1
|
Yao T, Wang Q, Han S, Xu Y, Chen M, Wang Y. Exploring the therapeutic mechanism of Yuebi decoction on nephrotic syndrome based on network pharmacology and experimental study. Aging (Albany NY) 2024; 16:12623-12650. [PMID: 39311772 PMCID: PMC11466484 DOI: 10.18632/aging.206116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE This study aimed to explore the material basis of YBD and its possible mechanisms against NS through network pharmacology, molecular docking, and in vivo experiment. METHODS Active ingredients and potential targets of YBD were obtained through TCMSP and SwissTargetPrediction. NS-related targets were obtained from GeneCards, PharmGKB, and OMIM databases. The herb-ingredient-target network and PPI network were constructed by Cytoscape 3.9.1 and STRING database. GO and KEGG analyses were performed by DAVID database and ClueGO plugin. The connection between main active ingredients and core targets were revealed by molecular docking. To ascertain the effects and molecular mechanisms of YBD, a rat model was established by PAN. RESULTS We collected 124 active ingredients, 269 drug targets, and 2089 disease targets. 119 overlapping were screened for subsequent analysis. PPI showed that AKT1, STAT3, TRPC6, CASP3, JUN, PPP3CA, IL6, PTGS2, VEGFA, and NFATC3 were potential therapeutic targets of YBD against NS. Through GO and KEGG analyses, it showed the therapeutic effect of YBD on NS was closely involved in the regulation of pathways related to podocyte injury, including AGE-RAGE signaling pathway in diabetic complications and MAPK signaling pathway. Five key bioactive ingredients of YBD had the good affinity with the core targets. the experiment confirmed the renoprotective effects of YBD through reducing podocyte injury. Furthermore, YBD could downregulate expressions of PPP3CA, STAT3, NFATC3, TRPC6, and AKT1 in rats. CONCLUSIONS YBD might be a potential drug in the treatment of NS, and the underlying mechanism is closely associated with the inhibition of podocyte injury.
Collapse
Affiliation(s)
- Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qingliang Wang
- Shanghai Jing'an District Hospital of Traditional Chinese Medicine, Shanghai 200072, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
2
|
Hou Q, Yi B. The role of long non-coding RNAs in the development of diabetic kidney disease and the involved clinical application. Diabetes Metab Res Rev 2024; 40:e3809. [PMID: 38708843 DOI: 10.1002/dmrr.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/03/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024]
Abstract
Diabetic kidney disease (DKD), one of the common microvascular complications of diabetes, is increasing in prevalence worldwide and can lead to End-stage renal disease. However, there are still gaps in our understanding of the pathophysiology of DKD, and both current clinical diagnostic methods and treatment strategies have drawbacks. According to recent research, long non-coding RNAs (lncRNAs) are intimately linked to the developmental process of DKD and could be viable targets for clinical diagnostic decisions and therapeutic interventions. Here, we review recent insights gained into lncRNAs in pathological changes of DKD such as mesangial expansion, podocyte injury, renal tubular injury, and interstitial fibrosis. We also discuss the clinical applications of DKD-associated lncRNAs as diagnostic biomarkers and therapeutic targets, as well as their limitations and challenges, to provide new methods for the prevention, diagnosis, and treatment of DKD.
Collapse
Affiliation(s)
- Qizhuo Hou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Yang Y, Nan Y, Chen Q, Xiao Z, Zhang Y, Zhang H, Huang Q, Ai K. Antioxidative 0-dimensional nanodrugs overcome obstacles in AKI antioxidant therapy. J Mater Chem B 2023; 11:8081-8095. [PMID: 37540219 DOI: 10.1039/d3tb00970j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Acute kidney injury (AKI) is a commonly encountered syndrome associated with various aetiologies and pathophysiological processes leading to enormous health risks and economic losses. In the absence of specific drugs to treat AKI, hemodialysis remains the primary clinical treatment for AKI patients. The revelation of the pathology opens new horizons for antioxidant therapy in the treatment of AKI. However, small molecule antioxidant drugs and common nanozymes have failed to challenge AKI due to their unsatisfactory drug properties and renal physiological barriers. 0-Dimensional (0D) antioxidant nanodrugs stand out at this time thanks to their small size and high performance. Recently, a number of research studies have been carried out around 0D nanodrugs for alleviating AKI, and their multi-antioxidant enzyme mimetic activities, smooth glomerular filtration barrier permeability and excellent biocompatibility have been investigated. Here, we comprehensively summarize recent advances in 0D nanodrugs for AKI antioxidant therapy. We classify these representative studies into three categories according to the characteristics of 0D nanomaterials, namely ultra-small metal nanodots, inorganic non-metallic quantum dots and polymer nanodots. We focus on the antioxidant mechanisms and their distribution in vivo in each inspiring work, and the purpose and ingenuity of each design are rigorously captured and described. Finally, we provide our reflections and prospects for 0D antioxidant nanodrugs in AKI treatment. This mini review provides unique insights and valuable clues in the design of 0D nanodrugs and other kidney absorbable drugs.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yuntao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Huanan Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
4
|
Liu T, Yang L, Mao H, Ma F, Wang Y, Li S, Li P, Zhan Y. Sirtuins as novel pharmacological targets in podocyte injury and related glomerular diseases. Biomed Pharmacother 2022; 155:113620. [PMID: 36122519 DOI: 10.1016/j.biopha.2022.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Podocyte injury is a major cause of proteinuria in kidney diseases, and persistent loss of podocytes leads to rapid irreversible progression of kidney disease. Sirtuins, a class of nicotinamide adenine dinucleotide-dependent deacetylases, can promote DNA repair, modify transcription factors, and regulate the cell cycle. Additionally, sirtuins play a critical role in renoprotection, particularly against podocyte injury. They also have pleiotropic protective effects on podocyte injury-related glomerular diseases, such as improving the immune inflammatory status and oxidative stress levels, maintaining mitochondrial homeostasis, enhancing autophagy, and regulating lipid metabolism. Sirtuins deficiency causes podocyte injury in different glomerular diseases. Studies using podocyte sirtuin-specific knockout and transgenic models corroborate this conclusion. Of note, sirtuin activators have protective effects in different podocyte injury-related glomerular diseases, including diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, and lupus nephritis. These findings suggest that sirtuins are promising therapeutic targets for preventing podocyte injury. This review provides an overview of recent advances in the role of sirtuins in kidney diseases, especially their role in podocyte injury, and summarizes the possible rationale for sirtuins as targets for pharmacological intervention in podocyte injury-related glomerular diseases.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shen Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Liu T, Jin Q, Ren F, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Potential therapeutic effects of natural compounds targeting autophagy to alleviate podocyte injury in glomerular diseases. Biomed Pharmacother 2022; 155:113670. [PMID: 36116248 DOI: 10.1016/j.biopha.2022.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022] Open
Abstract
Podocyte injury is a common cause of proteinuric kidney diseases. Uncontrollable progressive podocyte loss accelerates glomerulosclerosis and increases the risk of end-stage renal disease. To date, owing to the complex pathological mechanism, effective therapies for podocyte injury have been limited. Accumulating evidence supports the indispensable role of autophagy in the maintenance of podocyte homeostasis. A variety of natural compounds and their derivatives have been found to regulate autophagy through multiple targets, including promotes nuclear transfer of transcription factor EB and lysosomal repair. Here, we reviewed the recent studies on the use of natural compounds and their derivatives as autophagy regulators and discussed their potential applications in ameliorating podocyte injury. Several known natural compounds with autophagy-regulatory properties, such as quercetin, silibinin, kaempferol, and artemisinin, and their medical uses were also discussed. This review will help in improving the understanding of the podocyte protective mechanism of natural compounds and promote their development for clinical use.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feihong Ren
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Ertuglu LA, Demiray A, Afsar B, Ortiz A, Kanbay M. The Use of Healthy Eating Index 2015 and Healthy Beverage Index for Predicting and Modifying Cardiovascular and Renal Outcomes. Curr Nutr Rep 2022; 11:526-535. [PMID: 35476188 DOI: 10.1007/s13668-022-00415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW With the wide recognition of the importance of dietary patterns rather than isolated nutrient groups on health outcomes, numerous diet quality indices have been designed to evaluate the overall food intake quality in the last two decades. RECENT FINDINGS The newest version of the Healthy Eating Index (HEI), HEI-2015, is a diet quality index that measures adherence to the recommendations of the 2015-2020 Dietary Guidelines for Americans. While the key nutrient groups are included in most diet quality indices, differences in other components and the scoring system differentiate HEI. The Healthy Beverage Index (HBI) was recently introduced. Previous literature has confirmed the association of the older versions of HEI with metabolic syndrome, inflammatory markers, and negative health outcomes including cardiovascular disease, type 2 diabetes mellitus, chronic kidney disease, and all-cause mortality. This review presents the existing evidence on the association of HEI-2015 and HBI with health markers and long-term outcome, provides guidance on their use, and identifies persisting challenges such as the development of simple, unified, and objective tools to characterize healthy diets in routine clinical practice.
Collapse
Affiliation(s)
- Lale A Ertuglu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Baris Afsar
- Division of Nephrology, Department of Internal Medicine, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alberto Ortiz
- Department of Medicine, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, 34010, Istanbul, Turkey.
| |
Collapse
|
7
|
Tong X, Qiao Y, Yang Y, Liu H, Cao Z, Yang B, Wei L, Yang H. Applications and Mechanisms of Tripterygium Wilfordii Hook. F. and its Preparations in Kidney Diseases. Front Pharmacol 2022; 13:846746. [PMID: 35387327 PMCID: PMC8977547 DOI: 10.3389/fphar.2022.846746] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Tripterygium wilfordii Hook. f. (TwHF) is a Chinese botanical drug containing a large number of metabolites. The discovered and recognized anti-inflammatory and immune-regulating effects have made it attract more and more attentions in trials and clinical researches. The extraction and processing of TwHF for pharmaceuticals is a manifestation of the role of traditional Chinese medicine. However, TwHF is toxic. Optimization of TwHF preparations has become a requirement for the development of TwHF pharmaceuticals. Our article introduces the main preparations of TwHF on the Chinese market and their characteristics. In particular, we summarize the clinical applications and influential mechanisms of TwHF and its preparations in kidney diseases. Considering that nephropathy is closely related to immune inflammation and TwHF is a botanical drug with a high number of metabolites, the application of TwHF in kidney diseases may be much more complicated. By revealing the role and mechanisms of TwHF in kidney diseases, this study aims to provide more insights to basic and clinical studies about nephropathy.
Collapse
Affiliation(s)
- Xue Tong
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanheng Qiao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanjian Yang
- Tianjin Jinnan Traditional Chinese Medicine Hospital, Tianjin, China
| | - Haizhao Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiyong Cao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lijuan Wei
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Yao T, Su W, Han S, Lu Y, Xu Y, Chen M, Wang Y. Recent Advances in Traditional Chinese Medicine for Treatment of Podocyte Injury. Front Pharmacol 2022; 13:816025. [PMID: 35281899 PMCID: PMC8914202 DOI: 10.3389/fphar.2022.816025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Podocyte is also called glomerular epithelial cell, which has been considered as the final gatekeeper of glomerular filtration barrier (GFB). As a major contributor to proteinuria, podocyte injury underlies a variety of glomerular diseases and becomes the challenge to patients and their families in general. At present, the therapeutic methods of podocyte injury mainly include angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, steroid and immunosuppressive medications. Nevertheless, the higher cost and side effects seriously disturb patients with podocyte injury. Promisingly, traditional Chinese medicine (TCM) has received an increasing amount of attention from different countries in the treatment of podocyte injury by invigorating spleen and kidney, clearing heat and eliminating dampness, as well enriching qi and activating blood. Therefore, we searched articles published in peer-reviewed English-language journals through Google Scholar, PubMed, Web of Science, and Science Direct. The protective effects of active ingredients, herbs, compound prescriptions, acupuncture and moxibustion for treatment of podocyte injury were further summarized and analyzed. Meanwhile, we discussed feasible directions for future development, and analyzed existing deficiencies and shortcomings of TCM in the treatment of podocyte injury. In conclusion, this paper shows that TCM treatments can serve as promising auxiliary therapeutic methods for the treatment of podocyte injury.
Collapse
Affiliation(s)
- Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiang Su
- Department of Nephrology, The People’s Hospital of Mengzi, Mengzi, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yi Wang,
| |
Collapse
|