1
|
Koppula S, Wankhede N, Kyada A, Ballal S, Arya R, Singh AK, Gulati M, Sute A, Sarode S, Polshettiwar S, Marde V, Taksande B, Upaganlawar A, Fareed M, Umekar M, Kopalli SR, Kale M. The gut-brain axis: Unveiling the impact of xenobiotics on neurological health and disorders. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111237. [PMID: 39732317 DOI: 10.1016/j.pnpbp.2024.111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/12/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The Gut-Brain Axis (GBA) is a crucial link between the gut microbiota and the central nervous system. Xenobiotics, originating from diverse sources, play a significant role in shaping this interaction. This review examines how these compounds influence neurotransmitter dynamics within the GBA. Environmental pollutants can disrupt microbial populations, impacting neurotransmitter synthesis-especially serotonin, gamma-aminobutyric acid (GABA), and dopamine pathways. Such disruptions affect mood regulation, cognition, and overall neurological function. Xenobiotics also contribute to the pathophysiology of neurological disorders, with changes in serotonin levels linked to mood disorders and imbalances in GABA and dopamine associated with anxiety, stress, and reward pathway disorders. These alterations extend beyond the GBA, leading to complications in neurological health, including increased risk of neurodegenerative diseases due to neuroinflammation triggered by neurotransmitter imbalances. This review provides a comprehensive overview of how xenobiotics influence the GBA and their implications for neurological well-being.
Collapse
Affiliation(s)
- Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea
| | - Nitu Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, -360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | | | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Astha Sute
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Sanskruti Sarode
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Shruti Polshettiwar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Vaibhav Marde
- Indian Institute of Technology (IIT), Hyderabad, Telangana 502284, India
| | - Brijesh Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Milind Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mayur Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
2
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
de Lima EP, Tanaka M, Lamas CB, Quesada K, Detregiachi CRP, Araújo AC, Guiguer EL, Catharin VMCS, de Castro MVM, Junior EB, Bechara MD, Ferraz BFR, Catharin VCS, Laurindo LF, Barbalho SM. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024; 12:2096. [PMID: 39335609 PMCID: PMC11428869 DOI: 10.3390/biomedicines12092096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The triad of vascular impairment, muscle atrophy, and cognitive decline represents critical age-related conditions that significantly impact health. Vascular impairment disrupts blood flow, precipitating the muscle mass reduction seen in sarcopenia and the decline in neuronal function characteristic of neurodegeneration. Our limited understanding of the intricate relationships within this triad hinders accurate diagnosis and effective treatment strategies. This review analyzes the interrelated mechanisms that contribute to these conditions, with a specific focus on oxidative stress, chronic inflammation, and impaired nutrient delivery. The aim is to understand the common pathways involved and to suggest comprehensive therapeutic approaches. Vascular dysfunctions hinder the circulation of blood and the transportation of nutrients, resulting in sarcopenia characterized by muscle atrophy and weakness. Vascular dysfunction and sarcopenia have a negative impact on physical function and quality of life. Neurodegenerative diseases exhibit comparable pathophysiological mechanisms that affect cognitive and motor functions. Preventive and therapeutic approaches encompass lifestyle adjustments, addressing oxidative stress, inflammation, and integrated therapies that focus on improving vascular and muscular well-being. Better understanding of these links can refine therapeutic strategies and yield better patient outcomes. This study emphasizes the complex interplay between vascular dysfunction, muscle degeneration, and cognitive decline, highlighting the necessity for multidisciplinary treatment approaches. Advances in this domain promise improved diagnostic accuracy, more effective therapeutic options, and enhanced preventive measures, all contributing to a higher quality of life for the elderly population.
Collapse
Affiliation(s)
- Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Claudia Rucco P. Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Odontology, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Edgar Baldi Junior
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | | | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17525-902, SP, Brazil
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Research Coordination, UNIMAR Charity Hospital (HBU), University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
4
|
Wang M, Zhang TH, Li Y, Chen X, Zhang Q, Zheng Y, Long D, Cheng X, Hong A, Yang X, Wang G. Atractylenolide-I Alleviates Hyperglycemia-Induced Heart Developmental Malformations through Direct and Indirect Modulation of the STAT3 Pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155698. [PMID: 38728919 DOI: 10.1016/j.phymed.2024.155698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Gestational diabetes could elevate the risk of congenital heart defects (CHD) in infants, and effective preventive and therapeutic medications are currently lacking. Atractylenolide-I (AT-I) is the active ingredient of Atractylodes Macrocephala Koidz (known as Baizhu in China), which is a traditional pregnancy-supporting Chinese herb. PURPOSE In this study, we investigated the protective effect of AT-I on the development of CHD in embryos exposed to high glucose (HG). STUDY DESIGN AND METHODS First, systematic review search results revealed associations between gestational diabetes mellitus (GDM) and cardiovascular malformations. Subsequently, a second systematic review indicated that heart malformations were consistently associated with oxidative stress and cell apoptosis. We assessed the cytotoxic impacts of Atractylenolide compounds (AT-I, AT-II, and AT-III) on H9c2 cells and chick embryos, determining an optimal concentration of AT-I for further investigation. Second, immunofluorescence, western blot, Polymerase Chain Reaction (PCR), and flow cytometry were utilized to delve into the mechanisms through which AT-I mitigates oxidative stress and apoptosis in cardiac cells. Molecular docking was employed to investigate whether AT-I exerts cardioprotective effects via the STAT3 pathway. Then, we developed a streptozotocin-induced diabetes mellitus (PGDM) mouse model to evaluate AT-I's protective efficacy in mammals. Finally, we explored how AT-I protects hyperglycemia-induced abnormal fetal heart development through microbiota analysis and untargeted metabolomics analysis. RESULTS The study showed the protective effect of AT-I on embryonic development using a chick embryo model which rescued the increase in the reactive oxygen species (ROS) and decrease in cell survival induced by HG. We also provided evidence suggesting that AT-I might directly interact with STAT3, inhibiting its phosphorylation. Further, in the PGDM mouse model, we observed that AT-I not only partially alleviated PGDM-related blood glucose issues and complications but also mitigated hyperglycemia-induced abnormal fetal heart development in pregnant mice. This effect is hypothesized to be mediated through alterations in gut microbiota composition. We proposed that dysregulation in microbiota metabolism could influence the downstream STAT3 signaling pathway via EGFR, consequently impacting cardiac development and formation. CONCLUSIONS This study marks the first documented instance of AT-I's effectiveness in reducing the risk of early cardiac developmental anomalies in fetuses affected by gestational diabetes. AT-I achieves this by inhibiting the STAT3 pathway activated by ROS during gestational diabetes, significantly reducing the risk of fetal cardiac abnormalities. Notably, AT-I also indirectly safeguards normal fetal cardiac development by influencing the maternal gut microbiota and suppressing the EGFR/STAT3 pathway.
Collapse
Affiliation(s)
- Mengwei Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, China
| | - Tong-Hua Zhang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China
| | - Yunjin Li
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Xiaofeng Chen
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Qiongyin Zhang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Ying Zheng
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China
| | - Denglu Long
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xin Cheng
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, China
| | - Xuesong Yang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Clinical Research Center, Clifford Hospital, Guangzhou 511495, China.
| | - Guang Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou 510317.
| |
Collapse
|
5
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z, Tang Z, Bian X, Zheng J, Jiang J, Li C. The emerging tumor microbe microenvironment: From delineation to multidisciplinary approach-based interventions. Acta Pharm Sin B 2024; 14:1560-1591. [PMID: 38572104 PMCID: PMC10985043 DOI: 10.1016/j.apsb.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Jiang M, Liu L, Huang W, Qi Y, Li Y, Li B. HMGB1-activated tumor-associated macrophages promote migration and invasion via NF-κB/IL-6 signaling in oral squamous cell carcinoma. Int Immunopharmacol 2024; 126:111200. [PMID: 37988913 DOI: 10.1016/j.intimp.2023.111200] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Tumor-associated macrophages (TAMs) are a highly abundant cell population within the tumor microenvironment of oral squamous cell carcinomas (OSCC). Recent studies have identified an intricate cross-talk between cancer cells and macrophages in the tumor microenvironment. However, the underlying mechanism remains unclear. High-mobility group box 1 (HMGB1) was linked to metastasis and an unfavorable prognosis in head and neck squamous cell carcinoma. Furthermore, it was significantly upregulated in moderately differentiated OSCC tissues and the OSCC cell lines CAL27 and SCC9. HMGB1 knockdown impedes the ability of TAMs to induce invasion and migration of OSCC cells. Phenotypic changes in macrophages were measured after incubation of supernatant from OSCC cells transfected with HMGB1 siRNA or supplemented with recombinant HMGB1. HMGB1 induced M1 polarization of macrophages and the secretion of IL-6 via the NF-κB pathway, contributing to the OSCC malignant migration. HMGB1 originating from OSCC cells, along with its downstream signaling pathways, holds promise as a potential therapeutic target for mitigating metastasis and improving the survival rate of OSCC.
Collapse
Affiliation(s)
- Mingjing Jiang
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Luyao Liu
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Wei Huang
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Ying Qi
- Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Yafei Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun 130021, China; Experimental Teaching Center, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China.
| |
Collapse
|
7
|
Buchenauer L, Haange SB, Bauer M, Rolle-Kampczyk UE, Wagner M, Stucke J, Elter E, Fink B, Vass M, von Bergen M, Schulz A, Zenclussen AC, Junge KM, Stangl GI, Polte T. Maternal exposure of mice to glyphosate induces depression- and anxiety-like behavior in the offspring via alterations of the gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167034. [PMID: 37709081 DOI: 10.1016/j.scitotenv.2023.167034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The past decade has been characterized by increased awareness and de-stigmatization of mental health issues, in particular the most common neuropsychiatric disorders depression and anxiety. Further, with growing understanding of neurodevelopmental disorders such as attention deficit and hyperactivity disorder and autism spectrum disorder, the number of diagnosed patients has increased. The pathogenesis of these behavioral disorders is multifactorial and early-life exposure to environmental chemicals has been proposed to be a relevant risk factor that might mediate these effects by disturbances on the gut-brain-axis. However, for glyphosate, the most widely used pesticide worldwide, there are only limited and inconsistent findings that link chronic low-dose exposure in particular during early life to neurobehavioral disorders. Here, we explored the impact of maternal oral glyphosate exposure (0.5 and 50 mg/kg body weight/day) during pregnancy and the lactational period on offspring's behavior, brain gene expression and gut microbiota using a cross-generational mouse model. Behavioral analyses revealed a depression- and anxiety-like behavior as well as social deficits most notably in adult female offspring of glyphosate-exposed dams. Furthermore, the expression of tryptophan hydroxylase 2, an enzyme discussed to be linked to behavioral problems, was reduced in the hippocampus of female offspring and correlated to a glyphosate-induced DNA hypermethylation of the gene. Moreover, maternal glyphosate exposure significantly altered the gut microbiota in the female offspring including a decreased abundance of Akkermansia and increased abundance of Alistipes and Blautia, bacteria involved in tryptophan metabolism and associated with depression- and anxiety-like disorders. Our results suggest that glyphosate might influence the gut-brain axis crosstalk following in-utero and lactational exposure. This study underlines the importance of understanding the impact of exposure to pesticides on the gut-brain axis and further emphasizes the need for microbiome analyses to be compulsorily included in health risk assessments of pesticides.
Collapse
Affiliation(s)
- Lisa Buchenauer
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Sven-Bastiaan Haange
- Helmholtz Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Mario Bauer
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Ulrike E Rolle-Kampczyk
- Helmholtz Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Marita Wagner
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Johanna Stucke
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Elena Elter
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Beate Fink
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Maren Vass
- University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Angela Schulz
- University of Leipzig, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig, Germany
| | - Ana C Zenclussen
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
| | - Kristin M Junge
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; AKAD University Stuttgart, School of Health and Social Sciences, Stuttgart, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tobias Polte
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany.
| |
Collapse
|
8
|
Nohesara S, Abdolmaleky HM, Zhou JR, Thiagalingam S. Microbiota-Induced Epigenetic Alterations in Depressive Disorders Are Targets for Nutritional and Probiotic Therapies. Genes (Basel) 2023; 14:2217. [PMID: 38137038 PMCID: PMC10742434 DOI: 10.3390/genes14122217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Major depressive disorder (MDD) is a complex disorder and a leading cause of disability in 280 million people worldwide. Many environmental factors, such as microbes, drugs, and diet, are involved in the pathogenesis of depressive disorders. However, the underlying mechanisms of depression are complex and include the interaction of genetics with epigenetics and the host immune system. Modifications of the gut microbiome and its metabolites influence stress-related responses and social behavior in patients with depressive disorders by modulating the maturation of immune cells and neurogenesis in the brain mediated by epigenetic modifications. Here, we discuss the potential roles of a leaky gut in the development of depressive disorders via changes in gut microbiota-derived metabolites with epigenetic effects. Next, we will deliberate how altering the gut microbiome composition contributes to the development of depressive disorders via epigenetic alterations. In particular, we focus on how microbiota-derived metabolites such as butyrate as an epigenetic modifier, probiotics, maternal diet, polyphenols, drugs (e.g., antipsychotics, antidepressants, and antibiotics), and fecal microbiota transplantation could positively alleviate depressive-like behaviors by modulating the epigenetic landscape. Finally, we will discuss challenges associated with recent therapeutic approaches for depressive disorders via microbiome-related epigenetic shifts, as well as opportunities to tackle such problems.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA;
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA;
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
9
|
Abou Diwan M, Lahimer M, Bach V, Gosselet F, Khorsi-Cauet H, Candela P. Impact of Pesticide Residues on the Gut-Microbiota–Blood–Brain Barrier Axis: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076147. [PMID: 37047120 PMCID: PMC10094680 DOI: 10.3390/ijms24076147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Accumulating evidence indicates that chronic exposure to a low level of pesticides found in diet affects the human gut-microbiota–blood–brain barrier (BBB) axis. This axis describes the physiological and bidirectional connection between the microbiota, the intestinal barrier (IB), and the BBB. Preclinical observations reported a gut microbial alteration induced by pesticides, also known as dysbiosis, a condition associated not only with gastrointestinal disorders but also with diseases affecting other distal organs, such as the BBB. However, the interplay between pesticides, microbiota, the IB, and the BBB is still not fully explored. In this review, we first consider the similarities/differences between these two physiological barriers and the different pathways that link the gut microbiota and the BBB to better understand the dialogue between bacteria and the brain. We then discuss the effects of chronic oral pesticide exposure on the gut-microbiota-BBB axis and raise awareness of the danger of chronic exposure, especially during the perinatal period (pregnant women and offspring).
Collapse
Affiliation(s)
- Maria Abou Diwan
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
| | - Marwa Lahimer
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Véronique Bach
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
| | - Hafida Khorsi-Cauet
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
- Correspondence:
| |
Collapse
|
10
|
Xu W, Yu H, Chen D, Pan W, Yang W, Miao J, Jia W, Zheng B, Liu Y, Chen X, Gao Y, Tian D. Identifying the potential transcriptional regulatory network in Hirschsprung disease by integrated analysis of microarray datasets. WORLD JOURNAL OF PEDIATRIC SURGERY 2023; 6:e000547. [PMID: 37082700 PMCID: PMC10111925 DOI: 10.1136/wjps-2022-000547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/22/2023] Open
Abstract
Objective Hirschsprung disease (HSCR) is one of the common neurocristopathies in children, which is associated with at least 20 genes and involves a complex regulatory mechanism. Transcriptional regulatory network (TRN) has been commonly reported in regulating gene expression and enteric nervous system development but remains to be investigated in HSCR. This study aimed to identify the potential TRN implicated in the pathogenesis and diagnosis of HSCR. Methods Based on three microarray datasets from the Gene Expression Omnibus database, the multiMiR package was used to investigate the microRNA (miRNA)-target interactions, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Then, we collected transcription factors (TFs) from the TransmiR database to construct the TF-miRNA-mRNA regulatory network and used cytoHubba to identify the key modules. Finally, the receiver operating characteristic (ROC) curve was determined and the integrated diagnostic models were established based on machine learning by the support vector machine method. Results We identified 58 hub differentially expressed microRNAs (DEMis) and 16 differentially expressed mRNAs (DEMs). The robust target genes of DEMis and DEMs mainly enriched in several GO/KEGG terms, including neurogenesis, cell-substrate adhesion, PI3K-Akt, Ras/mitogen-activated protein kinase and Rho/ROCK signaling. Moreover, 2 TFs (TP53 and TWIST1), 4 miRNAs (has-miR-107, has-miR-10b-5p, has-miR-659-3p, and has-miR-371a-5p), and 4 mRNAs (PIM3, CHUK, F2RL1, and CA1) were identified to construct the TF-miRNA-mRNA regulatory network. ROC analysis revealed a strong diagnostic value of the key TRN regulons (all area under the curve values were more than 0.8). Conclusion This study suggests a potential role of the TF-miRNA-mRNA network that can help enrich the connotation of HSCR pathogenesis and diagnosis and provide new horizons for treatment.
Collapse
Affiliation(s)
- Wenyao Xu
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Hui Yu
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Dian Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Peking University, Beijing, China
| | - Weikang Pan
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Weili Yang
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jing Miao
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wanying Jia
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Baijun Zheng
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Donghao Tian
- Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
McEwan F, Glazier JD, Hager R. The impact of maternal immune activation on embryonic brain development. Front Neurosci 2023; 17:1146710. [PMID: 36950133 PMCID: PMC10025352 DOI: 10.3389/fnins.2023.1146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The adult brain is a complex structure with distinct functional sub-regions, which are generated from an initial pool of neural epithelial cells within the embryo. This transition requires a number of highly coordinated processes, including neurogenesis, i.e., the generation of neurons, and neuronal migration. These take place during a critical period of development, during which the brain is particularly susceptible to environmental insults. Neurogenesis defects have been associated with the pathogenesis of neurodevelopmental disorders (NDDs), such as autism spectrum disorder and schizophrenia. However, these disorders have highly complex multifactorial etiologies, and hence the underlying mechanisms leading to aberrant neurogenesis continue to be the focus of a significant research effort and have yet to be established. Evidence from epidemiological studies suggests that exposure to maternal infection in utero is a critical risk factor for NDDs. To establish the biological mechanisms linking maternal immune activation (MIA) and altered neurodevelopment, animal models have been developed that allow experimental manipulation and investigation of different developmental stages of brain development following exposure to MIA. Here, we review the changes to embryonic brain development focusing on neurogenesis, neuronal migration and cortical lamination, following MIA. Across published studies, we found evidence for an acute proliferation defect in the embryonic MIA brain, which, in most cases, is linked to an acceleration in neurogenesis, demonstrated by an increased proportion of neurogenic to proliferative divisions. This is accompanied by disrupted cortical lamination, particularly in the density of deep layer neurons, which may be a consequence of the premature neurogenic shift. Although many aspects of the underlying pathways remain unclear, an altered epigenome and mitochondrial dysfunction are likely mechanisms underpinning disrupted neurogenesis in the MIA model. Further research is necessary to delineate the causative pathways responsible for the variation in neurogenesis phenotype following MIA, which are likely due to differences in timing of MIA induction as well as sex-dependent variation. This will help to better understand the underlying pathogenesis of NDDs, and establish therapeutic targets.
Collapse
|
12
|
Zhang Z, Liao Y, Tang D. Intratumoral microbiota: New Frontiers in Tumor Immunity. Carcinogenesis 2022; 43:719-727. [PMID: 35868230 DOI: 10.1093/carcin/bgac063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Microbiota-host interactions are a hot topic of research because of their important role in regulating the malignant transformation of cancer cells and cancer-related immunity. The role of gut microbiota, oral microbiota, and skin microbiota in cancer progression has been extensively studied. However, intratumoral microbiota is a recently discovered topic of research that is still in its infancy. This review focuses on the impact of the intratumoral microbiota on cancer immune responses and highlights how the intratumoral microbiota modulates innate and adaptive immunity to potentially impact tumor immunotherapy in the hope that it will inspire potential ideas for the application of immunotherapy in the treatment of tumors.
Collapse
Affiliation(s)
- Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yiqun Liao
- Department of Clinical Medical College, Dalian Medical University, Dalian, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
13
|
Singh S, Sharma P, Pal N, Kumawat M, Shubham S, Sarma DK, Tiwari RR, Kumar M, Nagpal R. Impact of Environmental Pollutants on Gut Microbiome and Mental Health via the Gut–Brain Axis. Microorganisms 2022; 10:microorganisms10071457. [PMID: 35889175 PMCID: PMC9317668 DOI: 10.3390/microorganisms10071457] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Over the last few years, the microbiome has emerged as a high-priority research area to discover missing links between brain health and gut dysbiosis. Emerging evidence suggests that the commensal gut microbiome is an important regulator of the gut–brain axis and plays a critical role in brain physiology. Engaging microbiome-generated metabolites such as short-chain fatty acids, the immune system, the enteric nervous system, the endocrine system (including the HPA axis), tryptophan metabolism or the vagus nerve plays a crucial role in communication between the gut microbes and the brain. Humans are exposed to a wide range of pollutants in everyday life that impact our intestinal microbiota and manipulate the bidirectional communication between the gut and the brain, resulting in predisposition to psychiatric or neurological disorders. However, the interaction between xenobiotics, microbiota and neurotoxicity has yet to be completely investigated. Although research into the precise processes of the microbiota–gut–brain axis is growing rapidly, comprehending the implications of environmental contaminants remains challenging. In these milieus, we herein discuss how various environmental pollutants such as phthalates, heavy metals, Bisphenol A and particulate matter may alter the intricate microbiota–gut–brain axis thereby impacting our neurological and overall mental health.
Collapse
Affiliation(s)
- Samradhi Singh
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Poonam Sharma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Namrata Pal
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Rajnarayan R. Tiwari
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
- Correspondence: (M.K.); (R.N.)
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
- Correspondence: (M.K.); (R.N.)
| |
Collapse
|
14
|
Balaguer-Trias J, Deepika D, Schuhmacher M, Kumar V. Impact of Contaminants on Microbiota: Linking the Gut-Brain Axis with Neurotoxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031368. [PMID: 35162390 PMCID: PMC8835190 DOI: 10.3390/ijerph19031368] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Over the last years, research has focused on microbiota to establish a missing link between neuronal health and intestine imbalance. Many studies have considered microbiota as critical regulators of the gut–brain axis. The crosstalk between microbiota and the central nervous system is mainly explained through three different pathways: the neural, endocrine, and immune pathways, intricately interconnected with each other. In day-to-day life, human beings are exposed to a wide variety of contaminants that affect our intestinal microbiota and alter the bidirectional communication between the gut and brain, causing neuronal disorders. The interplay between xenobiotics, microbiota and neurotoxicity is still not fully explored, especially for susceptible populations such as pregnant women, neonates, and developing children. Precisely, early exposure to contaminants can trigger neurodevelopmental toxicity and long-term diseases. There is growing but limited research on the specific mechanisms of the microbiota–gut–brain axis (MGBA), making it challenging to understand the effect of environmental pollutants. In this review, we discuss the biological interplay between microbiota–gut–brain and analyse the role of endocrine-disrupting chemicals: Bisphenol A (BPA), Chlorpyrifos (CPF), Diethylhexyl phthalate (DEHP), and Per- and polyfluoroalkyl substances (PFAS) in MGBA perturbations and subsequent neurotoxicity. The complexity of the MGBA and the changing nature of the gut microbiota pose significant challenges for future research. However, emerging in-silico models able to analyse and interpret meta-omics data are a promising option for understanding the processes in this axis and can help prevent neurotoxicity.
Collapse
Affiliation(s)
- Jordina Balaguer-Trias
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
| | - Deepika Deepika
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
| | - Vikas Kumar
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
- IISPV (Pere Virgili Institute for Health Research), Sant Joan University Hospital, Universitat Rovira i Virgili, 43204 Reus, Spain
- Correspondence: ; Tel.: +34977558576
| |
Collapse
|
15
|
Mechanism of Sanhua Decoction in the Treatment of Ischemic Stroke Based on Network Pharmacology Methods and Experimental Verification. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7759402. [PMID: 35097126 PMCID: PMC8799339 DOI: 10.1155/2022/7759402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/03/2022]
Abstract
Objective The mechanism of action of Sanhua Decoction (SHD) in the treatment of ischemic stroke (IS) was analyzed based on the network pharmacology technology, and the pharmacodynamics and key targets were verified using the rat middle cerebral artery occlusion (MCAO) model. Methods The GEO database was used to collect IS-related gene set SD, and DrugBank and TTD databases were used to obtain the therapeutic drug target set ST. IS disease gene set SI was collected from DisGeNET, GeneCards, and OMIM databases. These three different gene sets obtained from various sources were merged, duplicates were removed, and the resulting IS disease gene set SIS was imported into the STRING database to establish the protein-protein interaction (PPI) network. Two methods were used to screen the key targets of IS disease based on the PPI network analysis. The TCMSP database and PubChem were applied to retrieve the main chemical components of SHD, and the ACD/Labs software and the SwissADME online system were utilized for ADMET screening. HitPick, SEA, and SwissTarget Prediction online systems were used to predict the set of potential targets for SHD to treat IS. The predicted set of potential targets and the IS disease gene set were intersected. Subsequently, the set of potential targets for SHD treatment of IS was identified, the target information was confirmed through the UniProt database, and finally, the component-target data set for SHD treatment of IS was obtained. clusterProfiler was used for GO function annotation and KEGG pathway enrichment analysis on the target set of SHD active ingredients. A rat MCAO model was established to evaluate the pharmacodynamics of SHD in the treatment of IS, and Western blot analysis assessed the level of proteins in the related pathways. Results This study obtained 1,009 IS disease gene sets. PPI network analysis identified 12 key targets: AGT, SAA1, KNG1, APP, GNB3, C3, CXCR4, CXCL12, CXCL8, CXCL1, F2, and EDN1. Database analyses retrieved 40 active ingredients and 47 target genes in SHD. The network proximity algorithm was used to optimize the six key components in SHD. KEGG enrichment showed that the signaling pathways related to IS were endocrine resistance, estrogen, TNF signal pathway, and AGEs/RAGE. Compound-disease-target regulatory network analysis showed that AKT1, IL-6, TNF-α, TP53, VEGFA, and APP were related to the treatment of IS with SHD. Animal experiments demonstrated that SHD significantly reduces the neurological function of rat defect symptoms (P < 0.05), the area of cerebral avascular necrosis, and neuronal necrosis while increasing the levels of IL-6 and APP proteins (P < 0.05) and reducing the levels of AKT1 and VEGFA proteins (P < 0.05). Conclusion The effective components of SHD may regulate multiple signaling pathways through IL-6, APP, AKT1, and VEGFA to reduce brain damage and inflammatory damage and exert a neuroprotective role in the treatment of IS diseases. Thus, this study provides a feasible method to study the pharmacological mechanism of traditional Chinese medicine compound prescriptions and a theoretical basis for the development of SHD into a new drug for IS treatment.
Collapse
|
16
|
Li H, Long D, Lv G, Cheng X, Wang G, Yang X. The double-edged sword role of TGF-β signaling pathway between intrauterine inflammation and cranial neural crest development. FASEB J 2021; 36:e22113. [PMID: 34939699 DOI: 10.1096/fj.202101343r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Intrauterine infection would harm a developing embryo/fetus, thereby increasing the risk of developmental malformation. But, whether or not the infection-induced inflammation affects neural crest development still remains obscure. In this study, we employed meta-analysis to demonstrate the potential correlation between infection-induced inflammation and craniofacial anomalies, which was usually derived from the problems in neural crest cell development. The correlation was further verified by inflammatory cytokine release and the activation of nuclear factor kappa-light-chain enhancer of activated B cells signaling in lipopolysaccharide-treated HH10 chicken embryos. In such an inflammatory condition, AP-2α- and Pax7-labeled pre-migratory and migratory neural crest cells in HH10 chicken embryos were significantly less than the ones in control. The bioinformatics analysis of RNA-seq data demonstrated that the principal differential gene expression occurred in transforming growth factor-beta (TGF-β) signaling pathway, which was confirmed by the subsequent experimental results of quantitative PCR and immunofluorescent staining. Under this inflammatory circumstance, whole-mount in situ hybridization, immunofluorescence, and quantitative PCR showed the gene expression changes of key EMT-related transcription factors including upregulated Msx1, downregulated Slug, and FoxD3, as well as adhesion molecules and extracellular matrix protein including upregulated Cadherrin6B, E-cadherin, N-cadherin, and Laminin at the dorsal portion of neural tube of HH10 chicken embryos. Meanwhile, the bioinformatics analysis of RNA-seq data also manifested the differential gene expressions relevant to cell proliferation, which was confirmed by proliferating cell nuclear antigen Western blot data and co-immunofluorescence staining of human natural killer-1 and phosphorylated histone H3. In brief, this study revealed for the first time that the double-edged sword role of TGF-β signaling pathway between intrauterine inflammation (protective role) and cranial neural crest development (harmful role).
Collapse
Affiliation(s)
- Haiyang Li
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Denglu Long
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Medical Records Department, Quality and Safety Management Office, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guohua Lv
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Xin Cheng
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Guang Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Xuesong Yang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|