 Gafsa, Tunisia
| | - Mariano Bizzarri
- Sapienza University of Rome, Dept of Experimental Medicine, Syst Biol Grp Lab, Rome, Italy
| | - Meriam Tir
- Laboratoire des Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, LR18ES41, Faculté des Sciences de Tunis, Université Tunis EL Manar, 2092 Tunis, Tunisia
| | - Nouf Aldawood
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hussah Alobaid
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Waleed Dahmash
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de l'Environnement, Université de Carthage, Tunisia
| | - Kais Mnafgui
- Laboratory of Animal Ecophysiology, Faculty of Science of Sfax, 3018 Sfax, Tunisia
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
8
|
Wang H, Chen L, Wang S, Tian X, Zhang L, Li H, Li C, Xue Y, Wang Q, Fang L, Yang W, Sun W, Leng Y, Li M, Gao X. Tetrandrine promotes angiogenesis via transcriptional regulation of VEGF-A. Vascul Pharmacol 2021; 141:106920. [PMID: 34592429 DOI: 10.1016/j.vph.2021.106920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/04/2021] [Accepted: 09/23/2021] [Indexed: 12/31/2022]
Abstract
Angiogenesis is crucial for tissue damage repair in ischemic cardiovascular diseases. Vascular endothelial growth factor A (VEGF-A) acts as a vital mediator in angiogenesis. In this study, tetrandrine (Tet) was found from 23 herbal chemicals to increase VEGF-A mRNA expression in H9c2 cells and the effect was confirmed in freshly isolated neonatal rat cardiomyocytes. The effect of Tet on VEGF-A expression and the possible mechanism were investigated. Tet treatment increased de novo VEGF-A mRNA synthesis and did not affect VEGF-A mRNA stability. The circulating chromosome conformation capture (4C) experiments indicated that Tet enhanced VEGF-A transcription by targeting a regulatory element beyond the 2.6 kb region of the translation start site. Tet augmented the angiogenic activities of endothelial cells. It also enhanced blood flow restoration and capillary vessel density following ischemic limb injury associated with an escalation of VEGF-A expression. Moreover, in myocardial infarction (MI) model Tet treatment elevated neovascularization, reduced infarction size, and improved heart function via upregulating VEGF-A levels. Our results suggested that Tet increased VEGF-A transcription through a novel mechanism that likely involves a distant regulatory element and may be useful for therapeutic angiogenesis for ischemic diseases.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shaoxia Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoxuan Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lusha Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huiying Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunxiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuejin Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qianyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Leyu Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenjie Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuze Leng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengyao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
9
|
Fu J, Tang Y, Zhang Z, Tong L, Yue R, Cai L. Gastrin exerts a protective effect against myocardial infarction via promoting angiogenesis. Mol Med 2021; 27:90. [PMID: 34412590 PMCID: PMC8375043 DOI: 10.1186/s10020-021-00352-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background It is known that increased gastrin concentration is negatively correlated with cardiovascular mortality, and plasma gastrin levels are increased in patients after myocardial infarction (MI). However, whether gastrin can play a protective role in MI remains unknown. Methods Adult C57BL/6 mice were subjected to ligation of the left anterior descending coronary artery (LAD) and subcutaneous infusion of gastrin (120 μg/Kg body weight/day, 100 μL in the pump) for 28 days after MI. Plasma gastrin concentrations were measured through an ELISA detection kit. Mice were analyzed by echocardiography after surgery. CD31 and VEGF expression were quantified using immunofluorescence staining or/and western blot to assess the angiogenesis in peri-infarct myocardium. Capillary-like tube formation and cell migration assays were performed to detect gastrin-induced angiogenesis. Results We found that gastrin administration significantly ameliorated MI-induced cardiac dysfunction and reduced fibrosis at 28 days in post-MI hearts. Additionally, gastrin treatment significantly decreased cardiomyocyte apoptosis and increased angiogenesis in the infarct border zone without influencing cardiomyocyte proliferation. In vitro results revealed that gastrin up-regulated the PI3K/Akt/vascular endothelial growth factor (VEGF) signaling pathway and promoted migration and tube formation of human coronary artery endothelial cells (HCAECs). Cholecystokinin 2 receptor (CCK2R) mediated the protective effect of gastrin since the CCK2R blocker CI988 attenuated the gastrin-mediated angiogenesis and cardiac function protection. Conclusion Our data revealed that gastrin promoted angiogenesis and improved cardiac function in post-MI mice, highlighting its potential as a therapeutic target candidate.
Collapse
Affiliation(s)
- Jinjuan Fu
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China.,College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Yuanjuan Tang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Zhen Zhang
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Lin Tong
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Rongchuan Yue
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.
| | - Lin Cai
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China. .,College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
Wang J, Fan K, He C, Wang Q, Zhang Q, Huang W. A novel Danshensu/tetramethylpyrazine protects against Myocardial Ischemia Reperfusion Injury in rats. Int J Med Sci 2021; 18:2716-2724. [PMID: 34104104 PMCID: PMC8176181 DOI: 10.7150/ijms.59411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
A new Danshensu/tetramethylpyrazine derivative (ADTM) with cardio-protection effects such as antioxidant, arterial relaxation, pro-angiogenesis and antiplatelet activities. Platelet activating factor receptor (PAFR) plays a key role in myocardial ischemia reperfusion (MIR) injury. This study aims to investigate the protective role of ADTM in MIR injury and clarify the potential role of PAFR. We measured the effects of ADTM on MIR injury in rats in vivo and hypoxia re-oxygenation (HR) injury in neonatal rat ventricular myocytes (NRVMs) in vitro. The results show that ADTM can significantly improve the IR-induced decline in heart function as increasing EF and FS, and restore the decreased cardiac hemodynamic parameters (LVSP, ± dp/dt max) and increased the level of LVEDP, decrease the infarct size of damaged myocardium and lactate dehydrogenase (LDH) activity in serum. Additionally, ADTM inhibits cardiomyocytes apoptosis, caspase-3 activity, and inflammatory response as well as down-regulates the MIR-induced IL-1β and TNFα production. Next, PAFR expression was significantly down-regulated in cardiomyocytes of MIR model in vivo and in vitro after treated with ADTM compare to IR group. At the same time, ADTM and PAFR small interfering RNA (siRNA) could inhibit cardiomyocytes apoptosis and inflammation during HR, while PAF presents the opposite effect. Furthermore, the above effects of PAF in HR induced cardiomyocytes were reversed by co-treatment of ADTM. Our findings demonstrate for the first time that ADTM protects against MIR injury through inhibition of PAFR signaling, which provides a new treatment for MIR.
Collapse
Affiliation(s)
- Jinghao Wang
- Department of Pharmacy, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Kai Fan
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Cong He
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Qingyang Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Qianhui Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| | - Wei Huang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, 163319, China
| |
Collapse
|
11
|
Fo Y, Zhang C, Chen X, Liu X, Ye T, Guo Y, Qu C, Shi S, Yang B. Chronic sigma-1 receptor activation ameliorates ventricular remodeling and decreases susceptibility to ventricular arrhythmias after myocardial infarction in rats. Eur J Pharmacol 2020; 889:173614. [PMID: 33010304 DOI: 10.1016/j.ejphar.2020.173614] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022]
Abstract
The present study aimed to assess the effect of sigma-1 receptor (S1R) stimulation on ventricular remodeling and susceptibility to ventricular arrhythmias (VAs) after myocardial infarction (MI) in rats. Wild-type male rats were placed into one of the following four treatment groups. For four weeks, animals in the Sham group and MI group received intraperitoneal (i.p.) injections of 0.9% saline (1 ml/kg/day); those in the MI + F group received fluvoxamine (FLV) (0.3 mg/kg/day); and those in the MI + F + BD group received FLV plus BD1047 (0.3 mg/kg/day). After that, the ventricular electrophysiological parameters were measured via the langendorff system. Ventricular fibrosis quantification was determined with Masson staining. Cardiac function was evaluated by echocardiography. The protein levels of S1R, connexin (Cx)43, Cav1.2, Kv4.2, Kv4.3, tyrosine hydroxylase (TH), nerve growth factor (NGF), growth-associated protein 43 (GAP43) were detected by Western blot assays. Our results indicated that fluvoxamine significantly prolonged the ventricular effective refractory period (ERP), shortened action potential duration (APD), reduced susceptibility to VAs after MI. Masson staining showed a decrease in ventricular fibrosis in the MI + F group. Furthermore, the contents of Cx43, S1R, Cav1.2, Kv4.2, Kv4.3 were increased in the MI + F group compared with the MI group (all P < 0.05). The contents of TH, NGF, GAP43 were reduced in the MI + F group compared with the MI group. (all P < 0.05). However, BD1047 reduces all of these effects of FLV. The results suggest that S1R stimulation reduces susceptibility to VAs and improves cardiac function by improving myocardial fibrosis, lightning sympathetic remodeling, electrical remodeling, gap junction remodeling and upregulating S1R content.
Collapse
Affiliation(s)
- Yuhong Fo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Xiuhuan Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Tianxin Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Yan Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China
| | - Shaobo Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan, 430060, PR China.
| |
Collapse
|
12
|
Li J, Cao GY, Zhang XF, Meng ZQ, Gan L, Li JX, Lan XY, Yang CL, Zhang CF. Chinese Medicine She-Xiang-Xin-Tong-Ning, Containing Moschus, Corydalis and Ginseng, Protects from Myocardial Ischemia Injury via Angiogenesis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:107-126. [DOI: 10.1142/s0192415x20500068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Chinese patent medicine She-Xiang-Xin-Tong-Ning (SXXTN) is a clinical medication for coronary heart disease (CHD) and angina pectoris. This study aimed to investigate pharmacological effects of SXXTN and elucidate the role in angiogenesis on human umbilical vein endothelial cells (HUVECs) and acute myocardial ischemia (AMI) rats. We prepared SXXTN to treat the cells to reveal their effects on oxidative stress-damaged cell viability, as well as cell proliferation, migration, and tube formation processes. SXXTN was also used to treat coronary artery ligation-induced acute myocardial ischemia rats to confirm whether it had positive effect on myocardial issues by hematoxylin and eosin (HE), 2,3,5-triphenyltetrazolium chloride (TTC) staining and immunohistochemical staining. We measured the levels of peroxidative damage-related enzymes in cytoplasm and serum by biochemical kits and detected vascular endothelial growth factor (VEGF), angiotensin II (Ang II), thromboxane B2 (TXB2), and 6-keto-prostaglandin F1 alpha (6-keto-PGF1[Formula: see text]) levels in cells and rats by enzyme-linked immunosorbent assay (ELISA) kits. The results showed that SXXTN protects HUVECs against oxidative stress damage and reversed the decrease of superoxide dismutase (SOD), glutathione (GSH) and increase of creatine kinase (CK), lactate dehydrogenase (LDH) caused by oxidative stress. SXXTN promoted angiogenesis through stimulating cell migration, tube formation, and activating VEGF/VEGFR2 and ERK1/2 pathways. Furthermore, SXXTN reduced infarct size and inhibited PGI2/TXA2 imbalance, preventing atherosclerosis plaque rupture leading to worsening coronary heart disease. Taken together, we report the first in vivo and in vitro evidence that SXXTN reduced oxidative stress-mediated damage and enhanced angiogenesis, which might be useful in treatment of myocardial infarction.
Collapse
Affiliation(s)
- Jia Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Gui-Yun Cao
- Institute of Traditional Chinese Medicine, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan 250103, P. R. China
| | - Xiao-Fan Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhao-Qing Meng
- Institute of Traditional Chinese Medicine, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan 250103, P. R. China
| | - Lu Gan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jin-Xin Li
- Institute of Traditional Chinese Medicine, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan 250103, P. R. China
| | - Xin-Yi Lan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chao-Lin Yang
- Institute of Traditional Chinese Medicine, Shandong Hongjitang Pharmaceutical Group Co., Ltd., Jinan 250103, P. R. China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
13
|
van Reij RR, Joosten EA, van den Hoogen NJ. Dopaminergic neurotransmission and genetic variation in chronification of post-surgical pain. Br J Anaesth 2019; 123:853-864. [DOI: 10.1016/j.bja.2019.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/10/2019] [Accepted: 07/26/2019] [Indexed: 01/30/2023] Open
|
14
|
Zhang Y, Deng H, Zhou H, Lu Y, Shan L, Lee SM, Cui G. A novel agent attenuates cardiotoxicity and improves antitumor activity of doxorubicin in breast cancer cells. J Cell Biochem 2018; 120:5913-5922. [DOI: 10.1002/jcb.27880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Ying Zhang
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| | - Hongkuan Deng
- Department of Pharmaceutical Engineering, School of Life Sciences, Shandong University of Technology Zibo China
| | - Hefeng Zhou
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| | - Yucong Lu
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| | - Luchen Shan
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular Diseases, Jinan University College of Pharmacy Guangzhou China
| | - Simon Ming‐Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau Macao China
| | - Guozhen Cui
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| |
Collapse
|