1
|
Spreen A, Alkhoury D, Walter H, Müller S. Optogenetic behavioral studies in depression research: A systematic review. iScience 2024; 27:109776. [PMID: 38726370 PMCID: PMC11079475 DOI: 10.1016/j.isci.2024.109776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/21/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Optogenetics has made substantial contributions to our understanding of the mechanistic underpinnings of depression. This systematic review employs quantitative analysis to investigate the impact of optogenetic stimulation in mice and rats on behavioral alterations in social interaction, sucrose consumption, and mobility. The review analyses optogenetic behavioral studies using standardized behavioral tests to detect behavioral changes induced via optogenetic stimulation in stressed or stress-naive mice and rats. Behavioral changes were evaluated as either positive, negative, or not effective. The analysis comprises the outcomes of 248 behavioral tests of 168 studies described in 37 articles, including negative and null results. Test outcomes were compared for each behavior, depending on the animal cohort, applied type of stimulation and the stimulated neuronal circuit and cell type. The presented synthesis contributes toward a comprehensive picture of optogenetic behavioral research in the context of depression.
Collapse
Affiliation(s)
- Anika Spreen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
- Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dana Alkhoury
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
| | - Henrik Walter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
| | - Sabine Müller
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences, CCM, Berlin, Germany
| |
Collapse
|
2
|
Optogenetic stimulation of medial prefrontal cortex excites GABAergic cells in the nucleus accumbens and hippocampus of Wistar-Kyoto rats exposed to chronic mild stress. Psychopharmacology (Berl) 2022; 239:2299-2307. [PMID: 35292832 DOI: 10.1007/s00213-022-06116-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND High frequency optogenetic stimulation (OGS) of prelimbic cortex (PLC) has been reported to exert antidepressant-like effects in the chronic mild stress model of depression in Wistar Kyoto (WKY) rats, which are non-responsive to antidepressant drugs. Here we have examined the effect of OGS on activity in the PLC and in two other regions implicated in depression, the nucleus accumbens (NAc) and hippocampus (HPC). METHOD OGS was applied to the PLC of WKY rats using the same stress schedule, and the identical placement, virus infection and stimulation parameters, used in the earlier behavioural experiments. Confocal microscopy was used to identify cells co-expressing the immediate early gene c-Fos and markers of GABAergic (GAD) and glutamatergic (CaMKII) neurons. RESULTS Stress decreased sucrose intake, which was restored by OGS. Stress also caused an overall decrease in Fos expression in the structures examined. In stressed animals, but not in non-stressed controls, OGS in mPFC increased the number of Fos+ cells in both the core and shell of the NAc (where the vast majority of cells are GABAergic), and increased the number and proportion of active GABAergic, but not glutamatergic, cells in dorsal and ventral HPC and dentate gyrus. CONCLUSIONS We conclude that OGS of PLC has a net excitatory effect on outputs from the PLC, leading to an overall inhibitory effect in structures innervated (NAc and HPC).
Collapse
|
3
|
Fang Y, Sun W, Zhang T, Xiong Z. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review. Biomaterials 2021; 280:121298. [PMID: 34864451 DOI: 10.1016/j.biomaterials.2021.121298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The field of cardiac tissue engineering has advanced over the past decades; however, most research progress has been limited to engineered cardiac tissues (ECTs) at the microscale with minimal geometrical complexities such as 3D strips and patches. Although microscale ECTs are advantageous for drug screening applications because of their high-throughput and standardization characteristics, they have limited translational applications in heart repair and the in vitro modeling of cardiac function and diseases. Recently, researchers have made various attempts to construct engineered cardiac pumps (ECPs) such as chambered ventricles, recapitulating the geometrical complexity of the native heart. The transition from microscale ECTs to ECPs at a translatable scale would greatly accelerate their translational applications; however, researchers are confronted with several major hurdles, including geometrical reconstruction, vascularization, and functional maturation. Therefore, the objective of this paper is to review the recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps. We first review the bioengineering approaches to fabricate ECPs, and then emphasize the unmatched potential of 3D bioprinting techniques. We highlight key advances in bioprinting strategies with high cell density as researchers have begun to realize the critical role that the cell density of non-proliferative cardiomyocytes plays in the cell-cell interaction and functional contracting performance. We summarize the current approaches to engineering vasculatures both at micro- and meso-scales, crucial for the survival of thick cardiac tissues and ECPs. We showcase a variety of strategies developed to enable the functional maturation of cardiac tissues, mimicking the in vivo environment during cardiac development. By highlighting state-of-the-art research, this review offers personal perspectives on future opportunities and trends that may bring us closer to the promise of functional ECPs.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China; Department of Mechanical Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| |
Collapse
|
4
|
Olfactory Optogenetics: Light Illuminates the Chemical Sensing Mechanisms of Biological Olfactory Systems. BIOSENSORS-BASEL 2021; 11:bios11090309. [PMID: 34562900 PMCID: PMC8470751 DOI: 10.3390/bios11090309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/26/2023]
Abstract
The mammalian olfactory system has an amazing ability to distinguish thousands of odorant molecules at the trace level. Scientists have made great achievements on revealing the olfactory sensing mechanisms in decades; even though many issues need addressing. Optogenetics provides a novel technical approach to solve this dilemma by utilizing light to illuminate specific part of the olfactory system; which can be used in all corners of the olfactory system for revealing the olfactory mechanism. This article reviews the most recent advances in olfactory optogenetics devoted to elucidate the mechanisms of chemical sensing. It thus attempts to introduce olfactory optogenetics according to the structure of the olfactory system. It mainly includes the following aspects: the sensory input from the olfactory epithelium to the olfactory bulb; the influences of the olfactory bulb (OB) neuron activity patterns on olfactory perception; the regulation between the olfactory cortex and the olfactory bulb; and the neuromodulation participating in odor coding by dominating the olfactory bulb. Finally; current challenges and future development trends of olfactory optogenetics are proposed and discussed.
Collapse
|
5
|
Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110289. [PMID: 33631251 DOI: 10.1016/j.pnpbp.2021.110289] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Anhedonia is one of the core symptoms of major depressive disorder (MDD), which is often inadequately treated by traditional antidepressants. The modern framework of anhedonia extends the definition from impaired consummatory pleasure or interest in rewards to a broad spectrum of deficits that impact functions such as reward anticipation, approach motivation, effort expenditure, reward valuation, expectation, and reward-cue association learning. Substantial preclinical and clinical research has explored the neural basis of reward deficits in the context of depression, and has implicated mesocorticolimbic reward circuitry comprising the nucleus accumbens, ventral pallidum, ventral tegmental area, amygdala, hippocampus, anterior cingulate, insula, orbitofrontal cortex, and other prefrontal cortex regions. Dopamine modulates several reward facets including anticipation, motivation, effort, and learning. As well, serotonin, norepinephrine, opioids, glutamate, Gamma aminobutyric acid (GABA), and acetylcholine are also involved in anhedonia, and medications targeting these systems may also potentially normalize reward processing in depression. Unfortunately, whereas reward anticipation and reward outcome are extensively explored by both preclinical and clinical studies, translational gaps remain in reward motivation, effort, valuation, and learning, where clinical neuroimaging studies are in the early stages. This review aims to synthesize the neurobiological mechanisms underlying anhedonia in MDD uncovered by preclinical and clinical research. The translational difficulties in studying the neural basis of reward are also discussed.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Ontario, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Liu Q, Zhang Z, Zhang W. Optogenetic Dissection of Neural Circuits Underlying Stress-Induced Mood Disorders. Front Psychol 2021; 12:600999. [PMID: 34220601 PMCID: PMC8249197 DOI: 10.3389/fpsyg.2021.600999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: This review aims to (i) summarize the literature on optogenetic applications of different stress-induced mood disorder models of the medial prefrontal cortex (mPFC) and its projection circuits, and (ii) examine methodological variability across the literature and how such variations may influence the underlying circuits of stress-induced mood disorders. Methods: A variety of databases (PubMed, Web of Science, Elsevier, Springer, and Wiley) were systematically searched to identify optogenetic studies that applied to mood disorders in the context of stress. Results: Eleven studies on optogenetic stimulation of the mPFC and the effect of its efferent circuitry on anxiety- and depression-like behaviors in different rodent models were selected. The results showed that the optogenetics (i) can provide insights into the underlying circuits of mood disorders in the context of stress (ii) and also points out new therapeutic strategies for treating mood disorders. Conclusions: These findings indicate a clear role for the mPFC in social avoidance, and highlight the central role of stress reactivity circuitry that may be targeted for the treatment of stress-induced mood disorders.
Collapse
Affiliation(s)
- Qing Liu
- College of Education and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Zhinuo Zhang
- College of Education and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Wenjuan Zhang
- Mental Health Education Center, Xidian University, Xi'an, China
| |
Collapse
|
7
|
Papp M, Cubala WJ, Swiecicki L, Newman-Tancredi A, Willner P. Perspectives for therapy of treatment-resistant depression. Br J Pharmacol 2021; 179:4181-4200. [PMID: 34128229 DOI: 10.1111/bph.15596] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/11/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
A high proportion of depressed patients fail to respond to antidepressant drug treatment. Treatment-resistant depression (TRD) is a major challenge for the psychopharmacology of mood disorders. Only in the past decade have novel treatments, including deep brain stimulation (DBS) and ketamine, been discovered that provide rapid and sometimes prolonged relief to a high proportion of TRD sufferers. In this review, we consider the current status of TRD from four perspectives: the challenge of developing an appropriate regulatory framework for novel rapidly acting antidepressants; the efficacy of non-pharmacological somatic therapies; the development of an animal model of TRD and its use to understand the neural basis of antidepressant non-response; and the potential for rapid antidepressant action from targets (such as 5-HT1A receptors) beyond the glutamate receptor.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Wiesław Jerzy Cubala
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Lukasz Swiecicki
- Second Department of Psychiatry, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
8
|
Papp M, Gruca P, Lason M, Litwa E, Solecki W, Willner P. AMPA receptors mediate the pro-cognitive effects of electrical and optogenetic stimulation of the medial prefrontal cortex in antidepressant non-responsive Wistar-Kyoto rats. J Psychopharmacol 2020; 34:1418-1430. [PMID: 33200659 PMCID: PMC7708672 DOI: 10.1177/0269881120967857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The chronic mild stress (CMS) procedure is a widely used animal model of depression, and its application in Wistar-Kyoto (WKY) rats has been validated as a model of antidepressant-refractory depression. While not responding to chronic treatment with antidepressant drugs, WKY rats do respond to acute deep brain stimulation (DBS) of the medial prefrontal cortex (mPFC). In antidepressant-responsive strains there is evidence suggesting a role for AMPA subtype of glutamate receptor in the action mechanism of both antidepressants and DBS. METHODS Animals were subjected to CMS for 6 to 8 weeks; sucrose intake was monitored weekly and novel object recognition (NOR) test was conducted following recovery from CMS. Wistars were treated chronically with venlafaxine (VEN), while WKY were treated acutely with either DBS, optogenetic stimulation (OGS) of virally-transduced (AAV5-hSyn-ChR2-EYFP) mPFC or ventral hippocampus, or acute intra-mPFC injection of the AMPA receptor positive allosteric modulator CX-516. The AMPA receptor antagonist NBQX was administered, at identical sites in mPFC, immediately following the exposure trial in the NOR. RESULTS Sucrose intake and NOR were suppressed by CMS, and restored by VEN in Wistars and by DBS, OGS, or CX-516 in WKY. However, OGS of the ventral hippocampal afferents to mPFC was ineffective. A low dose of NBQX selectively blocked the procognitive effect of VEN, DBS and OGS. CONCLUSIONS These results suggest that activation of AMPA receptors in the mPFC represents a common pathway for the antidepressant effects of both conventional (VEN) and novel (DBS, OGS) antidepressant modalities, in both antidepressant responsive (Wistar) and antidepressant-resistant (WKY) rats.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland,Mariusz Papp, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, Krakow, 31-343, Poland.
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|