1
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
2
|
Profeta V, McIntyre K, Wells M, Park C, Lynch DR. Omaveloxolone: an activator of Nrf2 for the treatment of Friedreich ataxia. Expert Opin Investig Drugs 2023; 32:5-16. [PMID: 36708320 DOI: 10.1080/13543784.2023.2173063] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is a rare autosomal recessive degenerative disorder characterized by ataxia, dysarthria, diabetes, cardiomyopathy, scoliosis, and occasionally vision loss in late-stage disease. The discovery of the abnormal gene in FRDA and its product frataxin has provided insight into the pathophysiology and mechanisms of treatment. AREAS COVERED Although the neurologic phenotype of FRDA is well defined, there are currently no established pharmacological treatments. Omaveloxolone, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, is currently under review by the Food and Drug Administration (FDA) and has the potential to be the first approved treatment for FRDA. In the present report, we have reviewed the basic and clinical literature on Nrf2 deficiency in FRDA, and evidence for the benefit of omaveloxolone. EXPERT OPINION The present perspective suggests that omaveloxolone is a rational and efficacious therapy that is possibly disease modifying in treatment of FRDA.
Collapse
Affiliation(s)
- Victoria Profeta
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kellie McIntyre
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - McKenzie Wells
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney Park
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Lynch
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Chiang S, Braidy N, Maleki S, Lal S, Richardson DR, Huang MLH. Mechanisms of impaired mitochondrial homeostasis and NAD + metabolism in a model of mitochondrial heart disease exhibiting redox active iron accumulation. Redox Biol 2021; 46:102038. [PMID: 34416478 PMCID: PMC8379503 DOI: 10.1016/j.redox.2021.102038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 06/05/2021] [Indexed: 01/18/2023] Open
Abstract
Due to the high redox activity of the mitochondrion, this organelle can suffer oxidative stress. To manage energy demands while minimizing redox stress, mitochondrial homeostasis is maintained by the dynamic processes of mitochondrial biogenesis, mitochondrial network dynamics (fusion/fission), and mitochondrial clearance by mitophagy. Friedreich's ataxia (FA) is a mitochondrial disease resulting in a fatal hypertrophic cardiomyopathy due to the deficiency of the mitochondrial protein, frataxin. Our previous studies identified defective mitochondrial iron metabolism and oxidative stress potentiating cardiac pathology in FA. However, how these factors alter mitochondrial homeostasis remains uncharacterized in FA cardiomyopathy. This investigation examined the muscle creatine kinase conditional frataxin knockout mouse, which closely mimics FA cardiomyopathy, to dissect the mechanisms of dysfunctional mitochondrial homeostasis. Dysfunction of key mitochondrial homeostatic mechanisms were elucidated in the knockout hearts relative to wild-type littermates, namely: (1) mitochondrial proliferation with condensed cristae; (2) impaired NAD+ metabolism due to perturbations in Sirt1 activity and NAD+ salvage; (3) increased mitochondrial biogenesis, fusion and fission; and (4) mitochondrial accumulation of Pink1/Parkin with increased autophagic/mitophagic flux. Immunohistochemistry of FA patients' heart confirmed significantly enhanced expression of markers of mitochondrial biogenesis, fusion/fission and autophagy. These novel findings demonstrate cardiac frataxin-deficiency results in significant changes to metabolic mechanisms critical for mitochondrial homeostasis. This mechanistic dissection provides critical insight, offering the potential for maintaining mitochondrial homeostasis in FA and potentially other cardio-degenerative diseases by implementing innovative treatments targeting mitochondrial homeostasis and NAD+ metabolism.
Collapse
Affiliation(s)
- Shannon Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, NSW, 2006, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, University of New South Wales, NSW, 2052, Australia
| | - Sanaz Maleki
- Department of Pathology, University of Sydney, NSW, 2006, Australia
| | - Sean Lal
- School of Medical Sciences, University of Sydney, NSW, 2006, Australia; Division of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, NSW, 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.
| | - Michael L-H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology, University of Sydney, NSW, 2006, Australia; School of Medical Sciences, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
4
|
Chiang S, Huang MLH, Richardson DR. Treatment of dilated cardiomyopathy in a mouse model of Friedreich's ataxia using N-acetylcysteine and identification of alterations in microRNA expression that could be involved in its pathogenesis. Pharmacol Res 2020; 159:104994. [PMID: 32534099 DOI: 10.1016/j.phrs.2020.104994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 01/01/2023]
Abstract
Deficient expression of the mitochondrial protein, frataxin, leads to a deadly cardiomyopathy. Our laboratory reported the master regulator of oxidative stress, nuclear factor erythroid 2-related factor-2 (Nrf2), demonstrates marked down-regulation after frataxin deletion in the heart. This was due, in part, to a pronounced increase in Keap1. To assess if this can be therapeutically targeted, cells were incubated with N-acetylcysteine (NAC), or buthionine sulfoximine (BSO), which increases or decreases glutathione (GSH), respectively, or the NRF2-inducer, sulforaphane (SFN). While SFN significantly (p < 0.05) induced NRF2, KEAP1 and BACH1, NAC attenuated SFN-induced NRF2, KEAP1 and BACH1. The down-regulation of KEAP1 by NAC was of interest, as Keap1 is markedly increased in the MCK conditional frataxin knockout (MCK KO) mouse model and this could lead to the decreased Nrf2 levels. Considering this, MCK KO mice were treated with i.p. NAC (500- or 1500-mg/kg, 5 days/week for 5-weeks) and demonstrated slightly less (p > 0.05) body weight loss versus the vehicle-treated KO. However, NAC did not rescue the cardiomyopathy. To additionally examine the dys-regulation of Nrf2 upon frataxin deletion, studies assessed the role of microRNA (miRNA) in this process. In MCK KO mice, miR-144 was up-regulated, which down-regulates Nrf2. Furthermore, miRNA screening in MCK KO mice demonstrated 23 miRNAs from 756 screened were significantly (p < 0.05) altered in KOs versus WT littermates. Of these, miR-21*, miR-34c*, and miR-200c, demonstrated marked alterations, with functional clustering analysis showing they regulate genes linked to cardiac hypertrophy, cardiomyopathy, and oxidative stress, respectively.
Collapse
MESH Headings
- Acetylcysteine/pharmacology
- Animals
- Basic-Leucine Zipper Transcription Factors/metabolism
- Cardiomyopathy, Dilated/drug therapy
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cell Line, Tumor
- Disease Models, Animal
- Friedreich Ataxia/complications
- Friedreich Ataxia/genetics
- Gene Expression Regulation
- Humans
- Iron-Binding Proteins/genetics
- Iron-Binding Proteins/metabolism
- Isothiocyanates/pharmacology
- Kelch-Like ECH-Associated Protein 1/metabolism
- Mice, Knockout
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Sulfoxides/pharmacology
- Frataxin
Collapse
Affiliation(s)
- S Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia
| | - M L H Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia
| | - D R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales, 2006 Australia; Centre for Cancer Cell Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia.
| |
Collapse
|
5
|
THE APPROACH FOR EXPRESS SPECTROMETRIC DETERMINATION OF THE REDUCED FORM OF NICOTINAMIDE ADENINE DINUCLEOTIDE (NADH) CONTENT. BIOTECHNOLOGIA ACTA 2020. [DOI: 10.15407/biotech13.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|