1
|
Dabiri M, Tehrani M, Rafiei A, Valadan R. Production and functional analysis of a phage displayed scFv recombinant antibody targeting EGFR/HER2 dimerization domain. Protein Expr Purif 2025; 228:106649. [PMID: 39722421 DOI: 10.1016/j.pep.2024.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Tumor cells exploit epidermal growth factor receptor (EGFR) family to develop resistance against therapeutic antibodies, such as Herceptin. Upon ligand binding, dimerization between EGFR and HER2 is one of the most important causes of treatment failure in breast cancer and other cancers expressing EGFR and HER2. The aim of this study was to develop and evaluate the function of a human recombinant single-chain variable fragment (scFv) antibody against the dimerization domain of EGFR to inhibit its interaction with other members of the epidermal growth factor receptor family, especially HER2. METHODS scFv against EGFR was expressed and purified. Cell-ELISA, MTT assay, inhibition of STAT3 phosphorylation, quantitative RT-PCR, and dimerization inhibition were performed on EGFR and HER2 expressing cell lines to characterize functional properties of the produced scFv. The conformational structure of the produced scFv and its binding ability to EGFR was computationally investigated. RESULTS In vitro binding analysis by cell-ELISA revealed the EGFR binding ability of the purified antibodies and confirmed by immunoblotting. ScFvs preferentially reduced the proliferation and survival of MCF7, MDA-MB-468, and SKOV3 cell lines with no effect on the VERO line. More considerably, MCF7 cells treated with the scFv antibody showed reduced STAT3 phosphorylation, decreased Bcl-2 expression, and increased Bax expression. Finally, the scFvs hindered EGFR and HER2 dimerization. CONCLUSION The produced scFv antibody showed to be functional in a simultaneous blockade of EGFR and HER2, suggesting its potential as a promising candidate for targeted therapy against various EGFR overexpressing tumors.
Collapse
Affiliation(s)
- Mina Dabiri
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center (MCBRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ, 08028, United States.
| | - Mohsen Tehrani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center (MCBRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center (MCBRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Reza Valadan
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center (MCBRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Chavan PR, Pandey R, Patil BM, Murti K, Kumar N. Unravelling key signaling pathways for the therapeutic targeting of non-small cell lung cancer. Eur J Pharmacol 2025; 998:177494. [PMID: 40090536 DOI: 10.1016/j.ejphar.2025.177494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Lung cancer (LC) remains the foremost cause of cancer-related mortality across the globe. Non-small cell lung cancer (NSCLC) is a type of LC that exhibits significant heterogeneity at histological and molecular levels. Genetic alterations in upstream signaling molecules activate cascades affecting apoptosis, proliferation, and differentiation. Disruption of these signaling pathways leads to the proliferation of cancer-promoting cells, progression of cancer, and resistance to its treatment. Recent insights into the function of signaling pathways and their fundamental mechanisms in the onset of various diseases could pave the way for new therapeutic approaches. Recently, numerous drug molecules have been created that target these cell signaling pathways and could be used alongside other standard therapies to achieve synergistic effects in mitigating the pathophysiology of NSCLC. Additionally, many researchers have identified several predictive biomarkers, and alterations in transcription factors and related pathways are employed to create new therapeutic strategies for NSCLC. Findings suggest using specific inhibitors to target cellular signaling pathways in tumor progression to treat NSCLC. This review investigates the role of signaling pathways in NSCLC development and explores novel therapeutic strategies to enhance clinical treatment options for NSCLC.
Collapse
Affiliation(s)
- Pavan Ramrao Chavan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Baswant Malesh Patil
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India.
| |
Collapse
|
3
|
Shetty SR, Kar T, Das A. Epidermal growth factor receptor mutations in breast Cancer: Therapeutic challenges and way forward. Bioorg Chem 2025; 154:108037. [PMID: 39672077 DOI: 10.1016/j.bioorg.2024.108037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) that is upregulated in aggressive triple-negative breast cancer (TNBC). Ligands such as EGF, TGF-α, epigen, and amphiregulin activate the auto-phosphorylation activity of tyrosine residues on EGFR, which regulates the growth, proliferation, adhesion, migration, and survival of cancer cells. Our prior studies depicted that inhibition of EGFR modulates the chemosensitivity in breast cancer stem cells and, thus, serves as a potent therapeutic target in breast cancer. Small-molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) specifically targeting EGFR have been clinically approved for breast cancer treatment. However, intrinsic and acquired resistance generated due to EGFR mutations limits the applications of designed EGFR-TKIs in breast cancer patients. This review highlights the therapeutic approaches, and the challenges encountered in targeting EGFR-specific mutations. It suggests the need to develop more advanced higher-generation inhibitors for use in combinatorial therapy along with chemo-or-immune therapeutics in clinics as a breast cancer treatment strategy against relapse of the disease.
Collapse
Affiliation(s)
- Swathi R Shetty
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Trisha Kar
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
4
|
Altıntop MD, Ertorun İ, Akalın Çiftçi G, Özdemir A. Design, synthesis and biological evaluation of a new series of imidazothiazole-hydrazone hybrids as dual EGFR and Akt inhibitors for NSCLC therapy. Eur J Med Chem 2024; 276:116698. [PMID: 39047611 DOI: 10.1016/j.ejmech.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
In search of small molecules for targeted therapy of non-small cell lung carcinoma (NSCLC), an efficient four-step synthetic route was followed for the synthesis of new imidazothiazole-hydrazone hybrids, which were assessed for their cytotoxic effects on human lung adenocarcinoma (A549) and human lung fibroblast (CCD-19Lu) cells. Among them, compounds 4, 6, 13, 16, 17 and 21 exhibited selective cytotoxic activity against A549 cell line. In vitro mechanistic studies were performed to assess their effects on apoptosis, caspase-3, cell cycle, EGFR and Akt in A549 cells. Compounds 6, 16, 17 and 21 promoted apoptotic cell death more than erlotinib. According to the in vitro data, it is quite clear that compound 6 promotes apoptosis through caspase-3 activation and arrests the cell cycle at the G0/G1 phase in A549 cells. Compounds 16 and 17 arrested the cell cycle at the S phase, whereas compounds 4, 13 and 21 caused the cell cycle arrest at the G2/M phase. The most effective EGFR inhibitor in this series was found as compound 13, followed by compounds 17 and 16. Furthermore, Akt inhibitory effects of compounds 16 and 17 in A549 cells were close to that of GSK690693. In particular, it can be concluded that the cytotoxic and apoptotic effects of compounds 16 and 17 are associated with their inhibitory effects on both EGFR and Akt. Molecular docking studies suggest that compounds 16 and 17 interact with crucial amino acid residues in the binding sites of human EGFR (PDB ID: 1M17) and Akt2 (PDB ID: 3D0E). Based on the in silico data, both compounds are predicted to possess favorable oral bioavailability and drug-likeness. Further studies are required to benefit from these compounds as anticancer agents for targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - İpek Ertorun
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey.
| |
Collapse
|
5
|
Toledo-Stuardo K, Ribeiro CH, González-Herrera F, Matthies DJ, Le Roy MS, Dietz-Vargas C, Latorre Y, Campos I, Guerra Y, Tello S, Vásquez-Sáez V, Novoa P, Fehring N, González M, Rodríguez-Siza J, Vásquez G, Méndez P, Altamirano C, Molina MC. Therapeutic antibodies in oncology: an immunopharmacological overview. Cancer Immunol Immunother 2024; 73:242. [PMID: 39358613 PMCID: PMC11448508 DOI: 10.1007/s00262-024-03814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024]
Abstract
The biotechnological development of monoclonal antibodies and their immunotherapeutic use in oncology have grown exponentially in the last decade, becoming the first-line therapy for some types of cancer. Their mechanism of action is based on the ability to regulate the immune system or by interacting with targets that are either overexpressed in tumor cells, released into the extracellular milieu or involved in processes that favor tumor growth. In addition, the intrinsic characteristics of each subclass of antibodies provide specific effector functions against the tumor by activating antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, among other mechanisms. The rational design and engineering of monoclonal antibodies have improved their pharmacokinetic and pharmacodynamic features, thus optimizing the therapeutic regimens administered to cancer patients and improving their clinical outcomes. The selection of the immunoglobulin G subclass, modifications to its crystallizable region (Fc), and conjugation of radioactive substances or antineoplastic drugs may all improve the antitumor effects of therapeutic antibodies. This review aims to provide insights into the immunological and pharmacological aspects of therapeutic antibodies used in oncology, with a rational approach at molecular modifications that can be introduced into these biological tools, improving their efficacy in the treatment of cancer.
Collapse
Affiliation(s)
- Karen Toledo-Stuardo
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Carolina H Ribeiro
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Fabiola González-Herrera
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Douglas J Matthies
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - María Soledad Le Roy
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Claudio Dietz-Vargas
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Yesenia Latorre
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ivo Campos
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Yuneisy Guerra
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Samantha Tello
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Valeria Vásquez-Sáez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Pedro Novoa
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Nicolás Fehring
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Mauricio González
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Jose Rodríguez-Siza
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Gonzalo Vásquez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Pamela Méndez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro Regional de Estudio en Alimentos Saludables, Valparaíso, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago, Chile
| | - María Carmen Molina
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile.
| |
Collapse
|
6
|
Zhang P, Zhang X, Lang J, Wu S, Sun Y, Wang P, Qiu S, Huang X, Ren G, Liu K, Du X, Xiao S, Wang Z, Weng Y, Zhang Y, Zhou H, Tu W, Zhang C, Yi J. Epidermal growth factor receptor‑targeted antibody nimotuzumab combined with chemoradiotherapy improves survival in patients with locally advanced head and neck squamous cell carcinoma: a propensity score matching real-world study. MedComm (Beijing) 2024; 5:e608. [PMID: 38962426 PMCID: PMC11220178 DOI: 10.1002/mco2.608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 07/05/2024] Open
Abstract
Patients with locally advanced head and neck squamous cell carcinoma (LA-HNSCC) have poor survival outcomes. The real-world efficacy of nimotuzumab plus intensity modulated radiotherapy (IMRT)-based chemoradiotherapy in patients with LA-HNSCC remains unclear. A total of 25,442 HNSCC patients were screened, and 612 patients were matched by propensity score matching (PSM) (1:1). PSM was utilized to balance known confounding factors. Patients who completed at least five doses of nimotuzumab were identified as study group. The primary end point was 3-year overall survival (OS) rate. Log-rank test examined the difference between two survival curves and Cloglog transformation test was performed to compare survival at a fixed time point. The median follow-up time was 54.2 (95% confidence interval [CI]: 52.7-55.9) months. The study group was associated with improved OS (hazard ratio [HR] = 0.75, 95% CI: 0.57-0.99, p = 0.038) and progression-free survival (PFS) (HR = 0.74, 95% CI: 0.58-0.96, p = 0.021). Subgroup analysis revealed that aged 50-60 year, IV, N2, radiotherapy dose ≥ 60 Gy, without previous surgery, and neoadjuvant therapy have a trend of survival benefit with nimotuzumab. Nimotuzumab showed favorable safety, only 0.2% had nimotuzumab-related severe adverse events. Our study indicated the nimotuzumab plus chemoradiotherapy provides survival benefits and safety for LA-HNSCC patients in an IMRT era.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Xinxin Zhang
- Senior Department of Otolaryngology‐Head & Neck Surgerythe Sixth Medical Center of PLA General Hospital, National Clinical Research Center for Otolaryngologic DiseasesBeijingChina
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Shaoxiong Wu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yan Sun
- Department of Radiation OncologyBeijing Cancer HospitalBeijingChina
| | - Peiguo Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute & HospitalTianjinChina
| | - Sufang Qiu
- Department of Radiation Head and Neck OncologyFujian Cancer HospitalFuzhouChina
| | - Xiaodong Huang
- Department of Radiation OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guoxin Ren
- Department of Oral and Maxillofacial Tumor SurgeryShanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Kun Liu
- Senior Department of Otolaryngology‐Head & Neck Surgerythe Sixth Medical Center of PLA General Hospital, National Clinical Research Center for Otolaryngologic DiseasesBeijingChina
| | - Xiaojing Du
- Department of Radiation Oncology, State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shaowen Xiao
- Department of Radiation OncologyBeijing Cancer HospitalBeijingChina
| | - Zhongqiu Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute & HospitalTianjinChina
| | - Youliang Weng
- Department of Radiation Head and Neck OncologyFujian Cancer HospitalFuzhouChina
| | - Ye Zhang
- Department of Radiation OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hang Zhou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for CancerSichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Wenyong Tu
- Department of Oral and Maxillofacial Tumor SurgeryShanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Chenping Zhang
- Department of Oral and Maxillofacial Tumor SurgeryShanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Junlin Yi
- Department of Radiation OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
7
|
Elsayad KA, Elmasry GF, Mahmoud ST, Awadallah FM. Sulfonamides as anticancer agents: A brief review on sulfonamide derivatives as inhibitors of various proteins overexpressed in cancer. Bioorg Chem 2024; 147:107409. [PMID: 38714116 DOI: 10.1016/j.bioorg.2024.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/17/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Sulfonamides have gained prominence as versatile agents in cancer therapy, effectively targeting a spectrum of cancer-associated enzymes. This review provides an extensive exploration of their multifaceted roles in cancer biology. Sulfonamides exhibit adaptability by acting as tyrosine kinase inhibitors, disrupting pivotal signaling pathways in cancer progression. Moreover, they disrupt pH regulation mechanisms in cancer cells as carbonic anhydrase inhibitors, inhibiting growth, and survival. Sulfonamides also serve as aromatase inhibitors, interfering with estrogen synthesis in hormone-driven cancers. Inhibition of matrix metalloproteinases presents an opportunity to impede cancer cell invasion and metastasis. Additionally, their emerging role as histone deacetylase inhibitors offers promising prospects in epigenetic-based cancer therapies. These diverse roles underscore sulfonamides as invaluable tools for innovative anti-cancer treatments, warranting further exploration for enhanced clinical applications and patient outcomes.
Collapse
Affiliation(s)
- Khaled A Elsayad
- Pharmacy Department, Cairo University Hospitals, Cairo University, Cairo, 11662, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| | - Sally T Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Fadi M Awadallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| |
Collapse
|
8
|
Singh H, Kumar R, Mazumder A. Protein kinase inhibitors in the management of cancer: therapeutic opportunities from natural compounds. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:663-680. [PMID: 38373215 DOI: 10.1080/10286020.2024.2313546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/28/2024] [Indexed: 02/21/2024]
Abstract
Kinase is an enzyme that helps in the phosphorylation of the targeted molecules and can affect their ability to react with other molecules. So, kinase influences metabolic reactions like cell signaling, secretory processes, transport of molecules, etc. The increased activity of certain kinases may cause various types of cancer, i.e. leukemia, glioblastoma, and neuroblastomas. So, the growth of particular cancer cells can be prevented by the inhibition of the kinase responsible for those cancers. Natural products are the key resources for the development of new drugs where approximately 60% of anti-tumor drugs are being developed with the same including specific kinase dwellers. This study comprised molecular interactions of various molecules (obtained from natural sources) as kinase inhibitors for the treatment of cancer. It is expected that by analyzing the skeleton behavior, the process of action, and the body-related activity of these organic products, new cancer-avoiding molecules can be developed.
Collapse
Affiliation(s)
- Himanshu Singh
- Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| |
Collapse
|
9
|
Chen H, Han Z, Su J, Song X, Ma Q, Lin Y, Ran Z, Li X, Mou R, Wang Y, Li D. Ferroptosis and hepatocellular carcinoma: the emerging role of lncRNAs. Front Immunol 2024; 15:1424954. [PMID: 38846953 PMCID: PMC11153672 DOI: 10.3389/fimmu.2024.1424954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Hepatocellular carcinoma is the most common form of primary liver cancer and poses a significant challenge to the medical community because of its high mortality rate. In recent years, ferroptosis, a unique form of cell death, has garnered widespread attention. Ferroptosis, which is characterized by iron-dependent lipid peroxidation and mitochondrial alterations, is closely associated with the pathological processes of various diseases, including hepatocellular carcinoma. Long non-coding RNAs (lncRNAs), are a type of functional RNA, and play crucial regulatory roles in a variety of biological processes. In this manuscript, we review the regulatory roles of lncRNAs in the key aspects of ferroptosis, and summarize the research progress on ferroptosis-related lncRNAs in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Xuanliang Song
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Qingquan Ma
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | - Yumeng Lin
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zijin Ran
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xueping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongkun Mou
- Department of General Surgery, The Third Hospital of Mianyang, Mianyang, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
10
|
Ahmad Ansari I, Debnath B, Kar S, Patel HM, Debnath S, Zaki MEA, Pal P. Identification of potential edible spices as EGFR and EGFR mutant T790M/L858R inhibitors by structure-based virtual screening and molecular dynamics. J Biomol Struct Dyn 2024; 42:2464-2481. [PMID: 37349948 DOI: 10.1080/07391102.2023.2223661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/14/2023] [Indexed: 06/24/2023]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinases are overexpressed in several human cancers and could serve as a promising anti-cancer drug target. With this in view, the main aim of the present study was to identify spices having the potential to inhibit EGFR tyrosine kinase. The structure-based virtual screening of spice database consisting of 1439 compounds with EGFR tyrosine kinase (PDB ID: 3W32) was carried out using Glide. Top scored 18 hits (XP Glide Score ≥ -10.0 kcal/mol) was further docked with three EGFR tyrosine kinases and three EGFR T790M/L858R mutants using AutodockVina, followed by ADME filtration. The best three hits were further refined by Molecular Dynamics (MD) simulation and MM-GBSA-based binding energy calculation. The overall docking results of the selected hits with both EGFR and EGFR T790M/L858R were quite satisfactory and showed strong binding compared to the three coligands. Detailed MD analysis of CL_07, AC_11 and AS_49 also showed the stability of the protein-ligand complexes. Moreover, the hits were drug-like, and MM-GBSA binding free energy of CL_07 and AS_49 was established to be far better. AC_11 was found to be similar to the known inhibitor Gefitinib. Most of the potential hits are available in Allium cepa, CL_07 and AS_49 available in Curcuma longa and Allium sativum, respectively. Therefore, these three spices could be used as a potential therapeutic candidate against cancer caused by overexpression of EGFR after validation of the observations of this study in in-vitro experiments. Further extensive work is needed to improve the scaffolds CL_07, AC_11, AC_17, and AS_49 as potential anti-cancer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Iqrar Ahmad Ansari
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, India
- Division of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, India
| | - Bimal Debnath
- Department of Forestry and Biodiversity, Tripura University, Suryamaninagar, Tripura, India
| | - Saikat Kar
- Department of Obstetrics and Gynecology, Agartala Govt. Medical College, Tripura, India
| | - Harun M Patel
- Division of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur (Dhule), Maharashtra, India
| | - Sudhan Debnath
- Department of Chemistry, Netaji Subhas Mahavidyalaya, Udaipur, Tripura, India
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University, Faculty of Science, Riyadh, Saudi Arabia
| | - Pinaki Pal
- Department of Physics, RamkrishnaMahavidyalay, Unokoti, Tripura, India
| |
Collapse
|
11
|
Makhija R, Sharma A, Dubey R, Asati V. Structural Perspectives in the Development of Novel EGFR Inhibitors for the Treatment of NSCLC. Mini Rev Med Chem 2024; 24:1746-1783. [PMID: 38584547 DOI: 10.2174/0113895575296174240323172754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024]
Abstract
Non-small cell Lung cancer (NSCLC) is the most common type of lung cancer, which is caused by high consumption of tobacco and smoking. It is an epithelial lung cancer that affects about 2.2 million people across the globe, according to International Agency for Research on Cancer (IARC). Non-small cell lung cancer is a malignant tumor caused by EGFR mutation that occurs in the in-frame deletion of exon 19 and L858R point mutation in exon 21. Presently, clinically available inhibitors of EGFR (including erlotinib, lapatinib, gefitinib, selumetinib, etc.) are not specific and responsible for undesirable adverse effects. Moreover, to solve this problem search for newer EGFR inhibitors is the utmost need for the treatment and/or management of increasing lung cancer burden. The discovery of therapeutic agents that inhibit the specific target in tumorous cells, such as EGFR, is one of the successful strategies in treating many cancer therapies, including lung cancer. The exhaustive literature survey (2018-2023) has shown the importance of medicinally privileged pyrimidine derivatives together, fused and/or clubbed with other heterocyclic rings to design and develop novel EGFR inhibitors. Pyrimidine derivatives substituted with phenylamine, indole, pyrrole, piperazine, pyrazole, thiophene, pyridine and quinazoline derivatives substituted with phenylamine, pyrimidine, morpholine, pyrrole, dioxane, acrylamide, indole, pyridine, furan, pyrimidine, pyrazole etc. are privileged heterocyclic rings shown promising activity by inhibiting EGFR and TKIs. The present review summarizes the structure-activity relationship (SAR) and enzyme inhibitory activity, including IC50 values, percentage inhibition, and kinetic studies of potential compounds from various literature. The review also includes various aspects of molecular docking studies with compounds under clinical trials and patents filed on pyrimidine-based EGFR inhibitors in treating non-small cell lung cancer. The present review may benefit the medicinal chemist for developing novel compounds such as EGFR inhibitors.
Collapse
Affiliation(s)
- Rahul Makhija
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
12
|
Bhandari SV, Kuthe PV, Patil SM, Nagras OG, Sarkate AP, Chaudhari SY, Surve SV. Molecular Docking, Pharmacokinetic and Molecular Simulation Analysis of Novel Mono-Carbonyl Curcumin Analogs as L858R/T790M/C797S Mutant EGFR Inhibitors. Chem Biodivers 2023; 20:e202301081. [PMID: 37793119 DOI: 10.1002/cbdv.202301081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Curcumin, an anticancer natural compound with multiple pharmacological activities, has a weak pharmacokinetic and instability due to diketone moiety. Curcumin's stability challenges can be overcome by removing the diketone moiety and shortening the 7-carbon chain, resulting in mono-carbonyl analogs. Cancer proliferation is caused by the activation of Epidermal Growth Factor (EGFR) pathways. Current available EGFR inhibitors have an issue of resistance. AIM Thus, we aimed to design new mono-carbonyl curcumin derivatives and analyse their drug likeness properties. Further, to investigate them on three distinct crystal structures, namely two wild-type and L858R/T790M/C797S mutant generations for EGFR inhibitory activity. METHOD Ten New Molecular Entities (NME's) were designed using literature survey. These molecules were subjected to comparative molecular docking, on the EGFR crystal structures viz. wild-type (PDB: 1M17 and 4I23) and L858R/T790M/C797S mutant (PDB: 6LUD) using Schrodinger software. The molecules were also tested for Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties. The docked complex of the hit molecule was studied for molecular simulation. RESULT AND DISCUSSION In molecular docking studies, NMEs 1, 2, and 3 were found to have good binding affinity with 1st , 2nd , and 3rd generation EGFR crystal structures and a greater dock score than standard curcumin. All molecules have shown a good ADMET profile. Since L858R/T790M/C797S is currently being explored more, we decided to take the best molecule, NME 3, for molecular dynamics with 6LUD, and the results were compared with those of the co-crystallized ligand S4 (Osimertinib). It was found that the Relative mean square standard deviation (RMSD) (1.8 Å), Relative mean standard Fluctuation (RMSF) (1.45 Å) and radius of gyration (4.87 Å) values of NME 3 were much lower than those of reference S4. All these confirm that our designed NME 3 is more stable than reference S4. CONCLUSION NME 1 and NME 2 have shown better binding against wild type of EGFR. NME 3 have shown comparable binding and more stability as compared to Osimertinib against L858R/T790M/C797S mutated protein structure. The hit compound can be further explored for its Molecular mechanics with generalised Born and surface area solvation (MM-GBSA) and discrete Fourier transform (DFT) studies to find out the energy and atomic level study. In the future, this molecule could be taken for wet lab studies and can be tested for mutated EGFR inhibitory activity.
Collapse
Affiliation(s)
- Shashikant V Bhandari
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Pranali V Kuthe
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Shital M Patil
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Om G Nagras
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Aniket P Sarkate
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
| | - Somdatta Y Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Yamunanagar, Sector 21, Nigdi, Pune, 411044, Maharashtra, India
| | - Sandip V Surve
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| |
Collapse
|
13
|
Cao Q, Wang Q, Wu X, Zhang Q, Huang J, Chen Y, You Y, Qiang Y, Huang X, Qin R, Cao G. A literature review: mechanisms of antitumor pharmacological action of leonurine alkaloid. Front Pharmacol 2023; 14:1272546. [PMID: 37818195 PMCID: PMC10560730 DOI: 10.3389/fphar.2023.1272546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 10/12/2023] Open
Abstract
Leonurine refers to the desiccated aerial portion of a plant in the Labiatae family. The primary bioactive constituent of Leonurine is an alkaloid, Leonurine alkaloid (Leo), renowned for its substantial therapeutic efficacy in the treatment of gynecological disorders, in addition to its broad-spectrum antineoplastic capabilities. Over recent years, the pharmacodynamic mechanisms of Leo have garnered escalating scholarly interest. Leo exhibits its anticancer potential by means of an array of mechanisms, encompassing the inhibition of neoplastic cell proliferation, induction of both apoptosis and autophagy, and the containment of oncogenic cell invasion and migration. The key signal transduction pathways implicated in these processes include the Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL), the Phosphoinositide3-Kinase/Serine/Threonine Protein Kinase (PI3K/AKT), the Signal Transducer and Activator of Transcription 3 (STAT3), and the Mitogen-Activated Protein/Extracellular Signal-Regulated Kinase (MAP/ERK). This paper commences with an exploration of the principal oncogenic cellular behaviors influenced by Leo and the associated signal transduction pathways, thereby scrutinizing the mechanisms of Leo in the antineoplastic sequence of events. The intention is to offer theoretical reinforcement for the elucidation of more profound mechanisms underpinning Leo's anticancer potential and correlating pharmaceutical development.
Collapse
Affiliation(s)
- Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
- School of Medicine, Macau University of Science and Technology, Taipa, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xinyan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qi Zhang
- Undergraduate Department, Taishan University, Taian, China
| | - Jinghan Huang
- Undergraduate Department, Sichuan Conservatory of Music, Chengdu, China
| | - Yuquan Chen
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanwei You
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Yi Qiang
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Ronggao Qin
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Guangzhu Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
14
|
Wang H, Zheng Z, Zhang Y, Bian C, Bao J, Xin Y, Jiang X. Locally advanced head and neck squamous cell carcinoma treatment efficacy and safety: a systematic review and network meta-analysis. Front Pharmacol 2023; 14:1269863. [PMID: 37795033 PMCID: PMC10546034 DOI: 10.3389/fphar.2023.1269863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) accounts for approximately 3% of new cancer cases and 3% of all deaths worldwide. Most HNSCC patients are locally advanced (LA) at diagnosis. The combination of radiotherapy (RT), chemotherapy, targeted therapy, and immunotherapy are the primary LA-HNSCC treatment options. Nevertheless, the choice of optimal LA-HNSCC treatment remains controversial. We systematically searched public databases for LA-HNSCC-related studies and assess treatment effectiveness and safety by assessing the objective response rate (ORR), ≥3 adverse events (AEs), overall survival (OS), progression-free survival (PFS), disease-free survival (DFS), local-region control (LRC), and disease-specific survival (DSS). 126 randomized controlled clinical trials (RCTs) were included in this study. We show that concurrent RT with nimotuzumab or conventional concurrent chemo-radiotherapy (CCRT) had significantly better efficacy and long-term survival without increasing AEs than RT alone. Accelerated fractionated radiotherapy (AFRT) showed better efficiency than conventional fractionated RT, although it had higher AEs. In addition, concurrent cetuximab combined with RT failed to show a significant advantage over RT alone. Trial registration: PROSPERO CRD42022352127.
Collapse
Affiliation(s)
- Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Jindian Bao
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
15
|
Al-Wahaibi LH, Abou-Zied HA, Hisham M, Beshr EAM, Youssif BGM, Bräse S, Hayallah AM, Abdel-Aziz M. Design, Synthesis, and Biological Evaluation of Novel 3-Cyanopyridone/Pyrazoline Hybrids as Potential Apoptotic Antiproliferative Agents Targeting EGFR/BRAF V600E Inhibitory Pathways. Molecules 2023; 28:6586. [PMID: 37764362 PMCID: PMC10537368 DOI: 10.3390/molecules28186586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
A series of novel 3-cyanopyridone/pyrazoline hybrids (21-30) exhibiting dual inhibition against EGFR and BRAFV600E has been developed. The synthesized target compounds were tested in vitro against four cancer cell lines. Compounds 28 and 30 demonstrated remarkable antiproliferative activity, boasting GI50 values of 27 nM and 25 nM, respectively. These hybrids exhibited dual inhibitory effects on both EGFR and BRAFV600E pathways. Compounds 28 and 30, akin to Erlotinib, displayed promising anticancer potential. Compound 30 emerged as the most potent inhibitor against cancer cell proliferation and BRAFV600E. Notably, both compounds 28 and 30 induced apoptosis by elevating levels of caspase-3 and -8 and Bax, while downregulating the antiapoptotic Bcl2 protein. Molecular docking studies confirmed the potential of compounds 28 and 30 to act as dual EGFR/BRAFV600E inhibitors. Furthermore, in silico ADMET prediction indicated that most synthesized 3-cyanopyridone/pyrazoline hybrids exhibit low toxicity and minimal adverse effects.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Hesham A. Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.A.A.-Z.); (M.H.)
| | - Mohamed Hisham
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; (H.A.A.-Z.); (M.H.)
| | - Eman A. M. Beshr
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (E.A.M.B.); (M.A.-A.)
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (E.A.M.B.); (M.A.-A.)
| |
Collapse
|
16
|
Liang Y, Jiang Q, Zou H, Zhao J, Zhang J, Ren L. Withaferin A: A potential selective glucocorticoid receptor modulator with anti-inflammatory effect. Food Chem Toxicol 2023; 179:113949. [PMID: 37467946 DOI: 10.1016/j.fct.2023.113949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Glucocorticoids have been widely applied to various clinical treatment, however some serious side effects may occur during the treatment. It is widely known that glucocorticoids produce a marked effect through binding to glucocorticoid receptor (GR). As withaferin A can provide multiple health benefits, this work aims to confirm withaferin A as a potential selective GR modulator with anti-inflammatory effect. Fluorescence polarization assay confirmed that withaferin A could steadily bind to GR with an IC50 value of 203.80 ± 0.36 μM. Meanwhile, glucocorticoid receptor translocation of withaferin A was measured by nuclear fractionation assay. Dual luciferase reporter assay showed that withaferin A did not activate GR transcription. Furthermore, withaferin A decreased the GR-related protein expression with less side effects. The result of molecular docking showed that hydrogen-bonding and hydrophobic interactions contributed to the binding of withaferin A with GR. In addition, the GR-withaferin A complex maintained a stable binding throughout the dynamics simulation process. Enzyme-linked immunosorbent assay showed that withaferin A inhibited the production of cytokines, confirming its anti-inflammatory effect. These findings indicate that withaferin A is a potential selective GR modulator and this work may provide a research basis for developing dietary supplements and nutraceuticals against inflammation.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
17
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
18
|
Gopinatha Pillai MS, Aiswarya SU, Keerthana CK, Rayginia TP, Anto RJ. Targeting receptor tyrosine kinase signaling: Avenues in the management of cutaneous squamous cell carcinoma. iScience 2023; 26:106816. [PMID: 37235052 PMCID: PMC10206193 DOI: 10.1016/j.isci.2023.106816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most frequently diagnosed cancer worldwide. Among the various types of NMSCs, cutaneous squamous cell carcinoma (cSCC) exhibits more aggressive phenotype and is also the second-most prevalent type. Receptor tyrosine kinases (RTK) triggers key signaling events that play critical roles in the development of various cancers including cSCC. Unsurprisingly, for this reason, this family of proteins has become the cynosure of anti-cancer drug discovery pipelines and is also being considered as attractive targets against cSCC. Though inhibition of RTKs in cSCC has yielded favourable results, there is still scope for bettering the therapeutic outcome. In this review, we discuss the relevance of RTK signaling in the progression of cutaneous squamous cell carcinoma, and observations from clinical trials that used RTK inhibitors against cSCC. Backed by results from preclinical studies, including those from our lab, we also give insights into the scope of using some natural products as effective suppressors of RTK signaling and skin carcinogenesis.
Collapse
Affiliation(s)
| | - Sreekumar U. Aiswarya
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Chenicheri K. Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Tennyson P. Rayginia
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
19
|
Fan Q, Liang X, Xu Z, Li S, Han S, Xiao Y, Xu Q, Yuan R, Yang S, Gao H. Pedunculoside inhibits epithelial-mesenchymal transition and overcomes Gefitinib-resistant non-small cell lung cancer through regulating MAPK and Nrf2 pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154884. [PMID: 37209605 DOI: 10.1016/j.phymed.2023.154884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Lung cancer is the primary cause of cancer-related mortality worldwide owing to its strong metastatic ability. EGFR-TKI (Gefitinib) has demonstrated efficacy in metastatic lung cancer therapy, but most patients ultimately develop resistance to Gefitinib, leading to a poor prognosis. Pedunculoside (PE), a triterpene saponin extracted from Ilex rotunda Thunb., has shown anti-inflammatory, lipid-lowering and anti-tumor effects. Nevertheless, the therapeutic effect and potential mechanisms of PE on NSCLC treatment are unclear. PURPOSE To investigate the inhibitory effect and prospective mechanisms of PE on NSCLC metastases and Gefitinib-resistant NSCLC. METHODS In vitro, A549/GR cells were established by Gefitinib persistent induction of A549 cells with a low dose and shock with a high dose. The cell migratory ability was measured using wound healing and Transwell assays. Additionally, EMT-related Markers or ROS production were assessed by RT-qPCR, immunofluorescence, Western blotting, and flow cytometry assays in A549/GR and TGF-β1-induced A549 cells. In vivo, B16-F10 cells were intravenously injected into mice, and the effect of PE on tumor metastases were determined using hematoxylin-eosin staining, Caliper IVIS Lumina, DCFH2-DA staining, and western blotting assays. RESULTS PE reversed TGF-β1-induced EMT by downregulating EMT-related protein expression through MAPK and Nrf2 pathways, decreasing ROS production, and inhibiting cell migration and invasion ability. Moreover, PE treatment enabled A549/GR cells to retrieve the sensitivity to Gefitinib and mitigate the biological characteristics of EMT. PE also significantly inhibited lung metastasis in mice by reversing EMT proteins expression, decreasing ROS production, and inhibiting MAPK and Nrf2 pathways. CONCLUSIONS Collectively, this research presents a novel finding that PE can reverse NSCLC metastasis and improve Gefitinib sensitivity in Gefitinib-resistant NSCLC through the MAPK and Nrf2 pathways, subsequently suppressing lung metastasis in B16-F10 lung metastatic mice model. Our findings indicate that PE is a potential agent for inhibiting metastasis and improving Gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Qiumei Fan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Xiaowei Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Zhipeng Xu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Siyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yuntian Xiao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Qiongming Xu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530000, China.
| |
Collapse
|
20
|
Liang Y, Jiang Q, Gong Y, Yu Y, Zou H, Zhao J, Zhang T, Zhang J. In vitro and in silico assessment of endocrine disrupting effects of food contaminants through pregnane X receptor. Food Chem Toxicol 2023; 175:113711. [PMID: 36893891 DOI: 10.1016/j.fct.2023.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
As a promiscuous xenobiotic receptor, pregnane X receptor (PXR) has been confirmed to participate in numerous physiological process. In addition to the conventional estrogen/androgen receptor, PXR also serves as an alternative target for environmental chemical contaminants. In this work, the PXR-mediated endocrine disrupting effects of typical food contaminants were explored. Firstly, the time-resolved fluorescence resonance energy transfer assays confirmed the PXR binding affinities of 2,2',4,4',5,5'-hexachlorobiphenyl, bis(2-ethylhexyl) phthalate, dibutyl phthalate, chlorpyrifos, bisphenol A, and zearalenone, with IC50 values ranging from 1.88 to 4284.00 nM. Then their PXR agonist activities were assessed by PXR-mediated CYP3A4 reporter gene assays. Subsequently, the regulation of gene expressions of PXR and its targets CYP3A4, UGT1A1, and MDR1 by these compounds was further investigated. Intriguingly, all the tested compounds interfered with these gene expressions, confirming their endocrine disrupting effects via PXR-mediated signaling. The compound-PXR-LBD binding interactions were explored by molecular docking and molecular dynamics simulations to unravel the structural basis of their PXR binding capacities. The weak intermolecular interactions are key players in stabilizing these compound-PXR-LBD complexes. During the simulation process, 2,2',4,4',5,5'-hexachlorobiphenyl remained stable while the other 5 compounds underwent relatively severe disturbances. In conclusion, these food contaminants might exhibit endocrine disrupting effects via PXR.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
21
|
Zubair T, Bandyopadhyay D. Small Molecule EGFR Inhibitors as Anti-Cancer Agents: Discovery, Mechanisms of Action, and Opportunities. Int J Mol Sci 2023; 24:ijms24032651. [PMID: 36768973 PMCID: PMC9916655 DOI: 10.3390/ijms24032651] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Epidermal growth factor receptors (EGFRs) are a class of receptor tyrosine kinase that are also called ErbB1 and HER1. EGFR tyrosine kinase activity inhibition is considered a promising therapeutic strategy for the treatment of cancer. Many small-molecule inhibitors of EGFR tyrosine kinase (EGFR-TK), from medicinally privileged molecules to commercial drugs, have been overviewed. Particular attention has been paid to the structure of the molecule and its mechanism of action if reported. Subsequent classification of the molecules under discussion has been carried out. Both natural and synthetic and reversible and irreversible EGFR-tyrosine kinase inhibitors have been discussed. Various types of cancers that are caused by overexpression of the EGFR gene, their possible molecular origins, and their natures have also been counted in this article. Because the EGFR signaling pathway controls the proliferation, growth, survival, and differentiation of cells, and the mutated EGFR gene overproduces EGFR protein, which ultimately causes several types of cancer, proper understanding of the molecular dynamics between the protein structure and its inhibitors will lead to more effective and selective EGFR-TKIs, which in turn will be able to save more lives in the battle against cancer.
Collapse
Affiliation(s)
- Tanzida Zubair
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- Correspondence:
| |
Collapse
|
22
|
The Role of Natural Products as Inhibitors of JAK/STAT Signaling Pathways in Glioblastoma Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7838583. [PMID: 36193062 PMCID: PMC9526628 DOI: 10.1155/2022/7838583] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
The permeability of glioblastoma, as well as its escaping the immune system, makes them one of the most deadly human malignancies. By avoiding programmed cell death (apoptosis), unlimited cell growth and metastatic ability could dramatically affect the immune system. Genetic mutations, epigenetic changes, and overexpression of oncogenes can cause this process. On the other hand, the blood-brain barrier (BBB) and intratumor heterogeneity are important factors causing resistance to therapy. Several signaling pathways have been identified in this field, including the Janus tyrosine kinase (JAK) converter and signal transducer and activator of transcription (STAT) activator pathways, which are closely related. In addition, the JAK/STAT signaling pathway contributes to a wide array of tumorigenesis functions, including replication, anti-apoptosis, angiogenesis, and immune suppression. Introducing this pathway as the main tumorigenesis and treatment resistance center can give a better understanding of how it operates. In light of this, it is an important goal in treating many disorders, particularly cancer. The inhibition of this signaling pathway is being considered an approach to the treatment of glioblastoma. The use of natural products alternatively to conventional therapies is another area of research interest among researchers. Some natural products that originate from plants or natural sources can interfere with JAK/STAT signaling in human malignant cells, also by stopping the progression and phosphorylation of JAK/STAT, inducing apoptosis, and stopping the cell cycle. Natural products are a viable alternative to conventional chemotherapy because of their cost-effectiveness, wide availability, and almost no side effects.
Collapse
|
23
|
Kiritsis C, Shegani A, Makrypidi K, Roupa I, Lazopoulos A, Panagiotopoulou A, Triantopoulou S, Paravatou-Petsotas M, Pietzsch HJ, Pelecanou M, Papadopoulos M, Pirmettis I. Synthesis and preclinical evaluation of rhenium and technetium-99m "4 + 1" mixed-ligand complexes bearing quinazoline derivatives as potential EGFR imaging agents. Bioorg Med Chem 2022; 73:117012. [PMID: 36155319 DOI: 10.1016/j.bmc.2022.117012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 11/02/2022]
Abstract
Epidermal growth factor receptors (EGFR) of tyrosine kinase (TK) have shown high expression levels in most cancers and are considered a promising target for cancer diagnosis and therapy. Expanding the investigation for novel targeted radiopharmaceuticals, an EGFR inhibitor such as 4-aminoquinazoline derivatives along with a radionuclide such as technetium-99m (99mTc) could be ideal. Thus, we report herein the synthesis, characterization, and biological evaluation of new "4 + 1" mixed-ligand ReIII- and 99mTcIII-complexes of the general formula [99mTc][Tc(NS3)(CN-R)] bearing tris(2-mercaptoethyl)-amine (NS3) as the tetradentate tripodal ligand and a series of isocyanide derivatives (CN-R) of tyrosine kinase inhibitor (3-bromophenyl)quinazoline-4,6-diamine as the monodentate ligand. The quinazoline isocyanide derivatives 4a-d were prepared in two steps and reacted with the [Re(NS3)PMe2Ph] precursor leading to the final complexes 5a-d in high yield. All compounds were characterized by elemental analysis, IR, and NMR spectroscopies. In vitro studies, for their potency to inhibit the cell growth, using intact A431 cells indicate that the quinazoline derivatives 4a-d and the Re complexes 5a-d significantly inhibit the A431 cell growth. In addition, the EGFR autophosphorylation study of complex 5b shows an IC50 value in the nanomolar range. The corresponding "4 + 1" 99mTc-complexes 6a-d were prepared by employing the [99mTc]TcEDTA intermediate and the appropriate monodentate 4a-d in a two-step synthetic procedure with a radiochemical yield (RCY) from 63 to 77 % and a radiochemical purity (RCP) > 99 % after HPLC purification. Their structures have been established by HPLC comparative studies using the well-characterized Re-complexes 5a-d as reference. All 99mTc-complexes remain stable for at least 6 h, and their logD7.4 values confirmed their anticipated lipophilic character. Biodistribution studies in healthy Swiss albino mice of 99mTc-complexes showed hepatobiliary excretion and initial fast blood clearance. Complex 6b was also tested in Albino SCID mice bearing A431 tumors and showed rapid tumor uptake at 5 min (2.80 % ID/g) with a moderate tumor/muscle ratio (2.06) at 4 h p.i. The results encourage further investigation for this type of 99mTc-complexes as single-photon emission computed tomography (SPECT) radio agents for imaging tumors overexpressing EGFR.
Collapse
Affiliation(s)
- Christos Kiritsis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| | - Antonio Shegani
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Konstantina Makrypidi
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Ioanna Roupa
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Aristotelis Lazopoulos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Angeliki Panagiotopoulou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Sotiria Triantopoulou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Maria Paravatou-Petsotas
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Hans-Jürgen Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Minas Papadopoulos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece
| | - Ioannis Pirmettis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", 15310 Athens, Greece.
| |
Collapse
|
24
|
Liang Y, Zhang T. Guidelines for HTRF technology in EGFR kinase assay. EFOOD 2022. [DOI: 10.1002/efd2.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering Jilin University Changchun China
| | - Tiehua Zhang
- College of Food Science and Engineering Jilin University Changchun China
| |
Collapse
|
25
|
Unadkat V, Rohit S, Parikh P, Patel K, Sanna V, Singh S. Identification of 1,2,4-Oxadiazoles-Based Novel EGFR Inhibitors: Molecular Dynamics Simulation-Guided Identification and in vitro ADME Studies. Onco Targets Ther 2022; 15:479-495. [PMID: 35535170 PMCID: PMC9077134 DOI: 10.2147/ott.s357765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background In this work, we have identified heterocyclic derivatives with 1,2,4 oxadiazole scaffold mimicking the functions of tyrosine kinase inhibitors. Fourteen molecules that displayed the best fit were picked from the library of compounds and studied under in-silico and in-vitro conditions. Four compounds were selected for further cytotoxicity and ADME (Absorption, Distribution, Metabolism, Elimination) profiling showing IC50 (from 8–13 µM) values against EGFR positive cancer cell line (MCF7). Methods A molecular dynamics simulation study was performed to understand the correlation of non-covalent binding energies with biological activity. The drug-like properties of the selected four compounds (7a, 7b, 7e, and 7m) were evaluated by in-vitro ADME studies. Compounds 7a, 7b, and 7m were the active compounds in the molecular dynamics simulations study. Further, EGFR binding activity was confirmed with EGFRWT and EGFRT790M kinase assay using a luminescence-based method. Results These compounds (7a, 7b, and 7m) showed activity against EGFRWT and mutant EGFRT790M, exhibiting IC50 values of <10 and <50 micromolar, respectively. These compounds also possess moderate aqueous solubility in 40–70 µg/mL at pH 7.4 and 30–100 µg/mL at pH 4.0. Further, 7a, 7b, and 7m showed balanced lipophilicity with Log D values ranging from 1–3. They demonstrated a good correlation in Caco-2 permeability with Apparent permeability (Papp) 1 to 5 × 10−6 cm/s in comparison with 7e, which was found to be highly lipophilic (Log D >5) and showed high permeability (Papp 17 × 10−6 cm/s). Lastly, all these compounds were moderately stable in liver microsomes at alkaline pH with a half-life of 30–60 min, while at a highly acidic pH (2.0), the compounds were stable up to 15–20 min. Conclusion Overall, in-vitro ADME results of these molecules showed good drug-like properties, which are well correlated with the in-silico ADME data, making them ideal for developing an oral drug delivery formulation.
Collapse
Affiliation(s)
- Vishal Unadkat
- Kashiv Biosciences Pvt Ltd, Ahmedabad, 382210, Gujarat, India
- Division of Biological & Life Sciences (Formerly Institute of Life Sciences), School of Arts & Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India
| | - Shishir Rohit
- Kashiv Biosciences Pvt Ltd, Ahmedabad, 382210, Gujarat, India
| | - Paranjay Parikh
- Department of Advanced Organic Chemistry, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388421, India
| | - Kaushal Patel
- Department of Advanced Organic Chemistry, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388421, India
| | - Vinod Sanna
- Piramal Pharma Solutions, Ahmedabad, 382213, Gujarat, India
| | - Sanjay Singh
- Division of Biological & Life Sciences (Formerly Institute of Life Sciences), School of Arts & Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India
- National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
- Correspondence: Sanjay Singh, Division of Biological & Life Sciences (Formerly Institute of Life Sciences), School of Arts & Sciences, Ahmedabad University, Navaragnpura, Ahmedabad, 380009, Gujarat, India, Email
| |
Collapse
|
26
|
Identification of 20(S)-Ginsenoside Rh2 as a Potential EGFR Tyrosine Kinase Inhibitor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6119737. [PMID: 35111279 PMCID: PMC8803441 DOI: 10.1155/2022/6119737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
As the main active ingredients of Panax ginseng, ginsenosides possess numerous bioactivities. Epidermal growth factor receptor (EGFR) was widely used as a valid target in anticancer therapy. Herein, the EGFR targeting activities of 20(S)-ginsenoside Rh2 (20(S)-Rh2) and the relationship of their structure-activity were investigated. Homogeneous time-resolved fluorescence assay showed that 20(S)-Rh2 significantly inhibited the activity against EGFR kinase. 20(S)-Rh2 was confirmed to effectively inhibited cell proliferation in a dose-dependent manner by MTT assay. Furthermore, quantitative real-time PCR and western blotting analysis revealed that 20(S)-Rh2 inhibited A549 cells growth via the EGFR-MAPK pathway. Meanwhile, 20(S)-Rh2 could promote cell apoptosis, block cell cycle, and reduce cell migration of A549 cells, respectively. In silico, the result suggested that both hydrophobic interactions and hydrogen-bonding interactions could contribute to stabilize their binding. Molecular dynamics simulation showed that the side chain sugar moiety of 20(S)-Rh2 was too flexible to be fixed at the active site of EGFR. Collectively, these findings suggested that 20(S)-Rh2 might serve as a potential EGFR tyrosine kinase inhibitor.
Collapse
|
27
|
Özdemir A, Ciftci H, Sever B, Tateishi H, Otsuka M, Fujita M, Altıntop MD. A New Series of Indeno[1,2- c]pyrazoles as EGFR TK Inhibitors for NSCLC Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020485. [PMID: 35056800 PMCID: PMC8778314 DOI: 10.3390/molecules27020485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death throughout the world. Due to the shortcomings of traditional chemotherapy, targeted therapies have come into prominence for the management of NSCLC. In particular, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy has emerged as a first-line therapy for NSCLC patients with EGFR-activating mutations. In this context, new indenopyrazoles, which were prepared by an efficient microwave-assisted method, were subjected to in silico and in vitro assays to evaluate their potency as EGFR TK-targeted anti-NSCLC agents. Compound 4 was the most promising antitumor agent towards A549 human lung adenocarcinoma cells, with an IC50 value of 6.13 µM compared to erlotinib (IC50 = 19.67 µM). Based on its low cytotoxicity to peripheral blood mononuclear cells (PBMCs), it can be concluded that compound 4 exerts selective antitumor action. This compound also inhibited EGFR TK with an IC50 value of 17.58 µM compared to erlotinib (IC50 = 0.04 µM) and induced apoptosis (56.30%). Taking into account in silico and in vitro data, compound 4 stands out as a potential EGFR TKI for the treatment of NSCLC.
Collapse
Affiliation(s)
- Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Correspondence: (A.Ö.); (M.F.); (M.D.A.); Tel.: +90-222-335-0580 (ext. 3780) (A.Ö.); +81-96-371-4622 (M.F.); +90-222-335-0580 (ext. 3807) (M.D.A.)
| | - Halilibrahim Ciftci
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan; (H.C.); (M.O.)
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Masami Otsuka
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan; (H.C.); (M.O.)
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Correspondence: (A.Ö.); (M.F.); (M.D.A.); Tel.: +90-222-335-0580 (ext. 3780) (A.Ö.); +81-96-371-4622 (M.F.); +90-222-335-0580 (ext. 3807) (M.D.A.)
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Correspondence: (A.Ö.); (M.F.); (M.D.A.); Tel.: +90-222-335-0580 (ext. 3780) (A.Ö.); +81-96-371-4622 (M.F.); +90-222-335-0580 (ext. 3807) (M.D.A.)
| |
Collapse
|
28
|
Liang Y, Zhang T, Zhao J, Li C, Zou H, Li F, Zhang J, Ren L. Glucocorticoid receptor-mediated alleviation of inflammation by berberine: in vitro, in silico and in vivo investigations. Food Funct 2021; 12:11974-11986. [PMID: 34747965 DOI: 10.1039/d1fo01612a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As a natural dietary ingredient, berberine possesses multiple biological activities including anti-inflammatory effects. In this work, glucocorticoid receptor (GR)-mediated alleviation of inflammation by berberine was investigated by a combination of in vitro, in silico, and in vivo approaches. The fluorescence polarization assay showed that berberine bound to GR with an IC50 value of 9.14 ± 0.16 pM. Molecular docking and molecular dynamics simulation suggested that berberine bound stably to the active site of GR via hydrogen bonding and hydrophobic interactions. Berberine induced GR nuclear translocation but did not activate the glucocorticoid response element in HeLa cells. Furthermore, both gene and protein expressions of PEPCK were significantly attenuated by berberine in HepG2 cells. Interestingly, berberine downregulated CBG mRNA and protein levels without up-regulating TAT mRNA and protein levels in HepG2 cells, demonstrating its dissociated characteristics that could separate transrepression from transactivation. In addition, the in vitro and in vivo anti-inflammatory effects of berberine were confirmed in lipopolysaccharide-induced RAW 264.7 cells and in a mouse model of allergic contact dermatitis, respectively. In conclusion, berberine might serve as a potential selective GR modulator.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chenfei Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Fangyu Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
29
|
Liang Y, Zhao J, Zou H, Zhang J, Zhang T. In vitro and in silico evaluation of EGFR targeting activities of curcumin and its derivatives. Food Funct 2021; 12:10667-10675. [PMID: 34604873 DOI: 10.1039/d1fo02002a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As polyphenols from Curcuma longa, curcumin and its derivatives possess numerous bioactivities. Herein, the epidermal growth factor receptor (EGFR) targeting activities of curcumin and its derivatives, as well as their structure-activity relationship were investigated. All of the tested compounds exhibited significant inhibition activities against EGFR kinase in homogeneous time-resolved fluorescence assay. Then their antiproliferative activities against Caco-2 were confirmed. The expressions of EGFR and phospho-EGFR proteins were regulated by curcumin and its derivatives. The 3,5-dione and methoxyl groups exerted significant influence on their electrostatic interactions with EGFR. Both hydrogen bonds and hydrophobic contacts were crucial for their binding with EGFR. Interestingly, their EGFR targeting activities were structure-dependent. The binding stabilities of curcumin and its derivatives were different from each other due to their structural diversity. This work indicated that curcumin and its derivatives were potential tyrosine kinase inhibitors that target EGFR.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
30
|
Raana GE, Shah SQ. Synthesis of 111In-p-SCN-Bn-DTPA-nimotuzumab and its preclinical evaluation in EGFR positive NSCLC animal model. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The aim of this study was to investigate labeling of nimotuzumab (h-R3) with 111In using p-SCN-Bn-DTPA as bifunctional chelate, evaluate its targeting potential against SK-LU-1, H226, H650, H661, and HCC4006 non-small cell lung carcinoma (NSCLC) cell lines and correlate epidermal growth factor receptor (EGFR) expression level with internalization kinetics, biodistribution and imaging accuracy using Balb/c mice and New Zealand White rabbit (NZWR) animal model. The amount of p-SCN-Bn-DTPA attached to h-R3 was assessed by measuring relative absorbance at 652 nm with ultraviolet (UV) spectrophotometer. High-performance liquid chromatography (HPLC) was used to determine percent radiochemical purity (%RCP) and in vitro stability using excess amount of diethylenetriamine pentaacetate (DTPA). The in vitro stability in rat serum was estimated using iTLC-SG. EGFR expression level in each tumor was assessed by chemiluminescence. In vivo uptake in different organs of Balb/c mice and non-invasive imaging potential using NZWR bearing HCC4006 tumor, was evaluated with gamma camera. UV spectroscopy has confirmed the attachment of five p-SCN-Bn-DTPA (chelate) with one antibody. The HPLC indicated 98.85 ± 0.14% (n = 3) %RCP with high yield (>96%), specific activity 3.5 ± 0.0.25 mCi per mg and 94.25 ± 0.34% in vitro stability at 37 °C in mice serum. In excess DTPA no considerable transchelation was experiential from the 111In labeled p-SCN-Bn-DTPA-h-R3 to the challenger. The EGFR expression in HCC4006 was higher amongst all with band density of 23.53 relative to 1.00 of H226. Initially internalization was lower which went up 1.05 × 104 molecules per HCC4006 cell in 48 h. The optimal concentration of h-R3 for maximum uptake was 15 μg per animal. Higher uptake in target organ was observed in animal infected with HCC4006 cells. However, in excess pure h-R3 the uptake was significantly reduced indicating tumor specificity. HCC4006 target site was undistinguishable relative to background activity in the initial phase of imaging due to poor uptake. However, within 60 h the HCC4006 tumor was quite apparent. This experiment suggests that at optimal dosage of 111In labeled h-R3 can be used for localization and identification of EGFR positive NSCLC using gamma camera.
Collapse
Affiliation(s)
- Gul-e Raana
- Biochemistry & Nuclear Medicine Research Laboratory , Institute of Chemical Sciences, University of Peshawar , Peshawar , 25120 K.P.K , Pakistan
| | - Syed Qaiser Shah
- Biochemistry & Nuclear Medicine Research Laboratory , Institute of Chemical Sciences, University of Peshawar , Peshawar , 25120 K.P.K , Pakistan
| |
Collapse
|
31
|
EGFR-Targeted Pentacyclic Triterpene Analogues for Glioma Therapy. Int J Mol Sci 2021; 22:ijms222010945. [PMID: 34681605 PMCID: PMC8537327 DOI: 10.3390/ijms222010945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/26/2022] Open
Abstract
Glioma, particularly its most malignant form, glioblastoma multiforme (GBM), is the most common and aggressive malignant central nervous system tumor. The drawbacks of the current chemotherapy for GBM have aroused curiosity in the search for targeted therapies. Aberrantly overexpressed epidermal growth factor receptor (EGFR) in GBM results in poor prognosis, low survival rates, poor responses to therapy and recurrence, and therefore EGFR-targeted therapy stands out as a promising approach for the treatment of gliomas. In this context, a series of pentacyclic triterpene analogues were subjected to in vitro and in silico assays, which were conducted to assess their potency as EGFR-targeted anti-glioma agents. In particular, compound 10 was the most potent anti-glioma agent with an IC50 value of 5.82 µM towards U251 human glioblastoma cells. Taking into account its low cytotoxicity to peripheral blood mononuclear cells (PBMCs), compound 10 exerts selective antitumor action towards Jurkat human leukemic T-cells. This compound also induced apoptosis and inhibited EGFR with an IC50 value of 9.43 µM compared to erlotinib (IC50 = 0.06 µM). Based on in vitro and in silico data, compound 10 stands out as a potential orally bioavailable EGFR-targeted anti-glioma agent endowed with the ability to cross the blood–brain barrier (BBB).
Collapse
|
32
|
Toan VN, Thanh ND. Synthesis and antiproliferative activity of hybrid thiosemicarbazone derivatives bearing coumarin and d-galactose moieties with EGFR inhibitory activity and molecular docking study. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Zhao J, Zhang T, Liang Y, Zou H, Zhang J. Inhibitory activities of 20(R, S)-protopanaxatriol against epidermal growth factor receptor tyrosine kinase. Food Chem Toxicol 2021; 155:112411. [PMID: 34271119 DOI: 10.1016/j.fct.2021.112411] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
As major metabolites of protopanaxatriol-type ginsenosides, 20(R, S)-protopanaxatriol [20(R, S)-PPT] display multiple bioactivities. This work aimed to investigate the inhibitory activities of 20(R, S)-PPT against epidermal growth factor receptor tyrosine kinase and the potential mechanism. 20(R, S)-PPT inhibited the proliferation of HepG2 cells in a dose-dependent manner and blocked cell cycle progression at G1/G0 phase. Then 20(R, S)-PPT were found to influence the protein expressions involved in epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) signaling pathway. Molecular docking suggested that 20(R, S)-PPT could bind to the active sites of all target proteins in EGFR-MAPK pathway. It is worth noting that 20(R, S)-PPT showed stronger binding capacities with EGFR, compared with other proteins. Hence, this work further investigated the binding interactions and binding stabilities between 20(R, S)-PPT and EGFR. Both hydrophobic interactions and hydrogen bonds contributed to the 20(R, S)-PPT-EGFR binding. In addition, the in vitro inhibitory activities of 20(R, S)-PPT against EGFR tyrosine kinase were observed in a homogeneous time-resolved fluorescence assay, with the IC50 values of 24.10 ± 0.17 and 33.19 ± 0.19 μM respectively. Taken together with the above results, both of 20(R)-PPT and 20(S)-PPT might serve as potential EGFR tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
34
|
Ferrari E, Naponelli V, Bettuzzi S. Lemur Tyrosine Kinases and Prostate Cancer: A Literature Review. Int J Mol Sci 2021; 22:ijms22115453. [PMID: 34064250 PMCID: PMC8196904 DOI: 10.3390/ijms22115453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
The members of the Lemur Tyrosine Kinases (LMTK1-3) subfamily constitute a group of three membrane-anchored kinases. They are known to influence a wide variety of key cellular events, often affecting cell proliferation and apoptosis. They have been discovered to be involved in cancer, in that they impact various signalling pathways that influence cell proliferation, migration, and invasiveness. Notably, in the context of genome-wide association studies, one member of the LMTK family has been identified as a candidate gene which could contribute to the development of prostate cancer. In this review, of published literature, we present evidence on the role of LMTKs in human prostate cancer and model systems, focusing on the complex network of interacting partners involved in signalling cascades that are frequently activated in prostate cancer malignancy. We speculate that the modulators of LMTK enzyme expression and activity would be of high clinical relevance for the design of innovative prostate cancer treatment.
Collapse
Affiliation(s)
- Elena Ferrari
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy; (V.N.); (S.B.)
- Correspondence: ; Tel.: +39-0521-033-822
| | - Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy; (V.N.); (S.B.)
- National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d’Oro 305, 00136 Rome, Italy
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Saverio Bettuzzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy; (V.N.); (S.B.)
- National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d’Oro 305, 00136 Rome, Italy
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| |
Collapse
|
35
|
Mohamed FAM, Gomaa HAM, Hendawy OM, Ali AT, Farghaly HS, Gouda AM, Abdelazeem AH, Abdelrahman MH, Trembleau L, Youssif BGM. Design, synthesis, and biological evaluation of novel EGFR inhibitors containing 5-chloro-3-hydroxymethyl-indole-2-carboxamide scaffold with apoptotic antiproliferative activity. Bioorg Chem 2021; 112:104960. [PMID: 34020242 DOI: 10.1016/j.bioorg.2021.104960] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
New EGFR inhibitor series of fifteen 5-chloro-3-hydroxymethyl-indole-2-carboxamide derivatives has been designed, synthesized, and tested for antiproliferative activity against a panel of cancer cell lines. The results showed that p-substituted phenethyl derivatives 10, 11, 13, 15 and 17-19 showed superior antiproliferative activity compared to their m-substituted counterparts 12, 14, 16 and 20. Compounds 15, 16, 19 and 20 displayed promising EGFR inhibitory activity as well as an increase in caspase 3 levels. Compounds 15 and 19 increased caspase-8 and 9 levels, as well as inducing Bax and decreasing Bcl-2 protein levels. Compound 19 demonstrated cell cycle arrest at pre-G1 and G2/M phases. The results of the docking study into the active site of EGFR revealed strong fitting of the new compounds with higher binding affinities compared to erlotinib.
Collapse
Affiliation(s)
- Fatma A M Mohamed
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Jouf University, Aljouf 72341, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Alexandria-21321, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - O M Hendawy
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Asmaa T Ali
- Biochemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62511, Egypt
| | - Hatem S Farghaly
- Biochemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62511, Egypt
| | - Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB243UE, United Kingdom
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
36
|
Liang Y, Zhang T, Sun Y, Diao M, Zhang J, Ren L. Multi-spectroscopic and molecular modeling studies on the interactions of serum albumin with 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol that inhibit HCT-116 cells proliferation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Liang Y, Zhang T, Jing S, Zuo P, Li T, Wang Y, Xing S, Zhang J, Wei Z. 20(S)-Ginsenoside Rg3 Inhibits Lung Cancer Cell Proliferation by Targeting EGFR-Mediated Ras/Raf/MEK/ERK Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:753-765. [DOI: 10.1142/s0192415x2150035x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung cancer is the leading cause of cancer death in the world and classified into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). As tyrosine kinase inhibitors (TKIs), several triterpenoid saponins can target to epidermal growth factor receptor (EGFR), a widely used molecular therapeutic target, to exhibit remarkable anti-proliferative activities in cancer cells. As one of triterpenoid saponins, 20([Formula: see text])-ginsenoside Rg3 [20([Formula: see text])-Rg3] was confirmed to be an EGFR-TKI in this work. According to the quantitative real-time reverse transcription-PCR (qRT-PCR) and immunoblotting analysis, 20([Formula: see text])-Rg3 was certified to play a key role on EGFR/Ras/Raf/MEK/ERK signal pathway regulation. Our data demonstrated that 20([Formula: see text])-Rg3 might block the cell cycle at the G0/G1 phase by downregulating CDK2, Cyclin A2, and Cyclin E1. Molecular docking suggested that the combination of both hydrophobic and hydrogen-bonding interactions may help stabilizing the 20([Formula: see text])-Rg3-EGFR binding. Furthermore, their binding stability was assessed by molecular dynamics simulation. Taken together, these data provide the evidence that 20([Formula: see text])-Rg3 could prohibit A549 cell proliferation, probably by arresting the cell cycle at the G0/G1 phase via the EGFR/Ras/Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Peng Zuo
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Tiezhu Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Yongjun Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Zhengyi Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| |
Collapse
|
38
|
Zhang J, Liang Y, Ren L, Zhang T. In vitro Anti-Inflammatory Potency of Sanguinarine and Chelerythrine via Interaction with Glucocorticoid Receptor. EFOOD 2021. [DOI: 10.2991/efood.k.210118.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
39
|
Liang Y, Zhang T, Ren L, Jing S, Li Z, Zuo P, Li T, Wang Y, Zhang J, Wei Z. Cucurbitacin IIb induces apoptosis and cell cycle arrest through regulating EGFR/MAPK pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103542. [PMID: 33161110 DOI: 10.1016/j.etap.2020.103542] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/23/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Epidermal growth factor receptor (EGFR) is considered as a valid target in the clinical trials of anticancer therapy and tyrosine kinase inhibitors (TKIs) of EGFR are approved for cancer treatments. In present work, cucurbitacin IIb (CuIIb) was confirmed to exhibit the proliferation inhibitory activity in A549 cells. CuIIb induced apoptosis via STAT3 pathway, which was mitochondria-mediated and caspase-dependent. CuIIb also suppressed the cell cycle and induced G2/M phase cell cycle arrest. CuIIb was capable of suppressing the signal transmitting of the EGFR/mitogen-activated protein kinase (MAPK) pathway which was responsible for the apoptosis and cell cycle arrest. Homogeneous time-resolved fluorescence (HTRF) analysis demonstrated that the kinase activity of EGFR was inhibited by CuIIb. Molecular docking suggested that the CuIIb-EGFR binding fundamentally depends on the contribution of both hydrophobic and hydrogen-bonding interactions. Hence CuIIb may serve as a potential EGFR TKI.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Zhuolin Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Peng Zuo
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Tiezhu Li
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yongjun Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Zhengyi Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|