1
|
Zhong H, Liu T, Shang Y, Huang C, Pan S. Breaking the vicious cycle: Targeting the NLRP3 inflammasome for treating sepsis-associated encephalopathy. Biomed Pharmacother 2024; 177:117042. [PMID: 39004064 DOI: 10.1016/j.biopha.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a collection of clinical syndromes resulting from sepsis and characterized by widespread brain dysfunction. The high prevalence of SAE has adverse outcomes on the clinical management and prognosis of sepsis patients. However, currently, there are no effective treatments to ameliorate SAE. The pathogenesis of SAE is complex, including neuroinflammation and microglia activation, destruction of the blood-brain barrier (BBB), neurotransmitter dysfunction, cerebral metabolism and mitochondrial impairment, accumulation of amyloid beta and tauopathy, complement activation, among others. Furthermore, these mechanisms intertwine with each other, further complicating the comprehension of SAE. Among them, neuroinflammation mediated by hyperactivated microglia is considered the primary etiology of SAE. This instigates a detrimental cycle wherein BBB permeability escalates, facilitating direct damage to the central nervous system (CNS) by various neurotoxic substances. Activation of the NLRP3 inflammasome, situated within microglia, can be triggered by diverse danger signals, leading to cell pyroptosis, apoptosis, and tauopathy. These complex processes intricately regulate the onset and progression of neuroinflammation. In this review, we focus on elucidating the inhibitory regulatory mechanism of the NLRP3 inflammasome in microglia, which ultimately manifests as suppression of the inflammatory response. Our ultimate objective is to augment comprehension regarding the role of microglial NLRP3 inflammasome as we explore potential targets for therapeutic interventions against SAE.
Collapse
Affiliation(s)
- Hui Zhong
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,; Hubei Clinical Research Center for Infectious Diseases, ,; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, ,; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences,
| | - Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology,
| | - Chaolin Huang
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,; Hubei Clinical Research Center for Infectious Diseases, ,; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, ,; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, ,.
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, ,.
| |
Collapse
|
2
|
Baek W, Park S, Lee Y, Roh H, Yun CO, Roh TS, Lee WJ. Ethyl Pyruvate Decreases Collagen Synthesis and Upregulates MMP Activity in Keloid Fibroblasts and Keloid Spheroids. Int J Mol Sci 2024; 25:5844. [PMID: 38892032 PMCID: PMC11172307 DOI: 10.3390/ijms25115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Keloids, marked by abnormal cellular proliferation and excessive extracellular matrix (ECM) accumulation, pose significant therapeutic challenges. Ethyl pyruvate (EP), an inhibitor of the high-mobility group box 1 (HMGB1) and TGF-β1 pathways, has emerged as a potential anti-fibrotic agent. Our research evaluated EP's effects on keloid fibroblast (KF) proliferation and ECM production, employing both in vitro cell cultures and ex vivo patient-derived keloid spheroids. We also analyzed the expression levels of ECM components in keloid tissue spheroids treated with EP through immunohistochemistry. Findings revealed that EP treatment impedes the nuclear translocation of HMGB1 and diminishes KF proliferation. Additionally, EP significantly lowered mRNA and protein levels of collagen I and III by attenuating TGF-β1 and pSmad2/3 complex expression in both human dermal fibroblasts and KFs. Moreover, metalloproteinase I (MMP-1) and MMP-3 mRNA levels saw a notable increase following EP administration. In keloid spheroids, EP induced a dose-dependent reduction in ECM component expression. Immunohistochemical and western blot analyses confirmed significant declines in collagen I, collagen III, fibronectin, elastin, TGF-β, AKT, and ERK 1/2 expression levels. These outcomes underscore EP's antifibrotic potential, suggesting its viability as a therapeutic approach for keloids.
Collapse
Affiliation(s)
- Wooyeol Baek
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seonghyuk Park
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Youngdae Lee
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun Roh
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
| | - Tai Suk Roh
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Won Jai Lee
- Department of Plastic & Reconstructive Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Demir S, Mentese A, Kucuk H, Yulug E, Turkmen Alemdar N, Ayazoglu Demir E, Aliyazicioglu Y. Ethyl pyruvate attenuates cisplatin-induced ovarian injury in rats via activating Nrf2 pathway. Drug Chem Toxicol 2024; 47:218-226. [PMID: 37246941 DOI: 10.1080/01480545.2023.2217481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 05/30/2023]
Abstract
Although cisplatin (CDDP) is an antineoplastic drug widely used for the treatment of various tumors, its toxicity on the reproductive system is a concern for patients. Ethyl pyruvate (EP) possesses potent antioxidant and anti-inflammatory activities. The objective of this study was to evaluate the therapeutic potential of EP on CDDP-mediated ovotoxicity for the first time. Rats were exposed to CDDP (5 mg/kg) and then treated with two doses of EP (20 and 40 mg/kg) for 3 days. Serum fertility hormone markers were evaluated using ELISA kits. Oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers were also determined. In addition, how CDDP affects the nuclear factor erythroid 2-associated factor 2 (Nrf2) pathway and the effect of EP on this situation were also addressed. EP improved CDDP-induced histopathological findings and restored decreasing levels of fertility hormones. EP treatment also reduced the levels of CDDP-mediated OS, inflammation, ERS and apoptosis. In addition, EP attenuated CDDP-induced suppression in the levels of Nrf2 and its target genes, including heme oxygenase-1, NAD(P)H quinone dehydrogenase-1, superoxide dismutase and glutathione peroxidase. Histological and biochemical results showed that EP can have therapeutic effects against CDDP-induced ovotoxicity with antioxidant, anti-inflammatory and Nrf2 activator activities.
Collapse
Affiliation(s)
- Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkey
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize, Turkey
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon, Turkey
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
4
|
Guo C, Zhou X, Wang X, Wang H, Liu J, Wang J, Lin X, Lei S, Yang Y, Liu K, Long H, Zhou D. Annao Pingchong decoction alleviate the neurological impairment by attenuating neuroinflammation and apoptosis in intracerebral hemorrhage rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116298. [PMID: 36870460 DOI: 10.1016/j.jep.2023.116298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Intracerebral hemorrhage (ICH) is a central nervous system disease that causes severe disability or death. Even though Annao Pingchong decoction (ANPCD), a traditional Chinese decoction, has been used clinically to treat ICH in China, its molecular mechanism remains unclear. AIM OF THE STUDY To study whether the neuroprotective effect of ANPCD on ICH rats is achieved by alleviating neuroinflammation. This paper mainly explored whether inflammation-related signaling pathways (HMGB1/TLR4/NF-κB P65) plays a role in ANPCD treatment of ICH rats. MATERIALS AND METHODS Liquid chromatography-tandem mass spectrometry was used to analyze the chemical composition of ANPCD. ICH models were established by injecting autologous whole blood into the left caudate nucleus of Sprague-Dawley (SD) rats. Modified neurological severity scoring (mNSS) was used to assess the neurological deficits. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were analyzed using enzyme-linked immunosorbent assay (ELISA). Pathological changes in the rat brains were observed using hematoxylin-eosin, Nissl, and TUNEL staining. The protein levels of HMGB1, TLR4, NF-κB p65, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) were measured by western blotting and immunofluorescence analysis. RESULTS Ninety-three ANPCD compounds were identified, including 48 active plasma components. Treatment with ANPCD effectively improved the outcome, as observed by the neurological function scores analysis and brain histopathology. Our results showed that ANPCD exerts its anti-inflammatory effects by significantly downregulating the expression of HMGB1, TLR4, NF-κB p65, TNF-α, IL-1β, and IL-6. ANPCD also exerted anti-apoptotic effects by significantly decreasing the apoptosis rate and Bax/Bcl-2 ratio. CONCLUSION We found that ANPCD had neuroprotective effect in clinical work. Here, we also found that the action mechanism of ANPCD might be related to attenuate neuroinflammation and apoptosis. These effects were achieved by inhibiting the expression of HMGB1, TLR4 and NF-κB p65.
Collapse
Affiliation(s)
- Chun Guo
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China.
| | - Xuqing Zhou
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xu Wang
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Haojie Wang
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jian Liu
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jinxi Wang
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoyuan Lin
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shihui Lei
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yi Yang
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kai Liu
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hongping Long
- Experiment Center of Medical Innovation, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Desheng Zhou
- Department of Neurology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
5
|
Rimondino GN, Iriarte AG, Malanca FE. Photo-oxidation of ethyl pyruvate initiated by chlorine atoms. Kinetics and reaction mechanism. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
6
|
Phenolic Acids from Fructus Chebulae Immaturus Alleviate Intestinal Ischemia-Reperfusion Injury in Mice through the PPARα/NF-κB Pathway. Molecules 2022; 27:molecules27165227. [PMID: 36014464 PMCID: PMC9415796 DOI: 10.3390/molecules27165227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
Intestinal ischemia/reperfusion (II/R) injury is a common life-threatening complication with high morbidity and mortality. Chebulae Fructus Immaturus, the unripe fruit of Terminalia chebula Retz., also known as “Xiqingguo” or “Tibet Olive” in China, has been widely used in traditional Tibetan medicine throughout history. The phenolic acids’ extract of Chebulae Fructus Immaturus (XQG for short) has exhibited strong antioxidative, anti-inflammation, anti-apoptosis, and antibacterial activities. However, whether XQG can effectively ameliorate II/R injuries remains to be clarified. Our results showed that XQG could effectively alleviate II/R-induced intestinal morphological damage and intestinal barrier injury by decreasing the oxidative stress, inflammatory response, and cell death. Transcriptomic analysis further revealed that the main action mechanism of XQG protecting against II/R injury was involved in activating PPARα and inhibiting the NF-κB-signaling pathway. Our study suggests the potential usage of XQG as a new candidate to alleviate II/R injury.
Collapse
|