1
|
Lv L, Yuan K, Li J, Lu J, Zhao Q, Wang H, Chen Q, Dong X, Sheng S, Liu M, Shi Y, Jiang H, Dong Z. PiRNA CFAPIR inhibits cardiac fibrosis by regulating the muscleblind-like protein MBNL2. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167456. [PMID: 39122223 DOI: 10.1016/j.bbadis.2024.167456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Myocardial fibroblasts transform into myofibroblasts during the progression of cardiac fibrosis, together with excessive cardiac fibroblast proliferation. Hence, the prevention and treatment of cardiac fibrosis are significant factors for inhibiting the development of heart failure. P-element Induced WImpy testis-interacting RNAs (PiRNA) are widely expressed in the heart, but their involvement in cardiac fibrosis has not yet been confirmed. We identified differentially expressed PiRNAs using Arraystar PiRNA expression profiling in Angiotensin II models of cardiac fibrosis in vivo and in vitro. We then explored cardiac-fibrosis-associated PiRNA-related proteins, RNA-protein interactomes, immunoprecipitation, and pulldown. We detected fibrosis markers and pathway-related proteins using immunofluorescence, qRT-PCR, and Western blot. We uncovered cardiac fibrosis associated PiRNA (CFAPIR) that was obviously dysregulated during cardiac fibrosis, whereas its overexpression reversed fibrosis in vivo and in vitro. Mechanistically, CFAPIR competitively bound muscleblind like protein 2 (MBNL2) and the cyclin-dependent kinase inhibitor P21 to regulate the TGF-β1/SMAD3 signaling pathway.
Collapse
Affiliation(s)
- Lin Lv
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Experimental Animal Center, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Keying Yuan
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jiahao Li
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jing Lu
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Qi Zhao
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Hongyan Wang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Qiuyu Chen
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xinyu Dong
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Siqi Sheng
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Mingyu Liu
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yuanqi Shi
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| | - Hongquan Jiang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| | - Zengxiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China; NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
2
|
Alvarado-Vasquez N, Rangel-Escareño C, de Jesús Ramos-Abundis J, Becerril C, Negrete-García MC. The possible role of hypoxia-induced exosomes on the fibroblast metabolism in idiopathic pulmonary fibrosis. Biomed Pharmacother 2024; 181:117680. [PMID: 39549361 DOI: 10.1016/j.biopha.2024.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) has a high incidence and prevalence among patients over 65 years old. While its exact etiology remains unknown, several risk factors have recently been identified. Hypoxia is associated with IPF due to the abnormal architecture of lung parenchyma and the accumulation of extracellular matrix produced by activated fibroblasts. Exosomes play a crucial role in intercellular communication during both physiological and pathological processes, including hypoxic diseases like IPF. Recent findings suggest that a hypoxic microenvironment influences the content of exosomes in various diseases, thereby altering cellular metabolism. Although the role of exosomes in IPF is an emerging area of research, the significance of hypoxic exosomes as inducers of metabolic reprogramming in fibroblasts is still underexplored. In this study, we analyze and discuss the relationship between hypoxia, exosomal cargo, and the metabolic reprogramming of fibroblasts in the progression of IPF.
Collapse
Affiliation(s)
- Noé Alvarado-Vasquez
- Department of Molecular Biomedicine and Translational Research, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Claudia Rangel-Escareño
- Computational Genomics, National Institute of Genomic Medicine, Mexico City 14610, Mexico; School of Engineering and Sciences, Tecnologico de Monterrey, NL 64700, Mexico
| | | | - Carina Becerril
- Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - María Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City 14080, Mexico.
| |
Collapse
|
3
|
Liu X, Zhu S, Liu X, Luo X, Chen C, Jiang L, Wu Y. Integrative genomic analysis of RNA-modification-single nucleotide polymorphisms associated with kidney function. Heliyon 2024; 10:e38815. [PMID: 39506937 PMCID: PMC11538735 DOI: 10.1016/j.heliyon.2024.e38815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Increasing evidence suggests that RNA modification plays a significant role in the kidney and may be an ideal target for the treatment of kidney diseases. However, the specific mechanisms underlying RNA modifications in the pathogenesis of kidney disease remain unclear. Genome-wide association studies (GWAS) have identified numerous genetic loci involved in kidney function and RNA modifications. The identification and exploration of RNA modification-related single-nucleotide polymorphisms (RNAm-SNPs) associated with kidney function can help us to comprehensively understand the underlying mechanism of kidney disease and identify potential therapeutic targets. Methods First, we examined the association of RNAm-SNPs with eGFR. Second, we performed expression quantitative trait locus (eQTL) and protein quantitative trait locus (pQTL) analyses to explore the functions of the identified RNAm-SNPs. Finally, we evaluated the causality between RNAm-SNP-associated gene expression and circulating proteins and kidney function using a Mendelian randomization (MR) analysis. Results A total of 252 RNA m-SNPs related to m6A, m1A, A-to-I, m5C, m7G, and m5U were identified. All these factors were significantly associated with the eGFR. A total of 119(47.22 %) RNAm-SNPs showed cis-eQTL effects in blood cells, whereas 72 (28.57 %) RNAm-SNPs showed cis-pQTL effects in plasma. 47 (18.65 %) RNAm-SNPs exhibited cis-eQTL and cis-pQTL effects. In addition, we demonstrated a causal association between RNAm-SNP-associated gene expression, circulating protein levels, and eGFR decline. Some of the identified genes and proteins have been reported to be associated with kidney diseases, such as CDK10 and SDCCAG8. Conclusions This study reveals an association between RNAm-SNPs and kidney function. These SNPs regulate gene expression and protein levels through RNA modifications, eventually leading to kidney dysfunction. Our study provides novel insights that connect the genetic risk of kidney disease to RNA modification and suggests potential therapeutic targets for the prevention and treatment of kidney disease.
Collapse
Affiliation(s)
- Xinran Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Sai Zhu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Xueqi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Xiaomei Luo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Chaoyi Chen
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| |
Collapse
|
4
|
Zhang Q, Dong L, Gong S, Wang T. Unraveling the landscape of m6A RNA methylation in wound healing and scars. Cell Death Discov 2024; 10:458. [PMID: 39472463 PMCID: PMC11522467 DOI: 10.1038/s41420-024-02222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Wound healing is a complex process involving sequential stages of hemostasis, inflammation, proliferation, and remodeling. Multiple cell types and factors, including underlying conditions like diabetes and bacterial colonization, can influence healing outcomes and scar formation. N6-methyladenosine (m6A), a predominant RNA modification, plays crucial roles in gene expression regulation, impacting various biological processes and diseases. m6A regulates embryonic skin morphogenesis, wound repair, and pathophysiological processes like inflammation and angiogenesis. Recent studies have highlighted the role of m6A in wound healing, scar formation, and tissue remodeling. Additionally, m6A presents a unique expression pattern in pathological wounds and scars, potentially influencing wound healing and scar formation through modulating gene expression and cellular signaling, thereby serving as potential biomarkers or therapeutic targets. Targeting m6A modifications are potential strategies to enhance wound healing and reduce scar formation. This review aims to explore the roles and mechanisms of m6A RNA methylation in wound healing and scars, and discuss current challenges and perspectives. Continued research in this field will provide significant value for optimal wound repair and scar treatment.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liming Dong
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China.
| | - Ting Wang
- Department of Medical Ultrasound of Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Liu W, Xiong Z, Fu T, Yang J, Zou J, Wu Y, Kuang L, Wang Q, Li S, Le A. Regulation of renal ischemia-reperfusion injury and tubular epithelial cell ferroptosis by pparγ m6a methylation: mechanisms and therapeutic implications. Biol Direct 2024; 19:99. [PMID: 39444036 PMCID: PMC11515743 DOI: 10.1186/s13062-024-00515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/08/2024] [Indexed: 10/25/2024] Open
Abstract
This study aimed to elucidate the role and underlying mechanisms of Peroxisome proliferator-activated receptor gamma (PPARγ) and its m6A methylation in renal ischemia-reperfusion (I/R) injury and ferroptosis of tubular epithelial cells (TECs). High-throughput transcriptome sequencing was performed on renal tissue samples from I/R injury models and sham-operated mice, complemented by in vivo and in vitro experiments focusing on the PPARγ activator Rosiglitazone and the manipulation of METTL14 and IGF2BP2 expression. Key evaluations included renal injury assessment, ferroptosis indicator measurement, and m6A methylation analysis of PPARγ. Our findings highlight the critical role of the PPARγ pathway and ferroptosis in renal I/R injury, with Rosiglitazone ameliorating renal damage and TEC ferroptosis. METTL14-mediated m6A methylation of PPARγ, dependent on IGF2BP2, emerged as a pivotal regulator of PPARγ expression, renal injury, and ferroptosis. This study reveals that PPARγ m6A methylation, orchestrated by METTL14 through an IGF2BP2-dependent mechanism, plays a crucial role in mitigating renal I/R injury and TEC ferroptosis. These insights offer promising avenues for therapeutic strategies targeting acute kidney injury.
Collapse
Affiliation(s)
- Wei Liu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Ziqing Xiong
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Tianmei Fu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Juan Yang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Juan Zou
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Yize Wu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Linju Kuang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Qian Wang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Song Li
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China
| | - Aiping Le
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
6
|
Dong QQ, Yang Y, Tao H, Lu C, Yang JJ. m6A epitranscriptomic and epigenetic crosstalk in liver fibrosis: Special emphasis on DNA methylation and non-coding RNAs. Cell Signal 2024; 122:111302. [PMID: 39025344 DOI: 10.1016/j.cellsig.2024.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Liver fibrosis is a pathological process caused by a variety of chronic liver diseases. Currently, therapeutic options for liver fibrosis are very limited, highlighting the urgent need to explore new treatment approaches. Epigenetic modifications and epitranscriptomic modifications, as reversible regulatory mechanisms, are involved in the development of liver fibrosis. In recent years, researches in epitranscriptomics and epigenetics have opened new perspectives for understanding the pathogenesis of liver fibrosis. Exploring the epigenetic mechanisms of liver fibrosis may provide valuable insights into the development of new therapies for chronic liver diseases. This review primarily focus on the regulatory mechanisms of N6-methyladenosine (m6A) modification, non-coding RNA, and DNA methylation in organ fibrosis. It discusses the interactions between m6A modification and DNA methylation, as well as between m6A modification and non-coding RNA, providing a reference for understanding the interplay between epitranscriptomics and epigenetics.
Collapse
Affiliation(s)
- Qi-Qi Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Yang
- Department of General Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
7
|
Afthab M, Hambo S, Kim H, Alhamad A, Harb H. Particulate matter-induced epigenetic modifications and lung complications. Eur Respir Rev 2024; 33:240129. [PMID: 39537244 PMCID: PMC11558539 DOI: 10.1183/16000617.0129-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Air pollution is one of the leading causes of early deaths worldwide, with particulate matter (PM) as an emerging factor contributing to this trend. PM is classified based on its physical size, which ranges from PM10 (diameter ≤10 μm) to PM2.5 (≤2.5 μm) and PM0.5 (≤0.5 μm). Smaller-sized PM can move freely through the air and readily infiltrate deep into the lungs, intensifying existing health issues and exacerbating complications. Lung complications are the most common issues arising from PM exposure due to the primary site of deposition in the respiratory system. Conditions such as asthma, COPD, idiopathic pulmonary fibrosis, lung cancer and various lung infections are all susceptible to worsening due to PM exposure. PM can epigenetically modify specific target sites, further complicating its impact on these conditions. Understanding these epigenetic mechanisms holds promise for addressing these complications in cases of PM exposure. This involves studying the effect of PM on different gene expressions and regulation through epigenetic modifications, including DNA methylation, histone modifications and microRNAs. Targeting and manipulating these epigenetic modifications and their mechanisms could be promising strategies for future treatments of lung complications. This review mainly focuses on different epigenetic modifications due to PM2.5 exposure in the various lung complications mentioned above.
Collapse
Affiliation(s)
- Muhammed Afthab
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Shadi Hambo
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hyunji Kim
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Ali Alhamad
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
8
|
Tan M, Liu S, Liu L. N6-methyladenosine (m6A) RNA modification in fibrosis and collagen-related diseases. Clin Epigenetics 2024; 16:127. [PMID: 39261973 PMCID: PMC11391634 DOI: 10.1186/s13148-024-01736-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
Fibrosis is an abnormal tissue healing process characterized by the excessive accumulation of ECM components, such as COL I and COL III, in response to tissue injury or chronic inflammation. Recent advances in epitranscriptomics have underscored the importance of m6A modification in fibrosis. m6A, the most prevalent modification in eukaryotic RNA, is catalyzed by methyltransferases (e.g., METTL3), removed by demethylases (e.g., FTO), and recognized by reader proteins (e.g., YTHDF1/2). These modifications are crucial in regulating collagen metabolism and associated diseases. Understanding the role of m6A modification in fibrosis and other collagen-related conditions holds promise for developing targeted therapies. This review highlights the latest progress in this area.
Collapse
Affiliation(s)
- Man Tan
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No. 120, Longshan Road, Yubei District, Chongqing, China
| | - Siyi Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No. 120, Longshan Road, Yubei District, Chongqing, China
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, China.
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No. 120, Longshan Road, Yubei District, Chongqing, China.
| |
Collapse
|
9
|
Cai Y, Zhou J, Xu A, Huang J, Zhang H, Xie G, Zhong K, Wu Y, Ye P, Wang H, Niu H. N6-methyladenosine triggers renal fibrosis via enhancing translation and stability of ZEB2 mRNA. J Biol Chem 2024; 300:107598. [PMID: 39059495 PMCID: PMC11381876 DOI: 10.1016/j.jbc.2024.107598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, a surge in studies investigating N6-methyladenosine (m6A) modification in human diseases has occurred. However, the specific roles and mechanisms of m6A in kidney disease remain incompletely understood. This study revealed that m6A plays a positive role in regulating renal fibrosis (RF) by inducing epithelial-to-mesenchymal phenotypic transition (EMT) in renal tubular cells. Through comprehensive analyses, including m6A sequencing, RNA-seq, and functional studies, we confirmed the pivotal involvement of zinc finger E-box binding homeobox 2 (ZEB2) in m6A-mediated RF and EMT. Notably, the m6A-modified coding sequence of ZEB2 mRNA significantly enhances its translational elongation and mRNA stability by interacting with the YTHDF1/eEF-2 complex and IGF2BP3, respectively. Moreover, targeted demethylation of ZEB2 mRNA using the dm6ACRISPR system substantially decreases ZEB2 expression and disrupts the EMT process in renal tubular epithelial cells. In vivo and clinical data further support the positive influence of m6A/ZEB2 on RF progression. Our findings highlight the m6A-mediated regulation of RF through ZEB2, revealing a novel therapeutic target for RF treatment and enhancing our understanding of the impact of mRNA methylation on kidney disease.
Collapse
Affiliation(s)
- Yating Cai
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinchang Huang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haisheng Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guoyou Xie
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhong
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - You Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pengfei Ye
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Hongxin Niu
- Department of General Practice, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Jeon KI, Kumar A, Brookes PS, Nehrke K, Huxlin KR. Manipulating mitochondrial pyruvate carrier function causes metabolic remodeling in corneal myofibroblasts that ameliorates fibrosis. Redox Biol 2024; 75:103235. [PMID: 38889622 PMCID: PMC11231598 DOI: 10.1016/j.redox.2024.103235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Myofibroblasts are key cellular effectors of corneal wound healing from trauma, surgery, or infection. However, their persistent deposition of disorganized extracellular matrix can also cause corneal fibrosis and visual impairment. Recent work showed that the PPARγ agonist Troglitazone can mitigate established corneal fibrosis, and parallel in vitro data suggested this occurred through inhibition of the mitochondrial pyruvate carrier (MPC) rather than PPARγ. In addition to oxidative phosphorylation (Ox-Phos), pyruvate and other mitochondrial metabolites provide carbon for the synthesis of biological macromolecules. However, it is currently unclear how these roles selectively impact fibrosis. Here, we performed bioenergetic, metabolomic, and epigenetic analyses of corneal fibroblasts treated with TGF-β1 to stimulate myofibroblast trans-differentiation, with further addition of Troglitazone or the MPC inhibitor UK5099, to identify MPC-dependencies that may facilitate remodeling and loss of the myofibroblast phenotype. Our results show that a shift in energy metabolism is associated with, but not sufficient to drive cellular remodeling. Metabolites whose abundances were sensitive to MPC inhibition suggest that sustained carbon influx into the Krebs' cycle is prioritized over proline synthesis to fuel collagen deposition. Furthermore, increased abundance of acetyl-CoA and increased histone H3 acetylation suggest that epigenetic mechanisms downstream of metabolic remodeling may reinforce cellular phenotypes. Overall, our results highlight a novel molecular target and metabolic vulnerability that affects myofibroblast persistence in the context of corneal wounding.
Collapse
Affiliation(s)
- Kye-Im Jeon
- Dept. Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Ankita Kumar
- Dept. Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Paul S Brookes
- Dept. Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
| | - Keith Nehrke
- Dept. Medicine-Nephrology Division, University of Rochester, Rochester, NY, USA
| | - Krystel R Huxlin
- Dept. Ophthalmology, Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
11
|
Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T, Deng C, Mo C, Ye T. BRD4: an effective target for organ fibrosis. Biomark Res 2024; 12:92. [PMID: 39215370 PMCID: PMC11365212 DOI: 10.1186/s40364-024-00641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Qun Wei
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Sun
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Taixiong Xue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Ningxia Medical University, Yin Chuan, 640100, China.
| |
Collapse
|
12
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
13
|
Mignini I, Blasi V, Termite F, Esposto G, Borriello R, Laterza L, Scaldaferri F, Ainora ME, Gasbarrini A, Zocco MA. Fibrostenosing Crohn's Disease: Pathogenetic Mechanisms and New Therapeutic Horizons. Int J Mol Sci 2024; 25:6326. [PMID: 38928032 PMCID: PMC11204249 DOI: 10.3390/ijms25126326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Bowel strictures are well recognized as one of the most severe complications in Crohn's disease, with variable impacts on the prognosis and often needing surgical or endoscopic treatment. Distinguishing inflammatory strictures from fibrotic ones is of primary importance due to the different therapeutic approaches required. Indeed, to better understand the pathogenesis of fibrosis, it is crucial to investigate molecular processes involving genetic factors, cytokines, alteration of the intestinal barrier, and epithelial and endothelial damage, leading to an increase in extracellular matrix synthesis, which ultimately ends in fibrosis. In such a complex mechanism, the gut microbiota also seems to play a role. A better comprehension of molecular processes underlying bowel fibrosis, in addition to radiological and histopathological findings, has led to the identification of high-risk patients for personalized follow-up and testing of new therapies, primarily in preclinical models, targeting specific pathways involving Transforming Growth Factor-β, interleukins, extracellular matrix balance, and gut microbiota. Our review aims to summarize current evidence about molecular factors involved in intestinal fibrosis' pathogenesis, paving the way for potential diagnostic biomarkers or anti-fibrotic treatments for stricturing Crohn's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Maria Assunta Zocco
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (I.M.); (V.B.); (G.E.); (R.B.); (L.L.); (F.S.); (M.E.A.); (A.G.)
| |
Collapse
|
14
|
Sindhu P, Magotra A, Sindhu V, Chaudhary P. Unravelling the impact of epigenetic mechanisms on offspring growth, production, reproduction and disease susceptibility. ZYGOTE 2024; 32:190-206. [PMID: 39291610 DOI: 10.1017/s0967199424000224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, histone modifications and non-coding RNA molecules, play a critical role in gene expression and regulation in livestock species, influencing development, reproduction and disease resistance. DNA methylation patterns silence gene expression by blocking transcription factor binding, while histone modifications alter chromatin structure and affect DNA accessibility. Livestock-specific histone modifications contribute to gene expression and genome stability. Non-coding RNAs, including miRNAs, piRNAs, siRNAs, snoRNAs, lncRNAs and circRNAs, regulate gene expression post-transcriptionally. Transgenerational epigenetic inheritance occurs in livestock, with environmental factors impacting epigenetic modifications and phenotypic traits across generations. Epigenetic regulation revealed significant effect on gene expression profiling that can be exploited for various targeted traits like muscle hypertrophy, puberty onset, growth, metabolism, disease resistance and milk production in livestock and poultry breeds. Epigenetic regulation of imprinted genes affects cattle growth and metabolism while epigenetic modifications play a role in disease resistance and mastitis in dairy cattle, as well as milk protein gene regulation during lactation. Nutri-epigenomics research also reveals the influence of maternal nutrition on offspring's epigenetic regulation of metabolic homeostasis in cattle, sheep, goat and poultry. Integrating cyto-genomics approaches enhances understanding of epigenetic mechanisms in livestock breeding, providing insights into chromosomal structure, rearrangements and their impact on gene regulation and phenotypic traits. This review presents potential research areas to enhance production potential and deepen our understanding of epigenetic changes in livestock, offering opportunities for genetic improvement, reproductive management, disease control and milk production in diverse livestock species.
Collapse
Affiliation(s)
- Pushpa Sindhu
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Vikas Sindhu
- Department of Animal Nutrition, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Pradeep Chaudhary
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
15
|
Bao YN, Yang Q, Shen XL, Yu WK, Zhou L, Zhu QR, Shan QY, Wang ZC, Cao G. Targeting tumor suppressor p53 for organ fibrosis therapy. Cell Death Dis 2024; 15:336. [PMID: 38744865 PMCID: PMC11094089 DOI: 10.1038/s41419-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.
Collapse
Affiliation(s)
- Yi-Ni Bao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xin-Lei Shen
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Wen-Kai Yu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Li Zhou
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qing-Ru Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qi-Yuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
16
|
Lv L, Chen Q, Lu J, Zhao Q, Wang H, Li J, Yuan K, Dong Z. Potential regulatory role of epigenetic modifications in aging-related heart failure. Int J Cardiol 2024; 401:131858. [PMID: 38360101 DOI: 10.1016/j.ijcard.2024.131858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/27/2023] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Heart failure (HF) is a serious clinical syndrome and a serious development or advanced stage of various heart diseases. Aging is an independent factor that causes pathological damage in cardiomyopathy and participates in the occurrence of HF at the molecular level by affecting mechanisms such as telomere shortening and mitochondrial dysfunction. Epigenetic changes have a significant impact on the aging process, and there is increasing evidence that genetic and epigenetic changes are key features of aging and aging-related diseases. Epigenetic modifications can affect genetic information by changing the chromatin state without changing the DNA sequence. Most of the genetic loci that are highly associated with cardiovascular diseases (CVD) are located in non-coding regions of the genome; therefore, the epigenetic mechanism of CVD has attracted much attention. In this review, we focus on the molecular mechanisms of HF during aging and epigenetic modifications mediating aging-related HF, emphasizing that epigenetic mechanisms play an important role in the pathogenesis of aging-related CVD and can be used as potential diagnostic and prognostic biomarkers, as well as therapeutic targets.
Collapse
Affiliation(s)
- Lin Lv
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - QiuYu Chen
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Lu
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Zhao
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - HongYan Wang
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - JiaHao Li
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - KeYing Yuan
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - ZengXiang Dong
- The Key Laboratory of Cardiovascular Disease Acousto-Optic Electromagnetic Diagnosis and Treatment in Heilongjiang Province, First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
17
|
Zhou S, Li Y, Sun W, Ma D, Liu Y, Cheng D, Li G, Ni C. circPVT1 promotes silica-induced epithelial-mesenchymal transition by modulating the miR-497-5p/TCF3 axis. J Biomed Res 2024; 38:163-174. [PMID: 38529638 PMCID: PMC11001589 DOI: 10.7555/jbr.37.20220249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 03/27/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a vital pathological feature of silica-induced pulmonary fibrosis. However, whether circRNA is involved in the process remains unclear. The present study aimed to investigate the role of circPVT1 in the silica-induced EMT and the underlying mechanisms. We found that an elevated expression of circPVT1 promoted EMT and enhanced the migratory capacity of silica-treated epithelial cells. The isolation of cytoplasmic and nuclear separation assay showed that circPVT1 was predominantly expressed in the cytoplasm. RNA immunoprecipitation assay and RNA pull-down experiment indicated that cytoplasmic-localized circPVT1 was capable of binding to miR-497-5p. Furthermore, we found that miR-497-5p attenuated the silica-induced EMT process by targeting transcription factor 3 (TCF3), an E-cadherin transcriptional repressor, in the silica-treated epithelial cells. Collectively, these results reveal a novel role of the circPVT1/miR-497-5p/TCF3 axis in the silica-induced EMT process in lung epithelial cells. Once validated, this finding may provide a potential theoretical basis for the development of interventions and treatments for pulmonary fibrosis.
Collapse
Affiliation(s)
- Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yan Li
- Biomedical Publications Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongyu Ma
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yi Liu
- Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guanru Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
18
|
Ni W, Zhao Y, Shen J, Yin Q, Wang Y, Li Z, Tang T, Wen Y, Zhang Y, Jiang W, Jiang L, Wei J, Gan W, Zhang A, Zhou X, Wang B, Liu BC. Therapeutic role of miR-26a on cardiaorenal injury in mice model of angiotensin-II induced chronic kidney disease through inhibition of LIMS1/ILK pathway. Chin Med J (Engl) 2024:00029330-990000000-00985. [PMID: 38445356 DOI: 10.1097/cm9.0000000000002978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD. METHODS We generated a microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t-test were used to analyze the data. RESULTS Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes. CONCLUSIONS Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.
Collapse
Affiliation(s)
- Weijie Ni
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Yajie Zhao
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Jinxin Shen
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Qing Yin
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Yao Wang
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225100, China
| | - Zuolin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Taotao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Yilin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Wei Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Liangyunzi Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Jinxuan Wei
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Weihua Gan
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Aiqing Zhang
- Department of Pediatric Nephrology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, China
| | - Xiaoyu Zhou
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| |
Collapse
|
19
|
Liu R, Li Y, Zheng Q, Ding M, Zhou H, Li X. Epigenetic modification in liver fibrosis: Promising therapeutic direction with significant challenges ahead. Acta Pharm Sin B 2024; 14:1009-1029. [PMID: 38486982 PMCID: PMC10935124 DOI: 10.1016/j.apsb.2023.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 03/17/2024] Open
Abstract
Liver fibrosis, characterized by scar tissue formation, can ultimately result in liver failure. It's a major cause of morbidity and mortality globally, often associated with chronic liver diseases like hepatitis or alcoholic and non-alcoholic fatty liver diseases. However, current treatment options are limited, highlighting the urgent need for the development of new therapies. As a reversible regulatory mechanism, epigenetic modification is implicated in many biological processes, including liver fibrosis. Exploring the epigenetic mechanisms involved in liver fibrosis could provide valuable insights into developing new treatments for chronic liver diseases, although the current evidence is still controversial. This review provides a comprehensive summary of the regulatory mechanisms and critical targets of epigenetic modifications, including DNA methylation, histone modification, and RNA modification, in liver fibrotic diseases. The potential cooperation of different epigenetic modifications in promoting fibrogenesis was also highlighted. Finally, available agonists or inhibitors regulating these epigenetic mechanisms and their potential application in preventing liver fibrosis were discussed. In summary, elucidating specific druggable epigenetic targets and developing more selective and specific candidate medicines may represent a promising approach with bright prospects for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 22460, USA
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102400, China
| |
Collapse
|
20
|
Sisto M, Lisi S. Epigenetic Regulation of EMP/EMT-Dependent Fibrosis. Int J Mol Sci 2024; 25:2775. [PMID: 38474021 PMCID: PMC10931844 DOI: 10.3390/ijms25052775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Fibrosis represents a process characterized by excessive deposition of extracellular matrix (ECM) proteins. It often represents the evolution of pathological conditions, causes organ failure, and can, in extreme cases, compromise the functionality of organs to the point of causing death. In recent years, considerable efforts have been made to understand the molecular mechanisms underlying fibrotic evolution and to identify possible therapeutic strategies. Great interest has been aroused by the discovery of a molecular association between epithelial to mesenchymal plasticity (EMP), in particular epithelial to mesenchymal transition (EMT), and fibrogenesis, which has led to the identification of complex molecular mechanisms closely interconnected with each other, which could explain EMT-dependent fibrosis. However, the result remains unsatisfactory from a therapeutic point of view. In recent years, advances in epigenetics, based on chromatin remodeling through various histone modifications or through the intervention of non-coding RNAs (ncRNAs), have provided more information on the fibrotic process, and this could represent a promising path forward for the identification of innovative therapeutic strategies for organ fibrosis. In this review, we summarize current research on epigenetic mechanisms involved in organ fibrosis, with a focus on epigenetic regulation of EMP/EMT-dependent fibrosis.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari, Piazza Giulio Cesare 1, I-70124 Bari, Italy;
| | | |
Collapse
|
21
|
Brandt S, Bernhardt A, Häberer S, Wolters K, Gehringer F, Reichardt C, Krause A, Geffers R, Kahlfuß S, Jeron A, Bruder D, Lindquist JA, Isermann B, Mertens PR. Comparative Analysis of Acute Kidney Injury Models and Related Fibrogenic Responses: Convergence on Methylation Patterns Regulated by Cold Shock Protein. Cells 2024; 13:367. [PMID: 38474331 DOI: 10.3390/cells13050367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Fibrosis is characterized by excessive extracellular matrix formation in solid organs, disrupting tissue architecture and function. The Y-box binding protein-1 (YB-1) regulates fibrosis-related genes (e.g., Col1a1, Mmp2, and Tgfβ1) and contributes significantly to disease progression. This study aims to identify fibrogenic signatures and the underlying signaling pathways modulated by YB-1. METHODS Transcriptomic changes associated with matrix gene patterns in human chronic kidney diseases and murine acute injury models were analyzed with a focus on known YB-1 targets. Ybx1-knockout mouse strains (Ybx1ΔRosaERT+TX and Ybx1ΔLysM) were subjected to various kidney injury models. Fibrosis patterns were characterized by histopathological staining, transcriptome analysis, qRT-PCR, methylation analysis, zymography, and Western blotting. RESULTS Integrative transcriptomic analyses revealed that YB-1 is involved in several fibrogenic signatures related to the matrisome, the WNT, YAP/TAZ, and TGFß pathways, and regulates Klotho expression. Changes in the methylation status of the Klotho promoter by specific methyltransferases (DNMT) are linked to YB-1 expression, extending to other fibrogenic genes. Notably, kidney-resident cells play a significant role in YB-1-modulated fibrogenic signaling, whereas infiltrating myeloid immune cells have a minimal impact. CONCLUSIONS YB-1 emerges as a master regulator of fibrogenesis, guiding DNMT1 to fibrosis-related genes. This highlights YB-1 as a potential target for epigenetic therapies interfering in this process.
Collapse
Affiliation(s)
- Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Saskia Häberer
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Katharina Wolters
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Fabian Gehringer
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Charlotte Reichardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anna Krause
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sascha Kahlfuß
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Andreas Jeron
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dunja Bruder
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, 04103 Leipzig, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
22
|
Gu YY, Liu XS, Lan HY. Therapeutic potential for renal fibrosis by targeting Smad3-dependent noncoding RNAs. Mol Ther 2024; 32:313-324. [PMID: 38093516 PMCID: PMC10861968 DOI: 10.1016/j.ymthe.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
Renal fibrosis is a characteristic hallmark of chronic kidney disease (CKD) that ultimately results in renal failure, leaving patients with few therapeutic options. TGF-β is a master regulator of renal fibrosis and mediates progressive renal fibrosis via both canonical and noncanonical signaling pathways. In the canonical Smad signaling, Smad3 is a key mediator in tissue fibrosis and mediates renal fibrosis via a number of noncoding RNAs (ncRNAs). In this regard, targeting Smad3-dependent ncRNAs may offer a specific therapy for renal fibrosis. This review highlights the significance and innovation of TGF-β/Smad3-associated ncRNAs as biomarkers and therapeutic targets in renal fibrogenesis. In addition, the underlying mechanisms of these ncRNAs and their future perspectives in the treatment of renal fibrosis are discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Departments of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xu-Sheng Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hui-Yao Lan
- Departments of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
23
|
Wang P, Xie D, Xiao T, Cheng C, Wang D, Sun J, Wu M, Yang Y, Zhang A, Liu Q. H3K18 lactylation promotes the progression of arsenite-related idiopathic pulmonary fibrosis via YTHDF1/m6A/NREP. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132582. [PMID: 37742376 DOI: 10.1016/j.jhazmat.2023.132582] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/26/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
As epigenetic modifications, lactylation and N6-methyladenosine (m6A) have attracted wide attention. Arsenite is an environmental pollutant that has been proven to induce idiopathic pulmonary fibrosis (IPF). However, the molecular mechanisms of lactylation and m6A methylation are unclear in arsenite-related IPF (As-IPF). In view of the limited understanding of molecular mechanism of m6A and lactylation in As-IPF, MeRIP-seq, RNA-seq and ChIP-seq were analyzed to verify the target gene regulated by m6A and H3K18 lactylation (H3K18la). We found that, for As-IPF, the global levels of m6A, levels of YTHDF1 and m6A-modified neuronal protein 3.1 (NREP) were elevated in alveolar epithelial cells (AECs). The secretion levels of TGF-β1 were increased via YTHDF1/m6A/NREP, which promoted the fibroblast-to-myofibroblast transition (FMT). Further, extracellular lactate from myofibroblasts elevated levels of the global lactylation (Kla) and H3K18la via the lactate monocarboxylate transporter 1 (MCT1), and, in AECs, H3K18la facilitated the transcription of Ythdf1. This report highlights the role of crosstalk between AECs and myofibroblasts via lactylation and m6A and the significance of H3K18la regulation of YTHDF1 in the progression of As-IPF, which may be useful for finding effective therapeutic targets.
Collapse
Affiliation(s)
- Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Daxiao Xie
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, PR China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
24
|
Ye W, Lv X, Gao S, Li Y, Luan J, Wang S. Emerging role of m6A modification in fibrotic diseases and its potential therapeutic effect. Biochem Pharmacol 2023; 218:115873. [PMID: 37884198 DOI: 10.1016/j.bcp.2023.115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Fibrosis can occur in a variety of organs such as the heart, lung, liver and kidney, and its pathological changes are mainly manifested by an increase in fibrous connective tissue and a decrease in parenchymal cells in organ tissues, and continuous progression can lead to structural damage and organ hypofunction, or even failure, seriously threatening human health and life. N6-methyladenosine (m6A) modification, as one of the most common types of internal modifications of RNA in eukaryotes, exerts a multifunctional role in physiological and pathological processes by regulating the metabolism of RNA. With the in-depth understanding and research of fibrosis, we found that m6A modification plays an important role in fibrosis, and m6A regulators can further participate in the pathophysiological process of fibrosis by regulating the function of specific cells. In our review, we summarized the latest research advances in m6A modification in fibrosis, as well as the specific functions of different m6A regulators. In addition, we focused on the mechanisms and roles of m6A modification in cardiac fibrosis, liver fibrosis, pulmonary fibrosis, renal fibrosis, retinal fibrosis and oral submucosal fibrosis, with the aim of providing new insights and references for finding potential therapeutic targets for fibrosis. Finally, we discussed the prospects and challenges of targeted m6A modification in the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China.
| |
Collapse
|
25
|
Jin Z, Wang D, Lv H, Wu B, Li Z, Guo X, Wang H, Yang S. Loss of the adaptor protein Sh3bgrl initiates ovarian fibrosis in zebrafish. FEBS Lett 2023; 597:2643-2655. [PMID: 37698355 DOI: 10.1002/1873-3468.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Ovarian fibrosis is a reproduction obstacle leading to female infertility in vertebrates, but the cause underlying the cellular events is unclear. Here, we found that the small adaptor protein SH3-domain-binding glutamate-rich protein like (Sh3bgrl) plays an important role in female reproduction in zebrafish. Two sh3bgrl mutant alleles that result in sh3bgrl depletion contribute to female spawning inability. Comparative transcriptome analysis revealed that sh3bgrl knockout mechanistically causes the upregulation of genes associated with extracellular matrix (ECM) and fiber generation in the zebrafish ovary. Consequently, extra ECM or fibers accumulate and are deposited in the ovary, resulting in eventual spawning inability. Our findings thus provide insights into understanding the underlying mechanism of infertility by ovarian fibrosis and provide a novel and valuable model to study female reproduction abnormality.
Collapse
Affiliation(s)
- Ziwei Jin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dongxia Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haimei Lv
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Wu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhe Li
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Guo
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shulan Yang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Jiang Y, Song S, Liu J, Zhang L, Guo X, Lu J, Li L, Yang C, Fu Q, Zeng B. Epigenetic regulation of programmed cell death in hypoxia-induced pulmonary arterial hypertension. Front Immunol 2023; 14:1206452. [PMID: 37753070 PMCID: PMC10518698 DOI: 10.3389/fimmu.2023.1206452] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/28/2023] [Indexed: 09/28/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe progressive disease that may cause early right ventricular failure and eventual cardiac failure. The pathogenesis of PAH involves endothelial dysfunction, aberrant proliferation of pulmonary artery smooth muscle cells (PASMCs), and vascular fibrosis. Hypoxia has been shown to induce elevated secretion of vascular endothelial growth factor (VEGF), leading to the development of hypoxic PAH. However, the molecular mechanisms underlying hypoxic PAH remain incompletely understood. Programmed cell death (PCD) is a natural cell death and regulated by certain genes. Emerging evidence suggests that apoptotic resistance contributes to the development of PAH. Moreover, several novel types of PCD, such as autophagy, pyroptosis, and ferroptosis, have been reported to be involved in the development of PAH. Additionally, multiple diverse epigenetic mechanisms including RNA methylation, DNA methylation, histone modification, and the non-coding RNA molecule-mediated processes have been strongly linked to the development of PAH. These epigenetic modifications affect the expression of genes, which produce important changes in cellular biological processes, including PCD. Consequently, a better understanding of the PCD processes and epigenetic modification involved in PAH will provide novel, specific therapeutic strategies for diagnosis and treatment. In this review, we aim to discuss recent advances in epigenetic mechanisms and elucidate the role of epigenetic modifications in regulating PCD in hypoxia-induced PAH.
Collapse
Affiliation(s)
- Yuan Jiang
- College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jingxin Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Liyuan Zhang
- Shanghai Baoxing Biological Equipment Engineering Co., Ltd, Shanghai, China
| | - Xiaofei Guo
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Jiayao Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Lie Li
- Shenzhen Reyson Biotechnology Co., Ltd, Shenzhen, China
- Nanjing Evertop Electronics Ltd., Nanjing, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Qiang Fu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
27
|
Li Y, Ma Z, Ding M, Jia K, Xu B, Zhou F, Luo R, Xue X, Wu R, Gao F, Li X. Chuanxiong Rhizoma extracts prevent cholestatic liver injury by targeting H3K9ac-mediated and cholangiocyte-derived secretory protein PAI-1 and FN. Chin J Nat Med 2023; 21:694-709. [PMID: 37777319 DOI: 10.1016/s1875-5364(23)60416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 10/02/2023]
Abstract
Chuanxiong Rhizoma (CX, the dried rhizome of Ligusticum wallichii Franch.), a well-known traditional Chinese medicine, is clinically used for treating cardiovascular, cerebrovascular and hepatobiliary diseases. Cholestatic liver damage is one of the chronic liver diseases with limited effective therapeutic strategies. Currently, little is known about the mechanism links between CX-induced anti-cholestatic action and intercellular communication between cholangiocytes and hepatic stellate cells (HSCs). The study aimed to evaluate the hepatoprotective activity of different CX extracts including the aqueous, alkaloid, phenolic acid and phthalide extracts of CX (CXAE, CXAL, CXPA and CXPHL) and investigate the intercellular communication-related mechanisms by which the most effective extracts work on cholestatic liver injury. The active compounds of different CX extracts were identified by UPLC-MS/MS. A cholestatic liver injury mouse model induced by bile duct ligation (BDL), and transforming growth factor-β (TGF-β)-treated human intrahepatic biliary epithelial cholangiocytes (HIBECs) and HSC cell line (LX-2 cells) were used for in vivo and in vitro studies. Histological and other biological techniques were also applied. The results indicated that CXAE, CXAL and CXPHL significantly reduced ductular reaction (DR) and improved liver fibrosis in the BDL mice. Meanwhile, both CXAE and CXPHL suppressed DR in injured HIBECs and reduced collagen contraction force and the expression of fibrosis biomarkers in LX-2 cells treated with TGF-β. CXPHL suppressed the transcription and transfer of plasminogen activator inhibitor-1 (PAI-1) and fibronectin (FN) from the 'DR-like' cholangiocytes to activated HSCs. Mechanistically, the inhibition of PAI-1 and FN by CXPHL was attributed to the untight combination of the acetyltransferase KAT2A and SMAD3, followdd by the suppression of histone 3 lysine 9 acetylation (H3K9ac)-mediated transcription in cholangiocytes. In conclusion, CXPHL exerts stronger anti-cholestatic activity in vivo and in vitro than other CX extracts, and its protective effect on the intracellular communication between cholangiocytes and HSCs is achieved by reducing KAT2A/H3K9ac-mediated transcription and release of PAI-1 and FN.
Collapse
Affiliation(s)
- Yajing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bing Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ranyi Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Feng Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
28
|
Rubio K, Molina-Herrera A, Pérez-González A, Hernández-Galdámez HV, Piña-Vázquez C, Araujo-Ramos T, Singh I. EP300 as a Molecular Integrator of Fibrotic Transcriptional Programs. Int J Mol Sci 2023; 24:12302. [PMID: 37569677 PMCID: PMC10418647 DOI: 10.3390/ijms241512302] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Fibrosis is a condition characterized by the excessive accumulation of extracellular matrix proteins in tissues, leading to organ dysfunction and failure. Recent studies have identified EP300, a histone acetyltransferase, as a crucial regulator of the epigenetic changes that contribute to fibrosis. In fact, EP300-mediated acetylation of histones alters global chromatin structure and gene expression, promoting the development and progression of fibrosis. Here, we review the role of EP300-mediated epigenetic regulation in multi-organ fibrosis and its potential as a therapeutic target. We discuss the preclinical evidence that suggests that EP300 inhibition can attenuate fibrosis-related molecular processes, including extracellular matrix deposition, inflammation, and epithelial-to-mesenchymal transition. We also highlight the contributions of small molecule inhibitors and gene therapy approaches targeting EP300 as novel therapies against fibrosis.
Collapse
Affiliation(s)
- Karla Rubio
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
- Laboratoire IMoPA, Université de Lorraine, CNRS, UMR 7365, F-54000 Nancy, France
| | - Alejandro Molina-Herrera
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
| | - Andrea Pérez-González
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72570, Mexico
| | - Hury Viridiana Hernández-Galdámez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico
| | - Tania Araujo-Ramos
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Indrabahadur Singh
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Hou X, Li Y, Song J, Peng L, Zhang W, Liu R, Yuan H, Feng T, Li J, Li W, Zhu C. METTL14 reverses liver fibrosis by inhibiting NOVA2 through an m6A-YTHDF2-dependent mechanism. Hepatol Commun 2023; 7:e0199. [PMID: 37534933 PMCID: PMC10409442 DOI: 10.1097/hc9.0000000000000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A), the most prevalent internal RNA modification in eukaryotic cells, is dynamically regulated in response to a wide range of physiological and pathological states. Nonetheless, the involvement of METTL14-induced m6A in liver fibrosis (LF) has yet to be established. METHODS In vitro, HSC cell lines with knock-down and overexpression of METTL14 were constructed, and the effects of METTL14 gene on the phenotypic function of activated HSCs were observed. The proliferation rate was measured by CCK8 and EDU, the cell proliferation cycle was measured by flow detector, the migration rate was measured by Transwell, and the contractility of F-actin was observed after phalloidin staining. The downstream target gene NOVA2 of METTL14 was screened by combined sequencing of MeRIP-seq and RNA-seq, combined with signal analysis. Adeno-associated virus (AAV) was injected into the tail vein in vivo to knock down the expression of METTL14, so as to further observe the role of METTL14 in the progress of LF. RESULTS our research showed that the methylase METTL14 content was decreased in hepatic tissue from patients with LF, leading to a lowered degree of m6A modification. Functionally, we discovered that knocking down m6A methyltransferase METTL14 led to increased HSC activation and a substantial worsening of LF. Mechanically, as shown in a multiomics study of HSCs, depleting METTL14 levels decreased m6A deposition onNOVA2 mRNA transcripts, which prompted the activation of YTHDF2 to detect and degrade the decrease of NOVA2 mRNA. CONCLUSIONS METTL14 functioned as a profibrotic gene by suppressing NOVA2 activity in a mechanism dependent on m6A-YTHDF2. Moreover, knocking down METTL14 exacerbated LF, while NOVA2 prevented its development and partly reversed the damage.
Collapse
Affiliation(s)
- Xiaoxue Hou
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuwen Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiali Song
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Linya Peng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Liu
- Department of Tropical Diseases of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hui Yuan
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tiantong Feng
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jieying Li
- Department of Tropical Diseases of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Wenting Li
- Department of Tropical Diseases of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chuanlong Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Tropical Diseases of the Second Affiliated Hospital, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
30
|
Di X, Gao X, Peng L, Ai J, Jin X, Qi S, Li H, Wang K, Luo D. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther 2023; 8:282. [PMID: 37518181 PMCID: PMC10387486 DOI: 10.1038/s41392-023-01501-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/01/2023] Open
Abstract
Cellular mechanotransduction, a critical regulator of numerous biological processes, is the conversion from mechanical signals to biochemical signals regarding cell activities and metabolism. Typical mechanical cues in organisms include hydrostatic pressure, fluid shear stress, tensile force, extracellular matrix stiffness or tissue elasticity, and extracellular fluid viscosity. Mechanotransduction has been expected to trigger multiple biological processes, such as embryonic development, tissue repair and regeneration. However, prolonged excessive mechanical stimulation can result in pathological processes, such as multi-organ fibrosis, tumorigenesis, and cancer immunotherapy resistance. Although the associations between mechanical cues and normal tissue homeostasis or diseases have been identified, the regulatory mechanisms among different mechanical cues are not yet comprehensively illustrated, and no effective therapies are currently available targeting mechanical cue-related signaling. This review systematically summarizes the characteristics and regulatory mechanisms of typical mechanical cues in normal conditions and diseases with the updated evidence. The key effectors responding to mechanical stimulations are listed, such as Piezo channels, integrins, Yes-associated protein (YAP) /transcriptional coactivator with PDZ-binding motif (TAZ), and transient receptor potential vanilloid 4 (TRPV4). We also reviewed the key signaling pathways, therapeutic targets and cutting-edge clinical applications of diseases related to mechanical cues.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaoshuai Gao
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Liao Peng
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jianzhong Ai
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xi Jin
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shiqian Qi
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Hong Li
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Kunjie Wang
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| | - Deyi Luo
- Department of Urology and Institute of Urology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
31
|
Jarmakiewicz-Czaja S, Sokal A, Ferenc K, Motyka E, Helma K, Filip R. The Role of Genetic and Epigenetic Regulation in Intestinal Fibrosis in Inflammatory Bowel Disease: A Descending Process or a Programmed Consequence? Genes (Basel) 2023; 14:1167. [PMID: 37372347 DOI: 10.3390/genes14061167] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of chronic diseases characterized by recurring periods of exacerbation and remission. Fibrosis of the intestine is one of the most common complications of IBD. Based on current analyses, it is evident that genetic factors and mechanisms, as well as epigenetic factors, play a role in the induction and progression of intestinal fibrosis in IBD. Key genetic factors and mechanisms that appear to be significant include NOD2, TGF-β, TLRs, Il23R, and ATG16L1. Deoxyribonucleic acid (DNA) methylation, histone modification, and ribonucleic acid (RNA) interference are the primary epigenetic mechanisms. Genetic and epigenetic mechanisms, which seem to be important in the pathophysiology and progression of IBD, may potentially be used in targeted therapy in the future. Therefore, the aim of this study was to gather and discuss selected mechanisms and genetic factors, as well as epigenetic factors.
Collapse
Affiliation(s)
| | - Aneta Sokal
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Elżbieta Motyka
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Kacper Helma
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD, Clinical Hospital No. 2 im. Św. Jadwigi Królowej, 35-301 Rzeszow, Poland
| |
Collapse
|
32
|
Zhao Z, Zhang L, Ocansey DKW, Wang B, Mao F. The role of mesenchymal stem cell-derived exosome in epigenetic modifications in inflammatory diseases. Front Immunol 2023; 14:1166536. [PMID: 37261347 PMCID: PMC10227589 DOI: 10.3389/fimmu.2023.1166536] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Epigenetic modification is a complex process of reversible and heritable alterations in gene function, and the combination of epigenetic and metabolic alterations is recognized as an important causative factor in diseases such as inflammatory bowel disease (IBD), osteoarthritis (OA), systemic lupus erythematosus (SLE), and even tumors. Mesenchymal stem cell (MSC) and MSC-derived exosome (MSC-EXO) are widely studied in the treatment of inflammatory diseases, where they appear to be promising therapeutic agents, partly through the potent regulation of epigenetic modifications such as DNA methylation, acetylation, phosphorylation, and expression of regulatory non-coding RNAs, which affects the occurrence and development of inflammatory diseases. In this review, we summarize the current research on the role of MSC-EXO in inflammatory diseases through their modulation of epigenetic modifications and discuss its potential application in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zihan Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Liu R, Feng L, Tang S, Liu Y, Yang Q. The impact and mechanism of TET3 overexpression on the progression of hepatic fibrosis. Epigenomics 2023; 15:577-591. [PMID: 37464780 DOI: 10.2217/epi-2023-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Aims: To investigate whether TET3 regulates hepatic stellate cell apoptosis and understand the role of demethylation in hepatic fibrosis (HF). Methods: LX-2T cells were infected with TET3 lentivirus. After TET3 adenovirus infection, the degree of HF in each group was analyzed. Chromatin immunoprecipitation was used to verify the targeting relationship between TET3 and CBP, and finally the expression of various proteins was detected. Results: TET3 overexpression activated the CBP/FOXO1-BIM pathway, increased the expression of apoptotic proteins and accelerated the apoptosis of activated LX-2 cells. The degree of HF was improved in the TET3 upregulation group. Conclusion: TET3 can activate the CBP/FOXO1-BIM pathway to accelerate the apoptosis of activated hepatic stellate cells and ultimately alleviate HF.
Collapse
Affiliation(s)
- Ranyang Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Linlin Feng
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
- Clinical Laboratory Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Shuang Tang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Yin Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Qin Yang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| |
Collapse
|
34
|
Desai VG, Azevedo-Pouly A, Vijay V, Phanavanh B, Moland CL, Han T, Revollo J, Aryal B, Rao VA, Fuscoe JC. Potential role of the apelin-APJ pathway in sex-related differential cardiotoxicity induced by doxorubicin in mice. J Appl Toxicol 2023; 43:557-576. [PMID: 36227756 DOI: 10.1002/jat.4405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Preclinical and clinical findings suggest sexual dimorphism in cardiotoxicity induced by a chemotherapeutic drug, doxorubicin (DOX). However, molecular alterations leading to sex-related differential vulnerability of heart to DOX toxicity are not fully explored. In the present study, RNA sequencing in hearts of B6C3F1 mice indicated more differentially expressed genes in males than females (224 vs. 19; ≥1.5-fold, False Discovery Rate [FDR] < 0.05) at 1 week after receiving 24 mg/kg total cumulative DOX dose that induced cardiac lesions only in males. Pathway analysis further revealed probable inactivation of cardiac apelin fibroblast signaling pathway (p = 0.00004) only in DOX-treated male mice that showed ≥1.25-fold downregulation in the transcript and protein levels of the apelin receptor, APJ. In hearts of DOX-treated females, the transcript levels of apelin (1.24-fold) and APJ (1.47-fold) were significantly (p < 0.05) increased compared to saline-treated controls. Sex-related differential DOX effect was also observed on molecular targets downstream of the apelin-APJ pathway in cardiac fibroblasts and cardiomyocytes. In cardiac fibroblasts, upregulation of Tgf-β2, Ctgf, Sphk1, Serpine1, and Timp1 (fibrosis; FDR < 0.05) in DOX-treated males and upregulation of only Tgf-β2 and Timp1 (p < 0.05) in females suggested a greater DOX toxicity in hearts of males than females. Additionally, Ryr2 and Serca2 (calcium handling; FDR < 0.05) were downregulated in conjunction with 1.35-fold upregulation of Casp12 (sarcoplasmic reticulum-mediated apoptosis; FDR < 0.05) in DOX-treated male mice. Drug effect on the transcript level of these genes was less severe in female hearts. Collectively, these data suggest a likely role of the apelin-APJ axis in sex-related differential DOX-induced cardiotoxicity in our mouse model.
Collapse
Affiliation(s)
- Varsha G Desai
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Ana Azevedo-Pouly
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Bounleut Phanavanh
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Carrie L Moland
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Tao Han
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Javier Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Baikuntha Aryal
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - V Ashutosh Rao
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - James C Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
35
|
Deng L, Zeng S, Yi Q, Song L. High expression of six-transmembrane epithelial antigen of prostate 3 promotes the migration and invasion and predicts unfavorable prognosis in glioma. PeerJ 2023; 11:e15136. [PMID: 37009153 PMCID: PMC10065001 DOI: 10.7717/peerj.15136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Recent studies have suggested that ferroptosis, a form of iron-dependent regulated cell death, might play essential roles in tumor initiation and progression. Six-transmembrane epithelial antigen of prostate 3 (STEAP3) is a ferrireductase involved in the regulation of intracellular iron homeostasis. However, the clinical significance and biological function of STEAP3 in human cancers remain poorly understood. Through a comprehensive bioinformatics analysis, we found that STEAP3 mRNA and protein expression were up-regulated in GBM, LUAD, and UCEC, and down-regulated in LIHC. Survival analysis indicated that STEAP3 had prognostic significance only in glioma. Multivariate Cox regression analysis revealed that high STEPA3 expression was correlated with poor prognosis. STEAP3 expression was significantly negatively correlated with promoter methylation level, and patients with lower STEAP3 methylation level had worse prognosis than those with higher STEAP3 methylation level. Single-cell functional state atlas showed that STEAP3 regulated epithelial-to-mesenchymal transition (EMT) in GBM. Furthermore, the results of wound healing and transwell invasion assays demonstrated that knocking down STEAP3 inhibited the migration and invasion of T98G and U251 cells. Functional enrichment analysis suggested that genes co-expressed with STEAP3 mainly participated in inflammation and immune-related pathways. Immunological analysis revealed that STEAP3 expression was significantly correlated with immune infiltration cells, including macrophages and neutrophils, especially the M2 macrophages. Individuals with low STEAP3 expression were more likely to respond to immunotherapy than those with high STEAP3 expression. These results suggest that STEAP3 promotes glioma progression and highlight its pivotal role in regulating immune microenvironment.
Collapse
Affiliation(s)
- Langmei Deng
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liying Song
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
36
|
Yang J, Liang C, Liu L, Wang L, Yu G. High-Fat Diet Related Lung Fibrosis-Epigenetic Regulation Matters. Biomolecules 2023; 13:biom13030558. [PMID: 36979493 PMCID: PMC10046645 DOI: 10.3390/biom13030558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Pulmonary fibrosis (PF) is an interstitial lung disease characterized by the destruction of the pulmonary parenchyma caused by excessive extracellular matrix deposition. Despite the well-known etiological factors such as senescence, aberrant epithelial cell and fibroblast activation, and chronic inflammation, PF has recently been recognized as a metabolic disease and abnormal lipid signature was observed both in serum and bronchoalveolar lavage fluid (BALF) of PF patients and mice PF model. Clinically, observational studies suggest a significant link between high-fat diet (HFD) and PF as manifested by high intake of saturated fatty acids (SFAs) and meat increases the risk of PF and mice lung fibrosis. However, the possible mechanisms between HFD and PF remain unclear. In the current review we emphasize the diversity effects of the epigenetic dysregulation induced by HFD on the fibrotic factors such as epithelial cell injury, abnormal fibroblast activation and chronic inflammation. Finally, we discuss the potential ways for patients to improve their conditions and emphasize the prospect of targeted therapy based on epigenetic regulation for scientific researchers or drug developers.
Collapse
Affiliation(s)
- Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Chenxi Liang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Lulu Liu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
37
|
Autoimmune Hepatitis and Fibrosis. J Clin Med 2023; 12:jcm12051979. [PMID: 36902767 PMCID: PMC10004701 DOI: 10.3390/jcm12051979] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic immune-inflammatory disease of the liver, generally considered a rare condition. The clinical manifestation is extremely varied and can range from paucisymptomatic forms to severe hepatitis. Chronic liver damage causes activation of hepatic and inflammatory cells leading to inflammation and oxidative stress through the production of mediators. This results in increased collagen production and extracellular matrix deposition leading to fibrosis and even cirrhosis. The gold standard for the diagnosis of fibrosis is liver biopsy; however, there are serum biomarkers, scoring systems, and radiological methods useful for diagnosis and staging. The goal of AIH treatment is to suppress fibrotic and inflammatory activities in the liver to prevent disease progression and achieve complete remission. Therapy involves the use of classic steroidal anti-inflammatory drugs and immunosuppressants, but in recent years scientific research has focused on several new alternative drugs for AIH that will be discussed in the review.
Collapse
|
38
|
m6A modification in inflammatory bowel disease provides new insights into clinical applications. Biomed Pharmacother 2023; 159:114298. [PMID: 36706633 DOI: 10.1016/j.biopha.2023.114298] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) results from a complex interplay between genetic predisposition, environmental factors, and gut microbes. The role of N6-methyladenosine (m6A) methylation in the pathogenesis of IBD has attracted increasing attention. m6A modification not only regulates intestinal mucosal immunity and intestinal barrier function, but also affects apoptosis and autophagy in intestinal epithelial cells. Additionally, m6A modification participated in the interaction between gut microbes and the host, providing a novel direction to explore the molecular mechanisms of IBD and the theoretical basis for specific microorganism-oriented prevention and treatment measures. m6A regulators are expected to be biomarkers for predicting the prognosis of IBD patients. m6A methylation may be utilized as a novel target in the management of IBD. This review focused on the recent advances in how m6A modification causes the initiation and development of IBD, and provided new insights into optimal prevention and treatment measures for IBD.
Collapse
|
39
|
Kim H, Park SY, Lee SY, Kwon JH, Byun S, Kim MJ, Yu S, Yoo JY, Yoon HG. Therapeutic effects of selective p300 histone acetyl-transferase inhibitor on liver fibrosis. BMB Rep 2023; 56:114-119. [PMID: 36593107 PMCID: PMC9978366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/04/2023] Open
Abstract
Liver fibrosis is caused by chronic liver damage and results in the aberrant accumulation of extracellular matrix during disease progression. Despite the identification of the HAT enzyme p300 as a major factor for liver fibrosis, the development of therapeutic agents targeting the regulation of p300 has not been reported. We validated a novel p300 inhibitor (A6) on the improvement of liver fibrosis using two mouse models, mice on a choline-deficient high-fat diet and thioacetamide-treated mice. We demonstrated that pathological hall-marks of liver fibrosis were significantly diminished by A6 treatment through Masson's trichrome and Sirius red staining on liver tissue and found that A6 treatment reduced the expression of matricellular protein genes. We further showed that A6 treatment improved liver fibrosis by reducing the stability of p300 protein via disruption of p300 binding to AKT. Our findings suggest that targeting p300 through the specific inhibitor A6 has potential as a major therapeutic avenue for treating liver fibrosis. [BMB Reports 2023; 56(2): 114-119].
Collapse
Affiliation(s)
- Hyunsik Kim
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Yeon Lee
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Hwan Kwon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seunghee Byun
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Mi Jeong Kim
- Department of Food and Biotechnology, College of Science and Technology Institute of Natural Sciences Korea University, Sejong 30019, Korea
| | - Sungryul Yu
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea
| | - Jung-Yoon Yoo
- Department of Biomedical Laboratory Science, Yonsei University MIRAE Campus, Wonju 26493, Korea,Corresponding authors. Jung-Yoon Yoo, Tel: +82-33-760-2861; Fax: +82-33-760-2861; E-mail: ; Ho-Geun Yoon, Tel: +82-2-2228-0835; Fax: +82-2-312-5041; E-mail:
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea,Corresponding authors. Jung-Yoon Yoo, Tel: +82-33-760-2861; Fax: +82-33-760-2861; E-mail: ; Ho-Geun Yoon, Tel: +82-2-2228-0835; Fax: +82-2-312-5041; E-mail:
| |
Collapse
|
40
|
Kim H, Park SY, Lee SY, Kwon JH, Byun S, Kim MJ, Yu S, Yoo JY, Yoon HG. Therapeutic effects of selective p300 histone acetyl-transferase inhibitor on liver fibrosis. BMB Rep 2023; 56:114-119. [PMID: 36593107 PMCID: PMC9978366 DOI: 10.5483/bmbrep.2022-0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/27/2022] [Indexed: 08/13/2023] Open
Abstract
Liver fibrosis is caused by chronic liver damage and results in the aberrant accumulation of extracellular matrix during disease progression. Despite the identification of the HAT enzyme p300 as a major factor for liver fibrosis, the development of therapeutic agents targeting the regulation of p300 has not been reported. We validated a novel p300 inhibitor (A6) on the improvement of liver fibrosis using two mouse models, mice on a choline-deficient high-fat diet and thioacetamide-treated mice. We demonstrated that pathological hall-marks of liver fibrosis were significantly diminished by A6 treatment through Masson's trichrome and Sirius red staining on liver tissue and found that A6 treatment reduced the expression of matricellular protein genes. We further showed that A6 treatment improved liver fibrosis by reducing the stability of p300 protein via disruption of p300 binding to AKT. Our findings suggest that targeting p300 through the specific inhibitor A6 has potential as a major therapeutic avenue for treating liver fibrosis. [BMB Reports 2023; 56(2): 114-119].
Collapse
Affiliation(s)
- Hyunsik Kim
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Yeon Lee
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae-Hwan Kwon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Seunghee Byun
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Mi Jeong Kim
- Department of Food and Biotechnology, College of Science and Technology Institute of Natural Sciences Korea University, Sejong 30019, Korea
| | - Sungryul Yu
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea
| | - Jung-Yoon Yoo
- Department of Biomedical Laboratory Science, Yonsei University MIRAE Campus, Wonju 26493, Korea
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
41
|
Khodeneva N, Sugimoto MA, Davan-Wetton CSA, Montero-Melendez T. Melanocortin therapies to resolve fibroblast-mediated diseases. Front Immunol 2023; 13:1084394. [PMID: 36793548 PMCID: PMC9922712 DOI: 10.3389/fimmu.2022.1084394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023] Open
Abstract
Stromal cells have emerged as central drivers in multiple and diverse diseases, and consequently, as potential new cellular targets for the development of novel therapeutic strategies. In this review we revise the main roles of fibroblasts, not only as structural cells but also as players and regulators of immune responses. Important aspects like fibroblast heterogeneity, functional specialization and cellular plasticity are also discussed as well as the implications that these aspects may have in disease and in the design of novel therapeutics. An extensive revision of the actions of fibroblasts on different conditions uncovers the existence of numerous diseases in which this cell type plays a pathogenic role, either due to an exacerbation of their 'structural' side, or a dysregulation of their 'immune side'. In both cases, opportunities for the development of innovative therapeutic approaches exist. In this regard, here we revise the existing evidence pointing at the melanocortin pathway as a potential new strategy for the treatment and management of diseases mediated by aberrantly activated fibroblasts, including scleroderma or rheumatoid arthritis. This evidence derives from studies involving models of in vitro primary fibroblasts, in vivo models of disease as well as ongoing human clinical trials. Melanocortin drugs, which are pro-resolving mediators, have shown ability to reduce collagen deposition, activation of myofibroblasts, reduction of pro-inflammatory mediators and reduced scar formation. Here we also discuss existing challenges, both in approaching fibroblasts as therapeutic targets, and in the development of novel melanocortin drug candidates, that may help advance the field and deliver new medicines for the management of diseases with high medical needs.
Collapse
|
42
|
Zhang M, Sul OJ, Fu J, Wang Q. Editorial: Natural compounds regulating epigenetics for treating chronic inflammatory diseases. Front Pharmacol 2023; 13:1121165. [PMID: 36712660 PMCID: PMC9873991 DOI: 10.3389/fphar.2022.1121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Mingyu Zhang
- Medical College, Dalian University, Dalian, China
| | - Ok Joo Sul
- University of Ulsan, Ulsan, South Korea,*Correspondence: Qianqian Wang, ; Ok Joo Sul, ; Junjiang Fu,
| | - Junjiang Fu
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China,*Correspondence: Qianqian Wang, ; Ok Joo Sul, ; Junjiang Fu,
| | - Qianqian Wang
- Medical College, Dalian University, Dalian, China,*Correspondence: Qianqian Wang, ; Ok Joo Sul, ; Junjiang Fu,
| |
Collapse
|
43
|
Ni WJ, Lu H, Ma NN, Hou BB, Zeng J, Zhou H, Shao W, Meng XM. RNA N 6 -methyladenosine modifications and potential targeted therapeutic strategies in kidney disease. Br J Pharmacol 2023; 180:5-24. [PMID: 36196023 DOI: 10.1111/bph.15968] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications have received increasing attention and have been shown to be extensively involved in kidney development and disease progression. Among them, the most common RNA modification, N6 -methyladenosine (m6 A), has been shown to dynamically and reversibly exert its functions in multiple ways, including splicing, export, decay and translation initiation efficiency to regulate mRNA fate. Moreover, m6 A has also been reported to exert biological effects by destabilizing base pairing to modulate various functions of RNAs. Most importantly, an increasing number of kidney diseases, such as renal cell carcinoma, acute kidney injury and chronic kidney disease, have been found to be associated with aberrant m6 A patterns. In this review, we comprehensively review the critical roles of m6 A in kidney diseases and discuss the possibilities and relevance of m6 A-targeted epigenetic therapy, with an integrated comprehensive description of the detailed alterations in specific loci that contribute to cellular processes that are associated with kidney diseases.
Collapse
Affiliation(s)
- Wei-Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China.,Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Nan-Nan Ma
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Bing-Bing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jing Zeng
- Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
44
|
Shao J, Liu J, Zuo S. Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis. Cells 2022; 11:cells11152347. [PMID: 35954191 PMCID: PMC9367448 DOI: 10.3390/cells11152347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac fibrosis is a common pathophysiologic process associated with numerous cardiovascular diseases, resulting in cardiac dysfunction. Cardiac fibroblasts (CFs) play an important role in the production of the extracellular matrix and are the essential cell type in a quiescent state in a healthy heart. In response to diverse pathologic stress and environmental stress, resident CFs convert to activated fibroblasts, referred to as myofibroblasts, which produce more extracellular matrix, contributing to cardiac fibrosis. Although multiple molecular mechanisms are implicated in CFs activation and cardiac fibrosis, there is increasing evidence that epigenetic regulation plays a key role in this process. Epigenetics is a rapidly growing field in biology, and provides a modulated link between pathological stimuli and gene expression profiles, ultimately leading to corresponding pathological changes. Epigenetic modifications are mainly composed of three main categories: DNA methylation, histone modifications, and non-coding RNAs. This review focuses on recent advances regarding epigenetic regulation in cardiac fibrosis and highlights the effects of epigenetic modifications on CFs activation. Finally, we provide some perspectives and prospects for the study of epigenetic modifications and cardiac fibrosis.
Collapse
Affiliation(s)
- Jingrong Shao
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
| | - Jiao Liu
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China;
| | - Shengkai Zuo
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China;
- Correspondence:
| |
Collapse
|
45
|
Ma H, Wu X, Li Y, Xia Y. Research Progress in the Molecular Mechanisms, Therapeutic Targets, and Drug Development of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:963054. [PMID: 35935869 PMCID: PMC9349351 DOI: 10.3389/fphar.2022.963054] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Recent studies have identified the key role of crosstalk between dysregulated epithelial cells, mesenchymal, immune, and endothelial cells in IPF. In addition, genetic mutations and environmental factors (e.g., smoking) have also been associated with the development of IPF. With the recent development of sequencing technology, epigenetics, as an intermediate link between gene expression and environmental impacts, has also been reported to be implicated in pulmonary fibrosis. Although the etiology of IPF is unknown, many novel therapeutic targets and agents have emerged from clinical trials for IPF treatment in the past years, and the successful launch of pirfenidone and nintedanib has demonstrated the promising future of anti-IPF therapy. Therefore, we aimed to gain an in-depth understanding of the underlying molecular mechanisms and pathogenic factors of IPF, which would be helpful for the diagnosis of IPF, the development of anti-fibrotic drugs, and improving the prognosis of patients with IPF. In this study, we summarized the pathogenic mechanism, therapeutic targets and clinical trials from the perspective of multiple cell types, gene mutations, epigenetic and environmental factors.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
46
|
Shi Y, Li J, Chen H, Hu Y, Tang L, Zhou X, Tao M, Lv Z, Chen S, Qiu A, Liu N. Pharmacologic Inhibition of Histone Deacetylase 6 Prevents the Progression of Chlorhexidine Gluconate-Induced Peritoneal Fibrosis by Blockade of M2 Macrophage Polarization. Front Immunol 2022; 13:899140. [PMID: 35784347 PMCID: PMC9240186 DOI: 10.3389/fimmu.2022.899140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Peritoneal fibrosis contributes to ultrafiltration failure in peritoneal dialysis (PD) patients and thus restricts the wide application of PD in clinic. Recently we have demonstrated that histone deacetylase 6 (HDAC6) is critically implicated in high glucose peritoneal dialysis fluid (HG-PDF) induced peritoneal fibrosis, however, the precise mechanisms of HDAC6 in peritoneal fibrosis have not been elucidated. Here, we focused on the role and mechanisms of HDAC6 in chlorhexidine gluconate (CG) induced peritoneal fibrosis and discussed the mechanisms involved. We found Tubastatin A (TA), a selective inhibitor of HDAC6, significantly prevented the progression of peritoneal fibrosis, as characterized by reduction of epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) protein deposition. Inhibition of HDAC6 remarkably suppressed the expression of matrix metalloproteinases-2 (MMP2) and MMP-9. Administration of TA also increased the expression of acetylation Histone H3 and acetylation α-tubulin. Moreover, our results revealed that blockade of HDAC6 inhibited alternatively M2 macrophages polarization by suppressing the activation of TGF-β/Smad3, PI3K/AKT, and STAT3, STAT6 pathways. To give a better understanding of the mechanisms, we further established two cell injured models in Raw264.7 cells by using IL-4 and HG-PDF. Our in vitro experiments illustrated that both IL-4 and HG-PDF could induce M2 macrophage polarization, as demonstrated by upregulation of CD163 and Arginase-1. Inhibition of HDAC6 by TA significantly abrogated M2 macrophage polarization dose-dependently by suppressing TGF-β/Smad, IL4/STAT6, and PI3K/AKT signaling pathways. Collectively, our study revealed that blockade of HDAC6 by TA could suppress the progression of CG-induced peritoneal fibrosis by blockade of M2 macrophage polarization. Thus, HDAC6 may be a promising target in peritoneal fibrosis treatment.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lunxian Tang
- Emergency Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zexin Lv
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Si Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Na Liu,
| |
Collapse
|
47
|
Ran Q, Xu D, Wang Q, Wang D. Hypermethylation of the Promoter Region of miR-23 Enhances the Metastasis and Proliferation of Multiple Myeloma Cells via the Aberrant Expression of uPA. Front Oncol 2022; 12:835299. [PMID: 35707350 PMCID: PMC9189361 DOI: 10.3389/fonc.2022.835299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple myeloma has a long course, with no obvious symptoms in the early stages. However, advanced stages are characterized by injury to the bone system and represent a severe threat to human health. The results of the present work indicate that the hypermethylation of miR-23 promoter mediates the aberrant expression of uPA/PLAU (urokinase plasminogen activator, uPA) in multiple myeloma cells. miR-23, a microRNA that potentially targets uPA’s 3’UTR, was predicted by the online tool miRDB. The endogenous expressions of uPA and miR-23 are related to disease severity in human patients, and the expression of miR-23 is negatively related to uPA expression. The hypermethylation of the promoter region of miR-23 is a promising mechanism to explain the low level of miR-23 or aberrant uPA expression associated with disease severity. Overexpression of miR-23 inhibited the expression of uPA by targeting the 3’UTR of uPA, not only in MM cell lines, but also in patient-derived cell lines. Overexpression of miR-23 also inhibited in vitro and in vivo invasion of MM cells in a nude mouse model. The results therefore extend our knowledge about uPA in MM and may assist in the development of more effective therapeutic strategies for MM treatment.
Collapse
Affiliation(s)
- Qijie Ran
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
- *Correspondence: Qijie Ran, ; Dongsheng Wang,
| | - Dehong Xu
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
| | - Qi Wang
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
| | - Dongsheng Wang
- Department of Neurosurgery, The Fifth People’s Hospital of Dalian, Dalian, China
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian City, China
- *Correspondence: Qijie Ran, ; Dongsheng Wang,
| |
Collapse
|