1
|
Chen P, Wang S, Zhang H, Li J. Recent advances in nanotherapy-based treatment of epilepsy. Colloids Surf B Biointerfaces 2025; 249:114499. [PMID: 39778465 DOI: 10.1016/j.colsurfb.2025.114499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/21/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Epilepsy is a complex neurological disorder characterized by recurrent seizures affecting millions of people worldwide. Despite advances in drug therapy, a significant proportion of patients remain resistant to conventional antiepileptic drugs (AEDs) due to challenges such as impermeability of the blood-brain barrier (BBB), multidrug resistance, and multifaceted epileptogenesis. Nanotechnology offers promising strategies to overcome these barriers by enhancing drug delivery across the BBB, improving target specificity and minimizing systemic side effects. This review explores recent advances in different innovative strategies of nanodelivery systems for epilepsy therapy, and we will discuss the design principles, mechanisms of action and therapeutic efficacy of these nanodelivery systems. In addition, we discuss the challenges and limitations that hinder the clinical translation of nanomedicine-based therapies for epilepsy. We emphasize the need for personalized and multidisciplinary approaches as well as the importance of continued research and interdisciplinary collaboration in order to translate these innovative strategies into effective therapies. Ultimately, the use of nanotechnology has the potential to enhance seizure control, reduce the burden of epilepsy, and improve the quality of life of patients affected by this complex neurological disorder. Nanotechnology-based drug delivery systems may usher in a new era of precision medicine for epilepsy treatment.
Collapse
Affiliation(s)
- Peng Chen
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Shudong Wang
- Jinzhou Medical University, Liaoning 121001, China
| | - Heming Zhang
- Dalian Medical University, Liaoning 116044, China
| | - Jian Li
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
2
|
Dhureja M, Chaturvedi P, Choudhary A, Kumar P, Munshi A. Molecular Insights of Drug Resistance in Epilepsy: Multi-omics Unveil. Mol Neurobiol 2025; 62:1-17. [PMID: 38753128 DOI: 10.1007/s12035-024-04220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
Epilepsy is a devastating neurological disorder mainly associated with impaired synchronic discharge that leads to sensory, motor, and psychomotor impairments. Till now, about 30 anti-seizure medications (ASMs) have been approved for the management of epilepsy, yet one-third of individuals still have uncontrollable epilepsy and develop resistance. Drug resistance epilepsy (DRE) is defined as the condition where two ASMs fail to control the seizure in epileptic patients. The leading cause of the resistance was the extended use of ASMs. According to various studies, alterations in some genes and their expressions, along with specific metabolic impairments, are suggested to be associated with ASMs resistance and DRE pathophysiology. Several factors aid in the pathophysiology of DRE, such as alterations in protein-encoding genes such as neurotransmitter receptors, drug transporters, ion channels, and drug targets. Furthermore, the altered metabolite levels of metabolites implicated in neurotransmitter signaling, energetic pathways, oxidative stress, and neuroinflammatory signaling differentiate the epileptic patient from the DRE patient. Various DRE biomarkers can be identified using the "integrated omics approach," which includes the study of genomics, transcriptomics, and metabolomics. The current review has been compiled to understand the pathophysiological mechanisms of DRE by focusing on genomics, transcriptomics, and metabolomics. An effort has also been made to identify the therapeutic targets based on identifying significant markers by a multi-omics approach. This has the potential to develop novel therapeutic interventions in the future.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
3
|
El-Ashmawy NE, Al-Ashmawy GM, Hamada OB, Khedr NF. The role of ABCG2 in health and disease: Linking cancer therapy resistance and other disorders. Life Sci 2025; 360:123245. [PMID: 39561874 DOI: 10.1016/j.lfs.2024.123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
All biological systems have adenosine triphosphate (ATP) binding cassette (ABC) transporters, one of the significant protein superfamilies involved in transport across membranes. ABC transporters have been implicated in the etiology of diseases like metabolic disorders, cancer, and Alzheimer's disease. ATP-binding cassette superfamily G member 2 (ABCG2), one of the ABC transporters, is necessary for the ATP-dependent efflux of several endogenous and exogenous substances. Consequently, it maintained cellular homeostasis and shielded tissue from xenobiotic substances. ABCG2 was initially identified in an Adriamycin-selected breast cancer cell line (MCF-7/AdrVp) and was linked to the emergence of multidrug resistance (MDR) in cancerous cells. Under many pathophysiological conditions, including inflammation, disease pathology, tissue injury, infection, and in response to xenobiotics and endogenous substances, the expression of ABCG2 undergoes alterations that result in modifications in its function and activity. Genetic variants in the ABCG2 transporter can potentially impact its expression and function, contributing to the development of many disorders. This review aimed to illustrate the impact of ABCG2 expression and its variants on oral drug bioavailability, MDR in specific cancer cells, explore the relationship between ABCG2 expression and other disorders such as gout, Alzheimer's disease, epilepsy, and erythropoietic protoporphyria, and demonstrate the influence of various synthetic and natural compounds in regulating ABCG2 expression.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt; The British University in Egypt, Faculty of Pharmacy, Department of Pharmacology & Biochemistry, El Sherouk City, Cairo Postal Code: 11837, Egypt.
| | - Ghada M Al-Ashmawy
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt; Alsalam University in Egypt, Faculty of Pharmacy, Department of Biochemistry, Kafr El Zayat, Egypt.
| | - Omnia B Hamada
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt.
| | - Naglaa F Khedr
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt.
| |
Collapse
|
4
|
Fu XJ, Li N, Wu J, Wang ZY, Liu RR, Niu JB, Taleb M, Yuan S, Liu HM, Song J, Zhang SY. Discovery of novel pyrazolo[1,5-a]pyrimidine derivatives as potent reversal agents against ABCB1-mediated multidrug resistance. Eur J Med Chem 2024; 277:116761. [PMID: 39151276 DOI: 10.1016/j.ejmech.2024.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
The P-glycoprotein (ABCB1)-mediated multidrug resistance (MDR) has emerged as a significant impediment to the efficacy of cancer chemotherapy in clinical therapy, which could promote the development of effective agents for MDR reversal. In this work, we reported the exploration of novel pyrazolo [1,5-a]pyrimidine derivatives as potent reversal agents capable of enhancing the sensitivity of ABCB1-mediated MDR MCF-7/ADR cells to paclitaxel (PTX). Among them, compound 16q remarkably increased the sensitivity of MCF-7/ADR cells to PTX at 5 μM (IC50 = 27.00 nM, RF = 247.40) and 10 μM (IC50 = 10.07 nM, RF = 663.44). Compound 16q could effectively bind and stabilize ABCB1, and does not affect the expression and subcellular localization of ABCB1 in MCF-7/ADR cells. Compound 16q inhibited the function of ABCB1, thereby increasing PTX accumulation, and interrupting the accumulation and efflux of the ABCB1-mediated Rh123, thus resulting in exhibiting good reversal effects. In addition, due to the potent reversal effects of compound 16q, the abilities of PTX to inhibit tubulin depolymerization, and induce cell cycle arrest and apoptosis in MCF-7/ADR cells under low-dose conditions were restored. These results indicate that compound 16q might be a promising potent reversal agent capable of revising ABCB1-mediated MDR, and pyrazolo [1,5-a]pyrimidine might represent a novel scaffold for the discovery of new ABCB1-mediated MDR reversal agents.
Collapse
Affiliation(s)
- Xiang-Jing Fu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development Key, Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Na Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development Key, Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development Key, Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Zi-Yue Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development Key, Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Rui-Rui Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mohammad Taleb
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development Key, Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Kong ST, Lim SH, Ching J, Ho PCL. GC-MS uncovers unique metabolic markers of drug-resistant epilepsy in capillary but not venous dried blood spots. J Pharm Biomed Anal 2024; 253:116561. [PMID: 39514984 DOI: 10.1016/j.jpba.2024.116561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
This study compared the effectiveness of capillary dried blood spots (DBS) versus venous DBS in detecting metabolic changes related to drug-resistant epilepsy (DRE). DBS samples were collected from 142 epilepsy patients (58 drug-resistant, 84 drug-responsive) via venipuncture or fingerstick capillary sampling. Metabolomic analysis using gas chromatography-mass spectrometry compared DBS metabolite profiles between the two groups. While venous DBS profiles showed no distinct patterns, capillary DBS profiles revealed clustering patterns in principal components analysis, with the first two principal components explaining 14.5 %, and 13.5 % of the total variance, respectively. Orthogonal PLS-DA confirmed group discrimination (R2Y=0.989, Q2=0.742). Drug-resistant patients exhibited elevated capillary DBS levels of glutamine, pyruvic acid, and serine, and decreased palmitic acid compared to drug-responsive patients. Pathway analysis revealed disruptions in amino acid metabolism, neurotransmission, and cellular energy regulation. Elevated glutamine levels may contribute to an imbalance between excitatory glutamate and inhibitory GABA neurotransmission, key factors in epileptogenesis and drug resistance. Capillary DBS, likely enriched with arterial blood supply to the brain, appears to better capture central nervous system metabolic disturbances compared to venous DBS containing systemic contributions. This minimally invasive capillary DBS approach offers effective metabolic profiling of brain conditions like DRE, for monitoring disease progression and treatment response, enhancing personalized patient management in epilepsy.
Collapse
Affiliation(s)
- Sing Teang Kong
- Department of Pharmacy, National University of Singapore, Singapore
| | - Shih-Hui Lim
- National Neuroscience Institute, Singapore; Duke-NUS Medical School, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Singapore; KK Research Centre, KK Women's and Children's Hospital, Singapore
| | - Paul Chi-Lui Ho
- Department of Pharmacy, National University of Singapore, Singapore; School of Pharmacy, Monash University Malaysia, Malaysia.
| |
Collapse
|
6
|
Collier GE, Lavado R. An in-depth examination of Per- and Polyfluoroalkyl (PFAS) effects on transporters, with emphasis on the ABC superfamily: A critical review. Toxicology 2024; 508:153901. [PMID: 39094918 DOI: 10.1016/j.tox.2024.153901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Per- and polyfluoroalkyl (PFAS) substances are a type of chemical compound unique for their multiple carbon-fluorine bonds, imbuing them with strength and environmental permanence. While legacy substances have been phased out due to human health risks, short-chain and alternative PFAS remain omnipresent. However, a detailed explanation for the pathways through which PFAS interact on a cellular and molecular level is still largely unknown, and the human health effects remain mechanistically unexplained. Of particular interest when focusing on this topic are the interactions between these exogenous chemicals and plasma and membrane proteins. Such proteins include serum albumin which can transport PFAS throughout the body, solute carrier proteins (SLC) and ATP binding cassette (ABC) transporters which are able to move PFAS into and out of cells, and proteins and nuclear receptors which interact with PFAS intracellularly. ABC transporters as a family have little available human data despite being responsible for the export of endogenous substances and drugs throughout the body. The multifactorial regulation of these crucial transporters is affected directly and indirectly by PFAS. Changes, which can include alterations to membrane transport activity and differences in protein expression, vary greatly depending on the specific PFAS and protein of interest. Together, the myriad of changes caused by understudied PFAS exposure to a class of understudied proteins crucial to cellular function and drug treatments has not been fully explored regarding human health and presents room for further exploration. This critical work aims to provide a novel framework of existing human data on PFAS and ABC transporters, allowing for future advancement and investigation into human transporter activity, mechanisms of regulation, and interactions with emerging contaminants.
Collapse
Affiliation(s)
- Gracen E Collier
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States.
| |
Collapse
|
7
|
Lin CH, Ho CJ, Chen SY, Lu YT, Tsai MH. Review of pharmacogenetics of antiseizure medications: focusing on genetic variants of mechanistic targets. Front Pharmacol 2024; 15:1411487. [PMID: 39228521 PMCID: PMC11368862 DOI: 10.3389/fphar.2024.1411487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024] Open
Abstract
Antiseizure medications (ASMs) play a central role in seizure management, however, unpredictability in the response to treatment persists, even among patients with similar seizure manifestations and clinical backgrounds. An objective biomarker capable of reliably predicting the response to ASMs would profoundly impact epilepsy treatment. Presently, clinicians rely on a trial-and-error approach when selecting ASMs, a time-consuming process that can result in delays in receiving alternative non-pharmacological therapies such as a ketogenetic diet, epilepsy surgery, and neuromodulation therapies. Pharmacogenetic studies investigating the correlation between ASMs and genetic variants regarding their mechanistic targets offer promise in predicting the response to treatment. Sodium channel subunit genes have been extensively studied along with other ion channels and receptors as targets, however, the results have been conflicting, possibly due to methodological disparities including inconsistent definitions of drug response, variations in ASM combinations, and diversity of genetic variants/genes studied. Nonetheless, these studies underscore the potential effect of genetic variants on the mechanism of ASMs and consequently the prediction of treatment response. Recent advances in sequencing technology have led to the generation of large genetic datasets, which may be able to enhance the predictive accuracy of the response to ASMs.
Collapse
Affiliation(s)
- Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Cherednichenko AS, Mozdor PV, Oleynikova TK, Khatam PA, Nastueva FM, Kovalenkov KO, Serdinova AS, Osmaeva AK, Rovchak AI, Esikova YY, Shogenova MK, Akhmedov KI, Amirgamzaev MR, Batyrshina ER. A relationship between intestinal microbiome and epilepsy: potential treatment options for drug-resistant epilepsy. EPILEPSY AND PAROXYSMAL CONDITIONS 2024; 16:250-265. [DOI: 10.17749/2077-8333/epi.par.con.2024.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Background. According to the World Health Organization, about 50 million people worldwide suffer from epilepsy. Almost 1/3 of patients are diagnosed with drug-resistant epilepsy (DRE). A relationship between intestinal microbiome (IM) and the central nervous system carried out throughout life via bidirectional dynamic network exists. It has been evidenced that IM profile becomes altered in patients with DRE.Objective: to summarize the current literature data on the role for microbiome-gut-brain axis in DRE, as well as to assess an importance of IM composition changes as a prognostic marker for developing DRE.Material and methods. The authors conducted a search for publications in the electronic databases PubMed/MEDLINE and eLibrary, as well as Google Scholar search engine. The evaluation of the articles was carried out in accordance with the PRISMA recommendations. Based on the search, 4,158 publications were retrieved from PubMed/MEDLINE database, 173 – from eLibrary, and 1,100 publications found with Google Scholar. After the selection procedure, 121 studies were included in the review.Results. The review provides convincing evidence about a correlation between IM and DRE demonstrating overt differences in IM composition found in patients with epilepsy related to drug sensitivity. IM dysbiosis can be corrected by exogenous interventions such as ketogenic diet, probiotic treatment and fecal microbiota transplantation subsequently resulting in altered brain neurochemical signaling and, therefore, alleviating epileptic activity.Conclusion. A ketogenic diet, probiotics and antibiotics may have some potential to affect epilepsy by correcting IM dysbiosis, but the current studies provide no proper level of evidence. Future clinical multicenter trials should use standardized protocols and a larger-scale patient sample to provide more reliable evidence. Moreover, further fundamental investigations are required to elucidate potential mechanisms and therapeutic targets.
Collapse
|
9
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
10
|
Liu W, Mossel P, Schwach V, Slart RHJA, Luurtsema G. Cardiac PET Imaging of ATP Binding Cassette (ABC) Transporters: Opportunities and Challenges. Pharmaceuticals (Basel) 2023; 16:1715. [PMID: 38139840 PMCID: PMC10748140 DOI: 10.3390/ph16121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Adenosine triphosphate binding cassette (ABC) transporters are a broad family of membrane protein complexes that use energy to transport molecules across cells and/or intracellular organelle lipid membranes. Many drugs used to treat cardiac diseases have an affinity for these transporters. Among others, P-glycoprotein (P-gp) plays an essential role in regulating drug concentrations that reach cardiac tissue and therefore contribute to cardiotoxicity. As a molecular imaging modality, positron emission tomography (PET) has emerged as a viable technique to investigate the function of P-gp in organs and tissues. Using PET imaging to evaluate cardiac P-gp function provides new insights for drug development and improves the precise use of medications. Nevertheless, information in this field is limited. In this review, we aim to examine the current applications of ABC transporter PET imaging and its tracers in the heart, with a specific emphasis on P-gp. Furthermore, the opportunities and challenges in this novel field will be discussed.
Collapse
Affiliation(s)
- Wanling Liu
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| | - Pascalle Mossel
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherlands;
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
- Department of Biomedical Photonic Imaging, University of Twente, 7500 AE Enschede, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (W.L.); (P.M.)
| |
Collapse
|
11
|
Dini G, Di Cara G, Ferrara P, Striano P, Verrotti A. Reintroducing Fenfluramine as a Treatment for Seizures: Current Knowledge, Recommendations and Gaps in Understanding. Neuropsychiatr Dis Treat 2023; 19:2013-2025. [PMID: 37790801 PMCID: PMC10543412 DOI: 10.2147/ndt.s417676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Despite the introduction of new anti-seizure medications in recent years, approximately one-third of the epileptic population continues to experience seizures. Recently, the anti-obesity medication fenfluramine (FFA) has been successfully repurposed, and it has received approval from various regulatory agencies for the treatment of seizures associated with Dravet syndrome and Lennox-Gastaut syndrome. The potential antiseizure effects of FFA were initially observed in patients with photosensitive epilepsy in the 1980s but it was not rigorously explored as a treatment option until 30 years later. This narrative review aims to provide an overview of the historical progression of FFA's use, starting from initial clinical observations to preclinical studies and, ultimately, successful clinical trials in the field of epilepsy.
Collapse
Affiliation(s)
- Gianluca Dini
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | | | - Pietro Ferrara
- Department of Pediatrics, Campus Bio-Medico University, Rome, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto “G. Gaslini”, Genoa, Italy
| | | |
Collapse
|
12
|
Timechko EE, Yakimov AM, Paramonova AI, Usoltseva AA, Utyashev NP, Ivin NO, Utyasheva AA, Yakunina AV, Kalinin VA, Dmitrenko DV. Mass Spectrometry as a Quantitative Proteomic Analysis Tool for the Search for Temporal Lobe Epilepsy Biomarkers: A Systematic Review. Int J Mol Sci 2023; 24:11130. [PMID: 37446307 DOI: 10.3390/ijms241311130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults. Tissue reorganization at the site of the epileptogenic focus is accompanied by changes in the expression patterns of protein molecules. The study of mRNA and its corresponding proteins is crucial for understanding the pathogenesis of the disease. Protein expression profiles do not always directly correlate with the levels of their transcripts; therefore, it is protein profiling that is no less important for understanding the molecular mechanisms and biological processes of TLE. The study and annotation of proteins that are statistically significantly different in patients with TLE is an approach to search for biomarkers of this disease, various stages of its development, as well as a method for searching for specific targets for the development of a further therapeutic strategy. When writing a systematic review, the following aggregators of scientific journals were used: MDPI, PubMed, ScienceDirect, Springer, and Web of Science. Scientific articles were searched using the following keywords: "proteomic", "mass-spectrometry", "protein expression", "temporal lobe epilepsy", and "biomarkers". Publications from 2003 to the present have been analyzed. Studies of brain tissues, experimental models of epilepsy, as well as biological fluids, were analyzed. For each of the groups, aberrantly expressed proteins found in various studies were isolated. Most of the studies omitted important characteristics of the studied patients, such as: duration of illness, type and response to therapy, gender, etc. Proteins that overlap across different tissue types and different studies have been highlighted: DPYSL, SYT1, STMN1, APOE, NME1, and others. The most common biological processes for them were the positive regulation of neurofibrillary tangle assembly, the regulation of amyloid fibril formation, lipoprotein catabolic process, the positive regulation of vesicle fusion, the positive regulation of oxidative stress-induced intrinsic apoptotic signaling pathway, removal of superoxide radicals, axon extension, and the regulation of actin filament depolymerization. MS-based proteomic profiling for a relevant study must accept a number of limitations, the most important of which is the need to compare different types of neurological and, in particular, epileptic disorders. Such a criterion could increase the specificity of the search work and, in the future, lead to the discovery of biomarkers for a particular disease.
Collapse
Affiliation(s)
- Elena E Timechko
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Alexey M Yakimov
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Anastasia I Paramonova
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Anna A Usoltseva
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Nikita P Utyashev
- Federal State Budgetary Institution "National Medical and Surgical Center Named after N.I. Pirogov", 105203 Moscow, Russia
| | - Nikita O Ivin
- Federal State Budgetary Institution "National Medical and Surgical Center Named after N.I. Pirogov", 105203 Moscow, Russia
| | - Anna A Utyasheva
- Federal State Budgetary Institution "National Medical and Surgical Center Named after N.I. Pirogov", 105203 Moscow, Russia
| | - Albina V Yakunina
- Department of Neurology and Neurobiology of Postgraduate Education, Samara State Medical University, 443079 Samara, Russia
| | - Vladimir A Kalinin
- Department of Neurology and Neurobiology of Postgraduate Education, Samara State Medical University, 443079 Samara, Russia
| | - Diana V Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| |
Collapse
|
13
|
Wang YF, Cai TG, Liu ZL, Cui HL, Zhu D, Qiao M. A new insight into the potential drivers of antibiotic resistance gene enrichment in the collembolan gut association with antibiotic and non-antibiotic agents. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131133. [PMID: 36889073 DOI: 10.1016/j.jhazmat.2023.131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Effects of non-antibiotic pharmaceuticals on antibiotic resistance genes (ARGs) in soil ecosystem are still unclear. In this study, we explored the microbial community and ARGs variations in the gut of the model soil collembolan Folsomia candida following soil antiepileptic drug carbamazepine (CBZ) contamination, while comparing with antibiotic erythromycin (ETM) exposure. Results showed that, CBZ and ETM all significantly influenced ARGs diversity and composition in the soil and collembolan gut, increasing the relative abundance of ARGs. However, unlike ETM, which influences ARGs via bacterial communities, exposure to CBZ may have primarily facilitated enrichment of ARGs in gut through mobile genetic elements (MGEs). Although soil CBZ contamination did not pose an effect on the gut fungal community of collembolans, it increased the relative abundance of animal fungal pathogens contained therein. Soil ETM and CBZ exposure both significantly increased the relative abundance of Gammaproteobacteria in the collembolan gut, which may be used to indicate soil contamination. Together, our results provide a fresh perspective for the potential drivers of non-antibiotic drugs on ARG changes based on the actual soil environment, revealing the potential ecological risk of CBZ on soil ecosystems involving ARGs dissemination and pathogens enrichment.
Collapse
Affiliation(s)
- Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Tian-Gui Cai
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhe-Lun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Lin R, Zhang L, Ye B, Wang Y, Li YD, Jason H, Liu W, Hu P, Chen J, Chen ZS, Chen Z. A multi-functional nano-system combining PI3K-110α/β inhibitor overcomes P-glycoprotein mediated MDR and improves anti-cancer efficiency. Cancer Lett 2023; 563:216181. [PMID: 37086953 DOI: 10.1016/j.canlet.2023.216181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/24/2023]
Abstract
P-glycoprotein (P-gp/ABCB1)-mediated multidrug resistance (MDR) in cancers severely limit chemotherapeutic efficacy. We recently reported that phosphatidylinositol-3-kinase (PI3K) 110α and 110β subunits can be novel targets for reversal of P-gp mediated MDR in cancers, and BAY-1082439 as an inhibitor specific for PI3K 110α and 110β subunits could reverse P-gp-mediated MDR by downregulating P-gp expression in cancer cells. However, BAY-1082439 has very low solubility, short half-life and high in-vivo clearance rate. Till now, nano-system with the functions to target PI3K P110α and P110β and reverse P-gp mediated MDR in cancers has not been reported. In our study, a tumor targeting drug delivery nano-system PBDF was established, which comprised doxorubicin (DOX) and BAY-1082439 respectively encapsulated by biodegradable PLGA-SH nanoparticles (NPs) that were grafted to gold nanorods (Au NRs) modified with FA-PEG-SH, to enhance the efficacy to reverse P-gp mediated MDR and to target tumor cells, further, to enhance the efficiency to inhibit MDR tumors overexpressing P-gp. In-vitro experiments indicated that PBDF NPs greatly enhanced uptake of DOX, improved the activity to reverse MDR, inhibited the cell proliferation, and induced S-phase arrest and apoptosis in KB-C2 cells, as compared with free DOX combining free BAY-1082439. In-vivo experiments further demonstrated that PBDF NPs improved the anti-tumor ability of DOX and inhibited development of KB-C2 tumors. Notably, the metastasis of KB-C2 cells in livers and lungs of nude mice were inhibited by treatment with PBDF NPs, which showed no obvious in-vitro or in-vivo toxicity.
Collapse
Affiliation(s)
- Ruikun Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| | - Biwei Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yanan Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yi-Dong Li
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Hsu Jason
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Wenzhen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Ping Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
15
|
Harris WJ, Asselin MC, Hinz R, Parkes LM, Allan S, Schiessl I, Boutin H, Dickie BR. In vivo methods for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging 2023; 50:1051-1083. [PMID: 36437425 PMCID: PMC9931809 DOI: 10.1007/s00259-022-05997-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.
Collapse
Affiliation(s)
- William James Harris
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Laura Michelle Parkes
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Herve Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
| | - Ben Robert Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Kukal S, Bora S, Kanojia N, Singh P, Paul PR, Rawat C, Sagar S, Bhatraju NK, Grewal GK, Singh A, Kukreti S, Satyamoorthy K, Kukreti R. Valproic Acid-Induced Upregulation of Multidrug Efflux Transporter ABCG2/BCRP via PPAR α-Dependent Mechanism in Human Brain Endothelial Cells. Mol Pharmacol 2023; 103:145-157. [PMID: 36414374 DOI: 10.1124/molpharm.122.000568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the progress made in the development of new antiepileptic drugs (AEDs), poor response to them is a rising concern in epilepsy treatment. Of several hypotheses explaining AED treatment failure, the most promising theory is the overexpression of multidrug transporters belonging to ATP-binding cassette (ABC) transporter family at blood-brain barrier. Previous data show that AEDs themselves can induce these transporters, in turn affecting their own brain bioavailability. Presently, this induction and the underlying regulatory mechanism involved at human blood-brain barrier is not well elucidated. Herein, we sought to explore the effect of most prescribed first- and second-line AEDs on multidrug transporters in human cerebral microvascular endothelial cells, hCMEC/D3. Our work demonstrated that exposure of these cells to valproic acid (VPA) induced mRNA, protein, and functional activity of breast cancer resistance protein (BCRP/ABCG2). On examining the substrate interaction status of AEDs with BCRP, VPA, phenytoin, and lamotrigine were found to be potential BCRP substrates. Furthermore, we observed that siRNA-mediated knockdown of peroxisome proliferator-activated receptor alpha (PPARα) or use of PPARα antagonist, resulted in attenuation of VPA-induced BCRP expression and transporter activity. VPA was found to increase PPARα expression and trigger its translocation from cytoplasm to nucleus. Findings from chromatin immunoprecipitation and luciferase assays showed that VPA enhances the binding of PPARα to its response element in the ABCG2 promoter, resulting in elevated ABCG2 transcriptional activity. Taken together, these in vitro findings highlight PPARα as the potential molecular target to prevent VPA-mediated BCRP induction, which may have important implications in VPA pharmacoresistance. SIGNIFICANCE STATEMENT: Induction of multidrug transporters at blood-brain barrier can largely affect the bioavailability of the substrate antiepileptic drugs in the brains of patients with epilepsy, thus affecting their therapeutic efficacy. The present study reports a mechanistic pathway of breast cancer resistance protein (BCRP/ABCG2) upregulation by valproic acid in human brain endothelial cells via peroxisome proliferator-activated receptor alpha involvement, thereby providing a potential strategy to prevent valproic acid pharmacoresistance in epilepsy.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Shakti Sagar
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Naveen Kumar Bhatraju
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Gurpreet Kaur Grewal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Anju Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Shrikant Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Kapaettu Satyamoorthy
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India (S.K., S.B., N.K., P.S., P.R.P., C.R., S.S., N.K.B., R.K.); Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India (S.K., N.K., P.S., P.R.P., C.R., S.S., R.K.); Department of Biotechnology, Delhi Technological University, Delhi, India (S.B.); Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India (G.K.G.); Nucleic Acids Research Laboratory, Department of Chemistry (A.S., S.K) and Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi, India (A.S.); and Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India (K.S.)
| |
Collapse
|
17
|
Xie Y, Shao Y, Gong X, Wang M, Chen Y. Evaluation of P-glycoprotein-targeting circulating microRNAs as peripheral biomarkers for medically intractable epilepsy. ACTA EPILEPTOLOGICA 2023. [DOI: 10.1186/s42494-022-00116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Abstract
Background
Early diagnosis of medically intractable epilepsy is challenging in clinical work. P-glycoprotein (P-gp) is one of the most important multidrug efflux transporters, which has been demonstrated to contribute to the drug resistance of intractable epilepsy. The present study was aimed to explore the diagnostic value of microRNAs (miRNAs) targeting P-gp for medically intractable epilepsy.
Methods
Thirty-six patients with intractable epilepsy and 36 epilepsy patients responsive to anti-epilepsy drugs, who visited Jinshan Hospital of Fudan University from September 2014 to September 2016, were enrolled in this study. Clinical information of the patients was obtained by retrospectively reviewing medical records. MiRNAs with differential serum expression between the two groups of patients were detected by microarray assay. Meanwhile, miRNAs that were confirmed to regulate P-gp in vitro by western blot were selected for further validation. In the validation phase, reverse transcription quantitative PCR (RT-qPCR) was conducted to confirm the differential expression of the candidate miRNAs in the epilepsy cohorts. Receiver operating characteristic (ROC) curve analysis was carried out to evaluate the diagnostic value of the miRNAs for intractable epilepsy.
Results
Three miRNAs including miR-6514-3p, miR-6076-5p, and miR-6855-3p were identified to be candidate miRNAs by microarray assay. The results of western blotting validated that miR-146a-5p and miR-138-5p could regulate P-gp expression in vitro, so they were included in the candidate miRNAs for further validation. In the validation phase, the results of RT-qPCR indicated that compared with drug-responsive patients, the patients with intractable epilepsy showed decreased level of miR-138-5p and increased level of miR-146a-5p. The results of ROC curve analysis indicated that miR-138-5p (AUC = 0.877) and miR-146a-5p (AUC = 0.866) had high diagnostic value for intractable epilepsy. In addition, the miR-panel composed of miR-138-5p and miR-146a-5p showed higher diagnostic value (AUC = 0.926) than the miRNAs selected by microarray assay.
Conclusions
Our results indicated that the dysregulated miR-138-5p and miR-146a-5p which target P-gp expression have high potential as peripheral biomarkers for medically intractable epilepsy.
Collapse
|
18
|
Hydrogen Sulfide Attenuates Lipopolysaccharide-Induced Inflammation via the P-glycoprotein and NF-κB Pathway in Astrocytes. Neurochem Res 2022; 48:1424-1437. [PMID: 36482035 PMCID: PMC10066098 DOI: 10.1007/s11064-022-03840-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
AbstractAstrocyte activation is key in neurodegenerative diseases. Hydrogen sulfide (H2S) exhibits neuroprotective effects on astrocytes, although the underlying molecular mechanism remains unclear. Here, we explored the effects of H2S on lipopolysaccharide (LPS)-induced astrocyte activation and astrocyte-mediated neuroinflammation. After inducing primary astrocytes via LPS exposure, H2S levels were altered. The generation and secretion of inflammatory mediators by astrocytes and their interrelation with P-glycoprotein (P-gp), an important transporter belonging to the ABC transporter family, were assessed. Activated astrocytes showed upregulated glial fibrillary acidic protein (GFAP) mRNA expression, and significantly increased proinflammatory factor mRNA/protein expression and release. The secretory capacity of astrocytes was reduced, with significantly decreased proinflammatory factor levels in culture supernatant after P-gp inhibitor verapamil pretreatment. The increase in the intracellular H2S level inhibited LPS-induced GFAP expression and P65 nuclear entry in astrocytes. mRNA expression and release of proinflammatory factors were reduced significantly, with no significant changes in cytoplasmic protein expression. S-sulfhydration levels increased significantly with the increased concentration of sodium hydrosulfide or S-adenosyl-l-methionine addition, with only moderate changes in astrocyte P-gp expression. H2S regulates NF-κB activation, leads to S-sulfhydration of P-gp, and inhibits the biosynthesis and secretion of proinflammatory factors by astrocytes. The regulatory effects of H2S on astrocytes may have clinical value for exploring new therapeutic strategies against neurodegenerative diseases.
Collapse
|
19
|
Li F, Yin J, Lu M, Mou M, Li Z, Zeng Z, Tan Y, Wang S, Chu X, Dai H, Hou T, Zeng S, Chen Y, Zhu F. DrugMAP: molecular atlas and pharma-information of all drugs. Nucleic Acids Res 2022; 51:D1288-D1299. [PMID: 36243961 PMCID: PMC9825453 DOI: 10.1093/nar/gkac813] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 02/06/2023] Open
Abstract
The efficacy and safety of drugs are widely known to be determined by their interactions with multiple molecules of pharmacological importance, and it is therefore essential to systematically depict the molecular atlas and pharma-information of studied drugs. However, our understanding of such information is neither comprehensive nor precise, which necessitates the construction of a new database providing a network containing a large number of drugs and their interacting molecules. Here, a new database describing the molecular atlas and pharma-information of drugs (DrugMAP) was therefore constructed. It provides a comprehensive list of interacting molecules for >30 000 drugs/drug candidates, gives the differential expression patterns for >5000 interacting molecules among different disease sites, ADME (absorption, distribution, metabolism and excretion)-relevant organs and physiological tissues, and weaves a comprehensive and precise network containing >200 000 interactions among drugs and molecules. With the great efforts made to clarify the complex mechanism underlying drug pharmacokinetics and pharmacodynamics and rapidly emerging interests in artificial intelligence (AI)-based network analyses, DrugMAP is expected to become an indispensable supplement to existing databases to facilitate drug discovery. It is now fully and freely accessible at: https://idrblab.org/drugmap/.
Collapse
Affiliation(s)
| | | | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba–Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba–Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Xinyi Chu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Haibin Dai
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- Correspondence may also be addressed to Su Zeng.
| | - Yuzong Chen
- Correspondence may also be addressed to Yuzong Chen.
| | - Feng Zhu
- To whom correspondence should be addressed.
| |
Collapse
|
20
|
Yu L, Zhang J, Li Y. Effects of microenvironment in osteosarcoma on chemoresistance and the promise of immunotherapy as an osteosarcoma therapeutic modality. Front Immunol 2022; 13:871076. [PMID: 36311748 PMCID: PMC9608329 DOI: 10.3389/fimmu.2022.871076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is one of the most common primary malignant tumors originating in bones. Its high malignancy typically manifests in lung metastasis leading to high mortality. Although remarkable advances in surgical resection and neoadjuvant chemotherapy have lengthened life expectancy and greatly improved the survival rate among OS patients, no further breakthroughs have been achieved. It is challenging to treat patients with chemoresistant tumors and distant metastases. Recent studies have identified a compelling set of links between hypoxia and chemotherapy failure. Here, we review the evidence supporting the positive effects of hypoxia in the tumor microenvironment (TME). In addition, certain anticancer effects of immune checkpoint inhibitors have been demonstrated in OS preclinical models. Continued long-term observation in clinical trials is required. In the present review, we discuss the mutualistic effects of the TME in OS treatment and summarize the mechanisms of immunotherapy and their interaction with TME when used to treat OS. We also suggest that immunotherapy, a new comprehensive and potential antitumor approach that stimulates an immune response to eliminate tumor cells, may represent an innovative approach for the development of a novel treatment regimen for OS patients.
Collapse
|
21
|
Metabolomic-based investigation of Yinlan alleviating hyperlipidemia by inhibiting blood stasis and phlegm turbidity through the PXR-CYP3A4-ABCB1-FXR pathway. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
22
|
Wang J, Fu J, Sun W, Yin X, Lv K, Zhang J. Functionalized PEG-PLA nanoparticles for brain targeted delivery of ketoconazole contribute to pregnane X receptor overexpressing in drug-resistant epilepsy. Epilepsy Res 2022; 186:107000. [PMID: 36037622 DOI: 10.1016/j.eplepsyres.2022.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/24/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To develop a functionalized PEG-PLA nanoparticle system containing ketoconazole (KCZ) to overcome the overactivity of pregnane X receptor (PXR) for the treatment of drug-resistant epilepsy (DRE). SIGNIFICANCE KCZ was developed as a therapy strategy for DRE limited by its lethal hepatotoxicity and minute brain concentration. KCZ-incorporated nanoparticles modified with angiopep-2 (NPs/KCZ) could reduce adverse effects of KCZ and achieve epileptic foci-targeted drug delivery. METHODS NPs/KCZ was prepared by thin-film hydration method and characterized in vitro and in vivo. The efficacy evaluation of NPs/KCZ was evaluated in a kainic acid (KA)-induced mice model of epilepsy with carbamazepine (CBZ) treatment. RESULTS The mean particle size and Zeta potential of NPs/KCZ were 17.84 ± 0.33 nm and - 2.28 ± 0.12 mV, respectively. The drug-loading (DL%) of KCZ in nanoparticles was 8.96 ± 0.12 % and the entrapment efficiency (EE%) was 98.56 ± 0.02 %. The critical value of critical micelle concentration was 10-3.3 mg/ml. No obvious cytotoxicity was found in vitro. The behavioral and electrographic seizure activities were obviously attenuated in NPs/KCZ+CBZ group. The CBZ concentration of brain tissues in mice treated with NPs/KCZ+CBZ was significantly increased than those treated with CBZ alone (P = 0.0028). A significantly decreased expression level of PXR and its downstream proteins was observed in NPs/KCZ+CBZ group compared with that in the control and CBZ group (All P < 0.05). CONCLUSION Our results showed that NPs/KCZ achieved the epileptic foci-targeted delivery of KCZ and ameliorated the efficacy of CBZ on DRE by attenuating the overactivity of PXR.
Collapse
Affiliation(s)
- Jianhong Wang
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Junyan Fu
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Wanbing Sun
- Department of Neurology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Xuyang Yin
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, No.12 Wulumuqi Road (Middle), Shanghai 200040, China; National Center for Neurological Disorders, No.12 Wulumuqi Road (Middle), Shanghai 200040, China.
| |
Collapse
|
23
|
Ashar Y, Teng Q, Wurpel JND, Chen ZS, Reznik SE. Palmitic Acid Impedes Extravillous Trophoblast Activity by Increasing MRP1 Expression and Function. Biomolecules 2022; 12:1162. [PMID: 36009056 PMCID: PMC9406058 DOI: 10.3390/biom12081162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/05/2022] Open
Abstract
Normal function of placental extravillous trophoblasts (EVTs), which are responsible for uteroplacental vascular remodeling, is critical for adequate delivery of oxygen and nutrients to the developing fetus and normal fetal programming. Proliferation and invasion of spiral arteries by EVTs depends upon adequate levels of folate. Multidrug resistance-associated protein 1 (MRP1), which is an efflux transporter, is known to remove folate from these cells. We hypothesized that palmitic acid increases MRP1-mediated folate removal from EVTs, thereby interfering with EVTs' role in early placental vascular remodeling. HTR-8/SVneo and Swan-71 cells, first trimester human EVTs, were grown in the absence or presence of 0.5 mM and 0.7 mM palmitic acid, respectively, for 72 h. Palmitic acid increased ABCC1 gene expression and MRP1 protein expression in both cell lines. The rate of folate efflux from the cells into the media increased with a decrease in migration and invasion functions in the cultured cells. Treatment with N-acetylcysteine (NAC) prevented the palmitic acid-mediated upregulation of MRP1 and restored invasion and migration in the EVTs. Finally, in an ABCC1 knockout subline of Swan-71 cells, there was a significant increase in invasion and migration functions. The novel finding in this study that palmitic acid increases MRP1-mediated folate efflux provides a missing link that helps to explain how maternal consumption of saturated fatty acids compromises the in utero environment.
Collapse
Affiliation(s)
- Yunali Ashar
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA
| | - Qiuxu Teng
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA
| | - John N. D. Wurpel
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA
| | - Sandra E. Reznik
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA
- Departments of Pathology and Obstetrics and Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
24
|
Mohi-Ud-Din R, Mir RH, Mir PA, Banday N, Shah AJ, Sawhney G, Bhat MM, Batiha GE, Pottoo FH, Pottoo FH. Dysfunction of ABC Transporters at the Surface of BBB: Potential Implications in Intractable Epilepsy and Applications of Nanotechnology Enabled Drug Delivery. Curr Drug Metab 2022; 23:735-756. [PMID: 35980054 DOI: 10.2174/1389200223666220817115003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023]
Abstract
Epilepsy is a chronic neurological disorder affecting 70 million people globally. One of the fascinating attributes of brain microvasculature is the (BBB), which controls a chain of distinct features that securely regulate the molecules, ions, and cells movement between the blood and the parenchyma. The barrier's integrity is of paramount importance and essential for maintaining brain homeostasis, as it offers both physical and chemical barriers to counter pathogens and xenobiotics. Dysfunction of various transporters in the (BBB), mainly ATP binding cassette (ABC), is considered to play a vital role in hampering the availability of antiepileptic drugs into the brain. ABC (ATP-binding cassette) transporters constitute a most diverse protein superfamily, which plays an essential part in various biological processes, including cell homeostasis, cell signaling, uptake of nutrients, and drug metabolism. Moreover, it plays a crucial role in neuroprotection by out-flowing various internal and external toxic substances from the interior of a cell, thus decreasing their buildup inside the cell. In humans, forty-eight ABC transporters have been acknowledged and categorized into subfamilies A to G based on their phylogenetic analysis. ABC subfamilies B, C, and G, impart a vital role at the BBB in guarding the brain against the entrance of various xenobiotic and their buildup. The illnesses of the central nervous system have received a lot of attention lately Owing to the existence of the BBB, the penetration effectiveness of most CNS medicines into the brain parenchyma is very limited (BBB). In the development of neurological therapies, BBB crossing for medication delivery to the CNS continues to be a major barrier. Nanomaterials with BBB cross ability have indeed been extensively developed for the treatment of CNS diseases due to their advantageous properties. This review will focus on multiple possible factors like inflammation, oxidative stress, uncontrolled recurrent seizures, and genetic polymorphisms that result in the deregulation of ABC transporters in epilepsy and nanotechnology-enabled delivery across BBB in epilepsy.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu & Kashmir, 190011, India.,Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Chandigarh College of Pharmacy, Landran, Punjab-140301, India.,Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Prince Ahad Mir
- Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, G.T. Road, Amritsar-143002, Punjab, India
| | - Nazia Banday
- Department of Pharmaceutical Sciences, School of Applied Sciences & Technology, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Abdul Jalil Shah
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu 180001, India
| | - Mudasir Maqbool Bhat
- Department of Pharmaceutical Sciences, Pharmacy Practice Division, University of Kashmir, Hazratbal, Srinagar-190006, Jammu & Kashmir, India
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| |
Collapse
|
25
|
Red Blood Cell Inspired Strategies for Drug Delivery: Emerging Concepts and New Advances. Pharm Res 2022; 39:2673-2698. [PMID: 35794397 DOI: 10.1007/s11095-022-03328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 12/09/2022]
Abstract
In the past five decades, red blood cells (RBCs) have been extensively explored as drug delivery systems due to their distinguishing potential in modulating the pharmacokinetic, pharmacodynamics, and biological activity of carried payloads. The extensive interests in RBC-mediated drug delivery technologies are in part derived from RBCs' unique biological features such as long circulation time, wide access to many tissues in the body, and low immunogenicity. Owing to these outstanding properties, a large body of efforts have led to the development of various RBC-inspired strategies to enable precise drug delivery with enhanced therapeutic efficacy and reduced off-target toxicity. In this review, we discuss emerging concepts and new advances in such RBC-inspired strategies, including native RBCs, ghost RBCs, RBC-mimetic nanoparticles, and RBC-derived extracellular vesicles, for drug delivery.
Collapse
|
26
|
Singh H, Raja A, Shekhar N, Chauhan A, Prakash A, Avti P, Medhi B. Computational attributes of protein kinase-C gamma C2-domain & virtual screening for small molecules: elucidation from meta-dynamics simulations & free-energy calculations. J Biomol Struct Dyn 2022:1-12. [DOI: 10.1080/07391102.2022.2077447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Harvinder Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anupam Raja
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nishant Shekhar
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
27
|
Yuan T, Hu J, Zhu X, Yin H, Yin J. Oxidative stress-mediated up-regulation of ABC transporters in lung cancer cells. J Biochem Mol Toxicol 2022; 36:e23095. [PMID: 35478211 DOI: 10.1002/jbt.23095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 11/12/2022]
Abstract
This paper aimed to evaluate the role of oxidative stress in the regulation of ABC transporters in human lung cancer (A549) cells facing substrate (doxorubicin, DOX) and non-substrate (ethanol, ETH and hydrogen peroxide, HP) chemicals. After 24-h treatment, all the chemicals caused significant cytotoxicity as reflected by the reduction in cell viability and the increase in reactive oxygen species (ROS) levels. Depending on the rescuing effects of ROS scavenger including glutathione (GSH) and Vitamin C (VC), the toxicity dependence on oxidative stress were found to be HP>ETH>DOX. Addition of transporter inhibitors significantly enhanced the ROS levels and death-inducing effects of chemicals, indicating the universal detoxification function of ABC transporters. At moderate ROS levels (about 3-4 folds of control levels, caused by 10 μM DOX, 400 mM ETH, and 400 μM HP), all the three chemicals induced the gene expressions and activities of ABC transporters, but these values decreased at too high ROS levels (8.36 folds of control levels) caused by HP at LC50 (800 μM). Such induction could be attenuated by GSH and KCZ, and was completely abolished by 50 μM KCZ, indicating an important role of oxidative stress and pregnane X receptor (PXR) in the induction of ABC transporters. After all, this paper revealed a critical role of oxidative stress in the modulation of ABC transporters by either substrate or non-substrate chemicals during 24-h treatment. Such information should be beneficial for overcoming ABC transporter-mediated multidrug resistance (MDR). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tongkuo Yuan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, 215163, PR China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, PR China.,Jinan Guo Ke Medical Technology Development Co., Ltd, Jinan, 250001, PR China
| | - Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, 215123, PR China
| | - Xiaoming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Huancai Yin
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, 215163, PR China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, PR China.,Jinan Guo Ke Medical Technology Development Co., Ltd, Jinan, 250001, PR China
| | - Jian Yin
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, 215163, PR China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, PR China.,Jinan Guo Ke Medical Technology Development Co., Ltd, Jinan, 250001, PR China
| |
Collapse
|
28
|
Bacillus subtilis Plays a Role in the Inhibition of Transporter ABCB1 in Caco-2 Cells. Epilepsy Res 2022; 183:106925. [PMID: 35526327 DOI: 10.1016/j.eplepsyres.2022.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
|
29
|
Borghi R, Magliocca V, Trivisano M, Specchio N, Tartaglia M, Bertini E, Compagnucci C. Modeling PCDH19-CE: From 2D Stem Cell Model to 3D Brain Organoids. Int J Mol Sci 2022; 23:ijms23073506. [PMID: 35408865 PMCID: PMC8998847 DOI: 10.3390/ijms23073506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
PCDH19 clustering epilepsy (PCDH19-CE) is a genetic disease characterized by a heterogeneous phenotypic spectrum ranging from focal epilepsy with rare seizures and normal cognitive development to severe drug-resistant epilepsy associated with intellectual disability and autism. Unfortunately, little is known about the pathogenic mechanism underlying this disease and an effective treatment is lacking. Studies with zebrafish and murine models have provided insights on the function of PCDH19 during brain development and how its altered function causes the disease, but these models fail to reproduce the human phenotype. Induced pluripotent stem cell (iPSC) technology has provided a complementary experimental approach for investigating the pathogenic mechanisms implicated in PCDH19-CE during neurogenesis and studying the pathology in a more physiological three-dimensional (3D) environment through the development of brain organoids. We report on recent progress in the development of human brain organoids with a particular focus on how this 3D model may shed light on the pathomechanisms implicated in PCDH19-CE.
Collapse
Affiliation(s)
- Rossella Borghi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Marina Trivisano
- Department of Neurosciences, Rare and Complex Epilepsy Unit, Division of Neurology, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (M.T.); (N.S.)
| | - Nicola Specchio
- Department of Neurosciences, Rare and Complex Epilepsy Unit, Division of Neurology, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (M.T.); (N.S.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
- Correspondence:
| |
Collapse
|
30
|
Mousavi SF, Hasanpour K, Nazarzadeh M, Adli A, Bazghandi MS, Asadi A, Rad A, Gholami O. ABCG2, SCN1A and CYP3A5 genes polymorphism and drug-resistant epilepsy in children: A case-control study. Seizure 2022; 97:58-62. [DOI: 10.1016/j.seizure.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022] Open
|
31
|
Gonçalves AC, Rodrigues M, Flores-Félix JD, Campos G, Nunes AR, Ribeiro AB, Silva LR, Alves G. Sweet cherry phenolics revealed to be promising agents in inhibiting P-glycoprotein activity and increasing cellular viability under oxidative stress conditions: in vitro and in silico study. J Food Sci 2021; 87:450-465. [PMID: 34940988 DOI: 10.1111/1750-3841.16001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/01/2022]
Abstract
This study aimed to explore the total phenolic and anthocyanin content (TPC and TAC, respectively), and the biological potential of Portuguese sweet cherry cultivars. The TPC and TAC values ranged between 72.9 and 493.6 gallic acid equivalents per 100 g fresh weight (fw), and from 1.0 to 179.1 cyanidin 3-O-rutinoside equivalents per 100 g fw, respectively. Cristalina total extract was the most effective in capturing DPPH reactive species, whereas the colored fraction and the total extract of Saco cultivar were the most efficient in scavenging ferric and peroxide species. Celeste total extract was the most effective in inhibiting α-glucosidase enzyme. Phenolic-rich extracts and standard phenolics also revealed ability to interfere with the P-gp activity on MDCK-II and MDCK-MDR1 cells and to increase cellular viability under conditions of oxidative stress. Computational studies were performed to evaluate the interaction between phenolics and the P-gp activity. This study revealed that cherry extracts and their phenolic compounds present notable biological properties, encouraging the development of cherry-based dietary and medicinal supplements. PRACTICAL APPLICATION: The interest in phenolic-rich sources has increased significantly in recent years, given their capacity to prevent the development of chronic disorders, such as cancer. Recent evidence suggests that phenolic compounds can act as P-glycoprotein (P-gp) inhibitors, an important drug efflux transporter, preventing multidrug resistance, and thus, enhancing the therapeutic efficacy of some drugs in certain target cells. Our results indicate that enriched-fractions from sweet cherries can effectively interfere with the P-gp activity on MDCK-II and MDCK-MDR1 cells and protect against oxidative damage.
Collapse
Affiliation(s)
- Ana C Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Márcio Rodrigues
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,UDI-IPG - Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal
| | | | - Gonçalo Campos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Nunes
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Alessandra Braga Ribeiro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Luís R Silva
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,UDI-IPG - Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
32
|
Cucchiara F, Ferraro S, Luci G, Bocci G. Relevant pharmacological interactions between alkylating agents and antiepileptic drugs: Preclinical and clinical data. Pharmacol Res 2021; 175:105976. [PMID: 34785318 DOI: 10.1016/j.phrs.2021.105976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/07/2021] [Accepted: 11/07/2021] [Indexed: 01/01/2023]
Abstract
Seizures are relatively common in cancer patients, and co-administration of chemotherapeutic and antiepileptic drugs (AEDs) is highly probable and necessary in many cases. Nonetheless, clinically relevant interactions between chemotherapeutic drugs and AEDs are rarely summarized and pharmacologically described. These interactions can cause insufficient tumor and seizure control or lead to unforeseen toxicity. This review focused on pharmacokinetic and pharmacodynamic interactions between alkylating agents and AEDs, helping readers to make a rational choice of treatment optimization, and thus improving patients' quality of life. As an example, phenobarbital, phenytoin, and carbamazepine, by increasing the hepatic metabolism of cyclophosphamide, ifosfamide and busulfan, yield smaller peak concentrations and a reduced area under the plasma concentration-time curve (AUC) of the prodrugs; alongside, the maximum concentration and AUC of their active products were increased with the possible onset of severe adverse drug reactions. On the other side, valproic acid, acting as histone deacetylase inhibitor, showed synergistic effects with temozolomide when tested in glioblastoma. The present review is aimed at providing evidence that may offer useful suggestions for rational pharmacological strategies in patients with seizures symptoms undertaking alkylating agents. Firstly, clinicians should avoid the use of enzyme-inducing AEDs in combination with alkylating agents and prefer the use of AEDs, such as levetiracetam, that have a low or no impact on hepatic metabolism. Secondly, a careful therapeutic drug monitoring of both alkylating agents and AEDs (and their active metabolites) is necessary to maintain therapeutic ranges and to avoid serious adverse reactions.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Pharmacology, Department of Clinical and Experimental, University of Pisa, Pisa, Italy
| | - Sara Ferraro
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giacomo Luci
- Unit of Pharmacology, Department of Clinical and Experimental, University of Pisa, Pisa, Italy
| | - Guido Bocci
- Unit of Pharmacology, Department of Clinical and Experimental, University of Pisa, Pisa, Italy.
| |
Collapse
|
33
|
Huang W, Chen K, Lu Y, Zhang D, Cheng Y, Li L, Huang W, He G, Liao H, Cai L, Tang Y, Zhao L, Pan M. ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia 2021; 23:1227-1239. [PMID: 34768109 PMCID: PMC8591347 DOI: 10.1016/j.neo.2021.11.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Sorafenib is a first-line molecular-target drug for advanced hepatocellular carcinoma (HCC), and reducing sorafenib resistance is an important issue to be resolved for the clinical treatment of HCC. In the current study, we identified that ABCC5 is a critical regulator and a promising therapeutic target of acquired sorafenib resistance in human hepatocellular carcinoma cells. The expression of ABCC5 was dramatically induced in sorafenib-resistant HCC cells and was remarkably associated with poor clinical prognoses. The down-regulation of ABCC5 expression could significantly reduce the resistance of sorafenib to HCC cells. Importantly, activation of PI3K/AKT/NRF2 axis was essential for sorafenib to induce ABCC5 expression. ABCC5 increased intracellular glutathione (GSH) and attenuated lipid peroxidation accumulation by stabilizing SLC7A11 protein, which inhibited ferroptosis. Additionally, the inhibition of ABCC5 enhanced the anti-cancer activity of sorafenib in vitro and in vivo. These findings demonstrate a novel molecular mechanism of acquired sorafenib resistance and also suggest that ABCC5 is a new regulator of ferroptosis in HCC cells.
Collapse
Affiliation(s)
- Wenbin Huang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Kunling Chen
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Yishi Lu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Donghui Zhang
- Department of Pathology, Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yuan Cheng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Liuran Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Weimei Huang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guolin He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Hangyu Liao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Lei Cai
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Yujun Tang
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Mingxin Pan
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
34
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
35
|
Yang CN, Peng WY, Lin LC, Tsai TH. Protein unbound pharmacokinetics of ambroxol in the blood and brains of rats and the interaction of ambroxol with Polygala tenuifolia by multiple microdialysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113764. [PMID: 33383115 DOI: 10.1016/j.jep.2020.113764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/29/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ambroxol elevates glucocerebrosidase (GCase) activity and reduces nigrostriatal alpha-synuclein burden to better ameliorate motor function in Parkinson's disease (PD). Polygala tenuifolia is a potential alternative botanical medicine for the treatment of many nonmotor symptoms of PD commonly used in Taiwanese patients. Co-administration of these two medicines pose potential herb-drug interaction. AIM OF THE STUDY Our hypothesis is that ambroxol and P. tenuifolia may potentially possess herbal drug synergetic effects in the blood and brain. MATERIALS AND METHODS To investigate this hypothesis, a multiple microdialysis system coupled with validated ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for rat blood and brain samples. Experimental rats were divided into three groups: low-dose and high-dose ambroxol alone (10 mg/kg, i.v. and 30 mg/kg, i.v., respectively) and ambroxol (10 mg/kg, i.v.) pretreated with P. tenuifolia extract (1 g/kg, p.o. for 5 consecutive days). RESULTS Ambroxol easily penetrated into the brain and reached a maximum concentration in the striatum at approximately 60 min after low- and high-dose treatment. The area under the concentration curve (AUC) ratio increased proportionally at the doses of 10 and 30 mg/kg, which suggested a linear pharmacokinetic manner of ambroxol. The brain penetration of ambroxol was approximately 30-34%, which was defined as the ambroxol AUC blood-to-brain distribution ratio (AUCbrain/AUCblood). The P. tenuifolia extract did not significantly alter the pharmacokinetics of ambroxol in the blood and brain of rats. CONCLUSION The present study suggests that it is safety without pharmacokinetic interactions for this dosing regimen to use P. tenuifolia extract and ambroxol together.
Collapse
Affiliation(s)
- Chao-Nan Yang
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan; Department of Neurology, China Medical University Hospital-Taipei Branch, China Medical University, Taichung, 40402, Taiwan
| | - Wen-Ya Peng
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Lie-Chwen Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, 112, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
36
|
Rodriguez-Acevedo AJ, Gordon LG, Waddell N, Hollway G, Vadlamudi L. Developing a gene panel for pharmacoresistant epilepsy: a review of epilepsy pharmacogenetics. Pharmacogenomics 2021; 22:225-234. [PMID: 33666520 DOI: 10.2217/pgs-2020-0145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Evaluating genes involved in the pharmacodynamics and pharmacokinetics of epilepsy drugs is critical to better understand pharmacoresistant epilepsy. We reviewed the pharmacogenetics literature on six antiseizure medicines (carbamazepine, perampanel, lamotrigine, levetiracetam, sodium valproate and zonisamide) and compared the genes found with those present on epilepsy gene panels using a functional annotation pathway analysis. Little overlap was found between the two gene lists; pharmacogenetic genes are mainly involved in detoxification processes, while epilepsy panel genes are involved in cell signaling and gene expression. Our work provides support for a specific pharmacoresistant epilepsy gene panel to assist antiseizure medicine selection, enabling personalized approaches to treatment. Future efforts will seek to include this panel in genomic analyses of pharmacoresistant patients, to determine clinical utility and patient treatment responses.
Collapse
Affiliation(s)
- Astrid J Rodriguez-Acevedo
- Department of Population Health, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Louisa G Gordon
- Department of Population Health, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.,School of Nursing, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia.,School of Public Health, The University of Queensland, Brisbane, QLD, Australia
| | - Nicola Waddell
- Department of Population Health, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.,GenomiQa Pty Ltd, Brisbane, QLD, Australia
| | - Georgina Hollway
- Department of Population Health, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.,GenomiQa Pty Ltd, Brisbane, QLD, Australia
| | - Lata Vadlamudi
- The University of Queensland, UQ Centre for Clinical Research, Herston, Brisbane, QLD, 4029, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Herston, Brisbane, QLD, 4029, Australia
| |
Collapse
|
37
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
38
|
Guery D, Rheims S. Clinical Management of Drug Resistant Epilepsy: A Review on Current Strategies. Neuropsychiatr Dis Treat 2021; 17:2229-2242. [PMID: 34285484 PMCID: PMC8286073 DOI: 10.2147/ndt.s256699] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Drug resistant epilepsy (DRE) is defined as the persistence of seizures despite at least two syndrome-adapted antiseizure drugs (ASD) used at efficacious daily dose. Despite the increasing number of available ASD, about a third of patients with epilepsy still suffer from drug resistance. Several factors are associated with the risk of evolution to DRE in patients with newly diagnosed epilepsy, including epilepsy onset in the infancy, intellectual disability, symptomatic epilepsy and abnormal neurological exam. Pharmacological management often consists in ASD polytherapy. However, because quality of life is driven by several factors in patients with DRE, including the tolerability of the treatment, ASD management should try to optimize efficacy while anticipating the risks of drug-related adverse events. All patients with DRE should be evaluated at least once in a tertiary epilepsy center, especially to discuss eligibility for non-pharmacological therapies. This is of paramount importance in patients with drug resistant focal epilepsy in whom epilepsy surgery can result in long-term seizure freedom. Vagus nerve stimulation, deep brain stimulation or cortical stimulation can also improve seizure control. Lastly, considering the effect of DRE on psychologic status and social integration, comprehensive care adaptations are always needed in order to improve patients' quality of life.
Collapse
Affiliation(s)
- Deborah Guery
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon and University of Lyon, Lyon, France
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils De Lyon and University of Lyon, Lyon, France.,Lyon's Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France.,Epilepsy Institute, Lyon, France
| |
Collapse
|
39
|
Kong FC, Ma CL, Lang LQ, Zhong MK. Association of xenobiotic receptor polymorphisms with carbamazepine response in epilepsy patients. Gene 2020; 771:145359. [PMID: 33333223 DOI: 10.1016/j.gene.2020.145359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Drug-resistant epilepsy is a problem worldwide. Xenobiotic receptors may play a significant role in the establishment of resistance to antiepileptic agents. Previous studies have confirmed that the metabolism and efficacy of carbamazepine (CBZ) can be influenced by xenobiotic receptors, especially pregnane X receptor (PXR), constitutive androstane receptor (CAR), and aryl hydrocarbon receptor (AHR). Therefore, this study intends to elucidate the pharmacogenomic associations of polymorphisms of these xenobiotic receptors with the CBZ response in epilepsy patients, and these genetic data may be useful for the treatment of clinical prophylaxis and individualized treatment of intractable epilepsy. METHODS Adult patients with epilepsy who were on CBZ-based monotherapy and combination therapy (n = 257) were genotyped, and the patients were divided into drug-responsive and drug-resistant groups according to the International League Against Epilepsy criteria. We sought to tag single-nucleotide polymorphisms (SNPs) of PXR, CAR and AHR that principally represent alleles associated with drug resistance risk; in addition, a gene interaction analysis reference panel was constructed for SNP-based imputation. RESULTS No significant effects of PXR or AHR polymorphisms were observed. However, an interaction between the CAR rs2502815 variant and CBZ response was observed: in CBZ-based monotherapy and combination therapy patients, the GG genotype of the CAR rs2502815 variant (vs. wild-type homozygous) was independently associated with CBZ response after adjusting for variables [odds ratio (OR) = 0.389, 95% confidence interval (CI) 0.203-0.743, p = 0.004]. The results of the haplotype and gene interaction case-control analyses of the CBZ response were negative. Our results provide clinical data regarding the genetic possibilities of drug responses related to CAR variation in epilepsy patients. CONCLUSION This study is the first to indicate a potentially relevant interaction between the CAR rs2502815 polymorphism and the CBZ response in epilepsy patients.
Collapse
Affiliation(s)
- Fan-Cheng Kong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-Lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| | - Li-Qin Lang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ming-Kang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Gonçalves J, Alves G, Fonseca C, Carona A, Bicker J, Falcão A, Fortuna A. Is intranasal administration an opportunity for direct brain delivery of lacosamide? Eur J Pharm Sci 2020; 157:105632. [PMID: 33152466 DOI: 10.1016/j.ejps.2020.105632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Lacosamide is well-known as an effective and safe anticonvulsant drug. Nevertheless, there is also evidence of anti-epileptogenic, neuroprotective and antinociceptive properties of lacosamide. It is currently available as oral and intravenous (IV) formulations, and its brain concentrations and therapeutic effects depend on its passage across the blood-brain barrier (BBB). Therefore, to circumvent the restrictive BBB, we herein evaluated the intranasal (IN) administration of lacosamide. Nasal thermoreversible gels were screened in vitro for their influence on the viability of human nasal septum (RPMI 2650) and lung adenocarcinoma (Calu-3) cells. According to the Alamar Blue test, the in situ gel composed of Pluronic F-127 (22.5%, w/v) and Carbopol 974P (0.2%, w/v) did not affect cell viability, which remained higher than 85%, within the concentration range of lacosamide. The in situ gel was intranasally administered to healthy male CD-1 mice (8.33 mg/kg) to describe the pharmacokinetic profiles of lacosamide in plasma, brain, lung and kidney and compare them with those obtained after IV administration of the same dose. Accordingly, IN administration allowed a fast (tmax in plasma: 5 min) and complete systemic absorption of lacosamide (absolute bioavailability: 120.46%). Interestingly, IN lacosamide demonstrated higher exposure (given by the AUCt) in the brain (425.44 µg.min/mL versus 274.49 µg.min/mL), but lower exposure in kidneys (357.56 µg.min/mL versus 762.61 µg.min/mL), in comparison to IV administration. These findings, together with the tmax in brain of 15 min, a drug targeting efficiency (DTE) of 128.67% and a direct transport percentage of 22.28%, evidence that part of lacosamide reaches the brain directly after nasal administration, even though penetration into the brain from the systemic circulation seems to be the major determinant of brain exposure. Importantly, lacosamide concentrations found in lungs following IN administration were considerably higher than those observed after IV injection, until 30 min post-dosing (p < 0.05). Nevertheless, attained drug concentrations were lower than those tested in vitro in the Calu-3 cell line (1-100 µM), indicating that adverse effects are unlikely to occur in vivo. Hence, it seems that the proposed IN route has potential to be a suitable and valuable strategy for the brain delivery of lacosamide in emergency conditions and for the chronic treatment of epilepsy and other neurological diseases.
Collapse
Affiliation(s)
- Joana Gonçalves
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Andreia Carona
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
41
|
Wang YF, Qiao M, Zhu D, Zhu YG. Antibiotic Resistance in the Collembolan Gut Microbiome Accelerated by the Nonantibiotic Drug Carbamazepine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10754-10762. [PMID: 32816468 DOI: 10.1021/acs.est.0c03075] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The effects of pharmaceuticals as emerging contaminants in soil on the gut microbiome and antibiotic resistome in nontarget soil fauna are largely elusive. In this study, we explored the composition of the bacterial community and the presence of antibiotic resistance genes (ARGs) in the gut of the model soil collembolan (Folsomia candida) upon antiepileptic drug carbamazepine (CBZ) and antibiotic tetracycline (TC) exposure. Results showed that, individually or in combination, exposure to TC or CBZ significantly altered the gut community structure of F. candida, causing some enrichment of the bacteria associated with xenobiotic metabolism, such as Arthrobacter, Achromobacter, Gordonia, and Shinella. More importantly, oral exposure to the nonantibiotic drug CBZ enhanced the abundance and diversity of ARGs in the gut of F. candida, especially for the beta-lactams and multidrug resistance genes. Our results revealed that the most likely hosts of ARGs in the gut of F. candida were Proteobacteria and Actinobacteria. The significant positive correlation between mobile genetic elements (MGEs) and ARGs indicated the potential risk of ARGs transmission in the gut of F. candida. Overall, the nonantibiotic CBZ is likely to disturb the gut microbiota of nontarget soil fauna such as collembolans, thereby enhancing the dissemination of ARGs.
Collapse
Affiliation(s)
- Yi-Fei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China
| |
Collapse
|
42
|
Jiang W, Xia J, Xie S, Zou R, Pan S, Wang ZW, Assaraf YG, Zhu X. Long non-coding RNAs as a determinant of cancer drug resistance: Towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resist Updat 2020; 50:100683. [DOI: 10.1016/j.drup.2020.100683] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
|
43
|
Gil-Martins E, Barbosa DJ, Silva V, Remião F, Silva R. Dysfunction of ABC transporters at the blood-brain barrier: Role in neurological disorders. Pharmacol Ther 2020; 213:107554. [PMID: 32320731 DOI: 10.1016/j.pharmthera.2020.107554] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
ABC (ATP-binding cassette) transporters represent one of the largest and most diverse superfamily of proteins in living species, playing an important role in many biological processes such as cell homeostasis, cell signaling, drug metabolism and nutrient uptake. Moreover, using the energy generated from ATP hydrolysis, they mediate the efflux of endogenous and exogenous substrates from inside the cells, thereby reducing their intracellular accumulation. At present, 48 ABC transporters have been identified in humans, which were classified into 7 different subfamilies (A to G) according to their phylogenetic analysis. Nevertheless, the most studied members with importance in drug therapeutic efficacy and toxicity include P-glycoprotein (P-gp), a member of the ABCB subfamily, the multidrug-associated proteins (MPRs), members of the ABCC subfamily, and breast cancer resistance protein (BCRP), a member of the ABCG subfamily. They exhibit ubiquitous expression throughout the human body, with a special relevance in barrier tissues like the blood-brain barrier (BBB). At this level, they play a physiological function in tissue protection by reducing or limiting the brain accumulation of neurotoxins. Furthermore, dysfunction of ABC transporters, at expression and/or activity level, has been associated with many neurological diseases, including epilepsy, multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis. Additionally, these transporters are strikingly associated with the pharmacoresistance to central nervous system (CNS) acting drugs, because they contribute to the decrease in drug bioavailability. This article reviews the signaling pathways that regulate the expression and activity of P-gp, BCRP and MRPs subfamilies of transporters, with particular attention at the BBB level, and their mis-regulation in neurological disorders.
Collapse
Affiliation(s)
- Eva Gil-Martins
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| | - Vera Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
44
|
Pre-Clinical Assessment of the Nose-to-Brain Delivery of Zonisamide After Intranasal Administration. Pharm Res 2020; 37:74. [PMID: 32215749 DOI: 10.1007/s11095-020-02786-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Zonisamide clinical indications are expanding beyond the classic treatment of epileptic seizures to Parkinson's disease and other neurodegenerative diseases. However, the systemic safety profile of zonisamide may compromise its use as a first-line drug in any clinical condition. Since zonisamide is marketed as oral formulations, the present study aimed at exploring the potential of the intranasal route to centrally administer zonisamide, evaluating the systemic bioavailability of zonisamide and comparing its brain, lung and kidney pharmacokinetics after intranasal, oral and intravenous administrations. METHODS In vitro cell studies demonstrated that zonisamide and proposed thermoreversible gels did not affect the viability of RPMI 2650 or Calu-3 cells. Thereafter, male CD-1 mice were randomly administered with zonisamide by oral (80 mg/kg), intranasal or intravenous (16.7 mg/kg) route. At predefined time points, animals were sacrificed and plasma and tissues were collected to quantify zonisamide and describe its pharmacokinetics. RESULTS Intranasal route revealed a low absolute bioavailability (54.95%) but the highest value of the ratio between the area under the curve (AUC) between brain and plasma, suggesting lower systemic adverse events and non-inferior effects in central nervous system comparatively to intravenous and oral routes. Furthermore, drug targeting efficiency and direct transport percentage into the brain were 149.54% and 33.13%, respectively, corroborating that a significant fraction of zonisamide suffers direct nose-to-brain transport. Lung and kidney exposures obtained after intranasal administration were lower than those observed after intravenous injection. CONCLUSIONS This pre-clinical investigation demonstrates a direct nose-to-brain delivery of zonisamide, which may be a promising strategy for the treatment of central diseases.
Collapse
|
45
|
Auzmendi J, Palestro P, Blachman A, Gavernet L, Merelli A, Talevi A, Calabrese GC, Ramos AJ, Lazarowski A. Cannabidiol (CBD) Inhibited Rhodamine-123 Efflux in Cultured Vascular Endothelial Cells and Astrocytes Under Hypoxic Conditions. Front Behav Neurosci 2020; 14:32. [PMID: 32256321 PMCID: PMC7090129 DOI: 10.3389/fnbeh.2020.00032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Despite the constant development of new antiepileptic drugs (AEDs), more than 30% of patients develop refractory epilepsy (RE) characterized by a multidrug-resistant (MDR) phenotype. The “transporters hypothesis” indicates that the mechanism of this MDR phenotype is the overexpression of ABC transporters such as P-glycoprotein (P-gp) in the neurovascular unit cells, limiting access of the AEDs to the brain. Recent clinical trials and basic studies have shown encouraging results for the use of cannabinoids in RE, although its mechanisms of action are still not fully understood. Here, we have employed astrocytes and vascular endothelial cell cultures subjected to hypoxia, to test the effect of cannabidiol (CBD) on the P-gp-dependent Rhodamine-123 (Rho-123) efflux. Results show that during hypoxia, intracellular Rho-123 accumulation after CBD treatment is similar to that induced by the P-gp inhibitor Tariquidar (Tq). Noteworthy, this inhibition is like that registered in non-hypoxia conditions. Additionally, docking studies predicted that CBD could behave as a P-gp substrate by the interaction with several residues in the α-helix of the P-gp transmembrane domain. Overall, these findings suggest a direct effect of CBD on the Rho-123 P-gp-dependent efflux activity, which might explain why the CBD add-on treatment regimen in RE patients results in a significant reduction in seizure frequency.
Collapse
Affiliation(s)
- Jerónimo Auzmendi
- Instituto de Fisiopatología y Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Pablo Palestro
- Laboratorio de Investigaciones Bioactivas y Desarrollo, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad de La Plata, La Plata, Argentina
| | - Agustín Blachman
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana Gavernet
- Laboratorio de Investigaciones Bioactivas y Desarrollo, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad de La Plata, La Plata, Argentina
| | - Amalia Merelli
- Instituto de Fisiopatología y Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratorio de Investigaciones Bioactivas y Desarrollo, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad de La Plata, La Plata, Argentina
| | - Graciela Cristina Calabrese
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Laboratorio de Neuropatología Molecular, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis," Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Lazarowski
- Instituto de Fisiopatología y Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
46
|
Replacing the eleven native tryptophans by directed evolution produces an active P-glycoprotein with site-specific, non-conservative substitutions. Sci Rep 2020; 10:3224. [PMID: 32081894 PMCID: PMC7035247 DOI: 10.1038/s41598-020-59802-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
P-glycoprotein (Pgp) pumps an array of hydrophobic compounds out of cells, and has major roles in drug pharmacokinetics and cancer multidrug resistance. Yet, polyspecific drug binding and ATP hydrolysis-driven drug export in Pgp are poorly understood. Fluorescence spectroscopy using tryptophans (Trp) inserted at strategic positions is an important tool to study ligand binding. In Pgp, this method will require removal of 11 endogenous Trps, including highly conserved Trps that may be important for function, protein-lipid interactions, and/or protein stability. Here, we developed a directed evolutionary approach to first replace all eight transmembrane Trps and select for transport-active mutants in Saccharomyces cerevisiae. Surprisingly, many Trp positions contained non-conservative substitutions that supported in vivo activity, and were preferred over aromatic amino acids. The most active construct, W(3Cyto), served for directed evolution of the three cytoplasmic Trps, where two positions revealed strong functional bias towards tyrosine. W(3Cyto) and Trp-less Pgp retained wild-type-like protein expression, localization and transport function, and purified proteins retained drug stimulation of ATP hydrolysis and drug binding affinities. The data indicate preferred Trp substitutions specific to the local context, often dictated by protein structural requirements and/or membrane lipid interactions, and these new insights will offer guidance for membrane protein engineering.
Collapse
|
47
|
Nanomaterials Designed for Antiviral Drug Delivery Transport across Biological Barriers. Pharmaceutics 2020; 12:pharmaceutics12020171. [PMID: 32085535 PMCID: PMC7076512 DOI: 10.3390/pharmaceutics12020171] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022] Open
Abstract
Viral infections are a major global health problem, representing a significant cause of mortality with an unfavorable continuously amplified socio-economic impact. The increased drug resistance and constant viral replication have been the trigger for important studies regarding the use of nanotechnology in antiviral therapies. Nanomaterials offer unique physico-chemical properties that have linked benefits for drug delivery as ideal tools for viral treatment. Currently, different types of nanomaterials namely nanoparticles, liposomes, nanospheres, nanogels, nanosuspensions and nanoemulsions were studied either in vitro or in vivo for drug delivery of antiviral agents with prospects to be translated in clinical practice. This review highlights the drug delivery nanosystems incorporating the major antiviral classes and their transport across specific barriers at cellular and intracellular level. Important reflections on nanomedicines currently approved or undergoing investigations for the treatment of viral infections are also discussed. Finally, the authors present an overview on the requirements for the design of antiviral nanotherapeutics.
Collapse
|
48
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, Sahib S, Bryukhovetskiy I, Bryukhovetskiy A, Buzoianu AD, Patnaik R, Wiklund L, Sharma A. Pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:1-66. [PMID: 32448602 DOI: 10.1016/bs.irn.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Sun Y, Zhang J, Yin H, Yin J. MicroRNA-mediated suppression of P-glycoprotein by quantum dots in lung cancer cells. J Appl Toxicol 2019; 40:525-534. [PMID: 31883144 DOI: 10.1002/jat.3924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
The interactions between adenosine triphosphate-binding cassette (ABC) transporters and nano-sized materials are attracting increasing attention, due to their great potential in overcoming the multidrug resistance (MDR) phenomena in cancer treatment. However, the inner mechanisms involved in the interactions are largely unknown. In this study, two commercial quantum dots (QDs), CdSe/ZnS-MPA and CdSe/ZnS-GSH, were tested for their interactions with P-glycoprotein (P-gp), as well as the relating mechanisms in lung cancer (A549) cells. Both QDs significantly suppressed the gene and protein expressions of P-gp in A549 cells. To explain this, the gene expressions of nine relating microRNAs (miRNAs) were evaluated. The results indicated a shared up-regulation of miR-34b and miR-185 by both QDs. Furthermore, mimics and inhibitors of miR-34b and miR-185 significantly enhanced and suppressed the gene and protein expressions of P-gp, respectively, confirming the modulatory function of these two miRNAs on P-gp. Interestingly, expressions of both miRNAs were suppressed during treatment with Cd2+ and doxorubicin, which induced the expression of P-gp, indicating the universality of these miRNAs-related mechanisms. Thus, as miR-34b and miR-185 participated in the suppression of P-gp functions in A549 cells they could be interesting targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yimin Sun
- University of Science and Technology of China, Hefei, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jie Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Huancai Yin
- University of Science and Technology of China, Hefei, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jian Yin
- University of Science and Technology of China, Hefei, China.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Shandong Guo Ke Medical Technology Development Co., Ltd, Jinan, China
| |
Collapse
|
50
|
Xie Y, Wang M, Shao Y, Deng X, Chen Y. Long Non-coding RNA KCNQ1OT1 Contributes to Antiepileptic Drug Resistance Through the miR-138-5p/ABCB1 Axis in vitro. Front Neurosci 2019; 13:1358. [PMID: 31920517 PMCID: PMC6928106 DOI: 10.3389/fnins.2019.01358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Compelling evidence has verified that long non-coding RNAs (lncRNAs) play a critical role on drug resistance in various diseases, especially cancer. However, the role of lncRNAs underlying multidrug resistance in epilepsy remains to be clarified. In the present study, we investigated the potential regulatory mechanism of the lncRNA KCNQ1OT1 in regulating antiepileptic drug (AED) resistance in human brain microvascular endothelial cells (HBMECs). The results revealed that expression of P-glycoprotein (P-gp) and KCNQ1OT1 was significantly elevated in phenytoin-resistant HBMECs (HBMEC/PHT). Meanwhile, the activity of nuclear factor-kappa B (NF-κB) was increased in HBMECs/PHT cells. Microarray analysis indicated that miR-138-5p was downregulated in HBMEC/PHT cells. Interestingly, bioinformatics prediction tools indicated miR-138-5p could directly target the transcripts of KCNQ1OT1 and NF-κB p65, and these results were confirmed by luciferase assays. Moreover, KCNQ1OT1 downregulation or miR-138-5p upregulation in vitro could inhibit P-gp expression and suppress NF-κB signaling pathway activation. Additionally, knockdown of KCNQ1OT1 or overexpression of miR-138-5p could increase the accumulation of rhodamine 123 (Rh123) and AEDs in HBMEC/PHT cells. Collectively, our results suggested that KCNQ1OT1 contributes to AED resistance through the miR-138-5p/NF-κB/ABCB1 axis in HBMEC/PHT cells, and these results provide a promising therapeutic target for the treatment of medically intractable epilepsy.
Collapse
Affiliation(s)
- Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Ming Wang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaolin Deng
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|