1
|
Melecchi A, Canovai A, Amato R, Dal Monte M, Filippi L, Bagnoli P, Cammalleri M. Agonism of β3-Adrenoceptors Inhibits Pathological Retinal Angiogenesis in the Model of Oxygen-Induced Retinopathy. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 39186263 PMCID: PMC11361380 DOI: 10.1167/iovs.65.10.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Purpose In response to hypoxia, sympathetic fibers to the retina activate β-adrenoceptors (β-ARs) that play an important role in the regulation of vascular and neuronal functions. We investigated the role of β3-AR using the mouse model of oxygen-induced retinopathy (OIR). Methods Mouse pups were exposed to 75% oxygen at postnatal day 7 (PD7) followed by a return to room air at PD12. The β3-AR preferential agonist BRL37344 was subcutaneously administered once daily at different times after the return to room air. At PD17, the OIR mice underwent flash and pattern electroretinogram. After sacrifice, retinal wholemounts were used for vessel staining or immunohistochemistry for astrocytes, Müller cells, or retinal ganglion cells (RGCs). In retinal homogenates, the levels of markers associated with neovascularization (NV), the blood-retinal barrier (BRB), or astrocytes were determined by western blot, and quantitative reverse-transcription polymerase chain reaction was used to assess β3-AR messenger. Administration of the β3-AR antagonist SR59230A was performed to verify BRL37344 selectivity. Results β3-AR expression is upregulated in response to hypoxia, but its increase is prevented by BRL37344, which counteracts NV by inhibiting the pro-angiogenic pathway, activating the anti-angiogenic pathway, recovering BRB-associated markers, triggering nitric oxide production, and favoring revascularization of the central retina through recovered density of astrocytes that ultimately counteracts NV in the midperiphery. Vasculature rescue prevents dysfunctional retinal activity and counteracts OIR-associated retinal ganglion cell loss. Conclusions β3-AR has emerged as a crucial intermediary in hypoxia-dependent NV, suggesting a role of β3-AR agonists in the treatment of proliferative retinopathies.
Collapse
Affiliation(s)
| | | | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Luca Filippi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Neonatology Unit, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
2
|
Yang Y, Wang J, Tian Y, Li M, Xu S, Zhang L, Luo X, Tan Y, Liang H, Chen M. Equisetin protects from atherosclerosis in vivo by binding to STAT3 and inhibiting its activity. Pharmacol Res 2024; 206:107289. [PMID: 38960011 DOI: 10.1016/j.phrs.2024.107289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Atherosclerosis is a chronic inflammatory vascular disease characterized by lipid metabolism disorder and lipid accumulation. Equisetin (EQST) is a hemiterpene compound isolated from fungus of marine sponge origin, which has antibacterial, anti-inflammatory, lipid-lowering, and weight loss effects. Whether EQST has anti-atherosclerotic activity has not been reported. In this study, we revealed that EQST displayed anti- atherosclerosis effects through inhibiting macrophage inflammatory response, lipid uptake and foam cell formation in vitro, and finally ameliorated high-fat diet (HFD)-induced atherosclerosis in AopE-/- mice in vivo. Mechanistically, EQST directly bound to STAT3 with high-affinity by forming hydrophobic bonds at GLN247 and GLN326 residues, as well as hydrogen bonds at ARG325 and THR346 residues. EQST interacted with STAT3 physically, and functionally inhibited the transcription activity of STAT3, thereby regulating atherosclerosis. Therefore, these results supports EQST as a candidate for developing anti-atherosclerosis therapeutic agent.
Collapse
Affiliation(s)
- Yuting Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jingzhu Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yang Tian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Min Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shaohua Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lijun Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; GXNU & GLHCWM Joint Medical Research Center, Guangxi Normal University, Guilin 541004, China
| | - Xiaowei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Ming Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; GXNU & GLHCWM Joint Medical Research Center, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
3
|
Mao X, Li Y, Zhong Y, Chen R, Wang K, Huang D, Luo X. Kruppel-like factor 14 ameliorated obesity and related metabolic disorders by promoting adipose tissue browning. Am J Physiol Endocrinol Metab 2023; 325:E744-E754. [PMID: 37938176 DOI: 10.1152/ajpendo.00226.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
Obesity has been identified as a serious and debilitating disease that threatens human health, but the current treatment strategies still have some shortcomings. Exercise and dieting are difficult for many people to adhere to, and a series of surgical risks and pain brought about by volume reduction have made it difficult for the current weight loss effect to meet human expectations. In this study, we first found that mice with overexpression of the transcription factor Kruppel-like factor 14 (KLF14) in subcutaneous adipose tissue gained weight more slowly while consuming a high-fat diet than did control mice, and these mice also showed reduced insulin resistance and liver lipid deposition abnormalities. Mechanistically, the browning of white adipose tissue was promoted in adipose tissue with KLF14 overexpression; therefore, we preliminarily concluded that KLF14 can improve obesity by promoting the browning of white adipose tissue and energy consumption, thus ameliorating obesity and related metabolic disturbances. In summary, our results revealed that KLF14 may promote white adipose tissue browning, thus ameliorating high-fat diet-induced obesity and hepatic steatosis, as well as serum lipid levels and insulin resistance, thereby achieving a positive effect on metabolism.NEW & NOTEWORTHY Our study first explored the role of KLF14 in the development and progression of HFD-induced obesity in male mice. Its beneficial effect on adipose browning and metabolic disorders suggests that KLF14 may provide us a new therapeutic strategy for obesity and related metabolic complications. This health problem is of global concern and needs to be addressed.
Collapse
Affiliation(s)
- Xiaoxiang Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuanxiang Li
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yi Zhong
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ru Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kun Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dandan Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xi Luo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
4
|
Evans CJF, Glastras SJ, Tang O, Figtree GA. Therapeutic Potential for Beta-3 Adrenoreceptor Agonists in Peripheral Arterial Disease and Diabetic Foot Ulcers. Biomedicines 2023; 11:3187. [PMID: 38137408 PMCID: PMC10740412 DOI: 10.3390/biomedicines11123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Annually, peripheral arterial disease is estimated to cost over USD 21 billion and diabetic foot disease an estimated at USD 9-13 billion. Mirabegron is a TGA-approved beta-3 adrenoreceptor agonist, shown to be safe and effective in the treatment of overactive bladder syndrome by stimulating bladder smooth muscle relaxation. In this review, we discuss the potential use of beta-3 adrenoreceptor agonists as therapeutic agents repurposed for peripheral arterial disease and diabetic foot ulcers. The development of both conditions is underpinned by the upregulation of oxidative stress pathways and consequential inflammation and hypoxia. In oxidative stress, there is an imbalance of reactive oxygen species and nitric oxide. Endothelial nitric oxide synthase becomes uncoupled in disease states, producing superoxide and worsening oxidative stress. Agonist stimulation of the beta-3 adrenoreceptor recouples and activates endothelial nitric oxide synthase, increasing the production of nitric oxide. This reduces circulating reactive oxygen species, thus decreasing redox modification and dysregulation of cellular proteins, causing downstream smooth muscle relaxation, improved endothelial function and increased angiogenesis. These mechanisms lead to endothelial repair in peripheral arterial disease and an enhanced perfusion in hypoxic tissue, which will likely improve the healing of chronic ulcers.
Collapse
Affiliation(s)
- Cameron J. F. Evans
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (S.J.G.); (O.T.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Sarah J. Glastras
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (S.J.G.); (O.T.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Department of Diabetes, Endocrinology & Metabolism, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW 2065, Australia
| | - Owen Tang
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (S.J.G.); (O.T.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Gemma A. Figtree
- Kolling Institute, University of Sydney, Sydney, NSW 2006, Australia; (S.J.G.); (O.T.)
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW 2065, Australia
| |
Collapse
|