1
|
Pan X, Jiang S, Zhang X, Wang Z, Wang X, Cao L, Xiao W. Recent strategies in target identification of natural products: Exploring applications in chronic inflammation and beyond. Br J Pharmacol 2024. [PMID: 39428703 DOI: 10.1111/bph.17356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 10/22/2024] Open
Abstract
Natural products are a treasure trove for drug discovery, especially in the areas of infection, inflammation and cancer, due to their diverse bioactivities and complex, and varied structures. Chronic inflammation is closely related to many diseases, including complex diseases such as cancer and neurodegeneration. Improving target identification for natural products contributes to elucidating their mechanism of action and clinical progress. It also facilitates the discovery of novel druggable targets and the elimination of undesirable ones, thereby significantly enhancing the productivity of drug discovery and development. Moreover, the rise of polypharmacological strategies, considered promising for the treatment of complex diseases, will further increase the demand for target deconvolution. This review underscores strategies for identifying natural product targets (NPs) in the context of chronic inflammation over the past 5 years. These strategies encompass computational methodologies for early target discovery and the anticipation of compound binding sites, proteomics-driven approaches for target delineation and experimental biology techniques for target validation and comprehensive mechanistic exploration.
Collapse
Affiliation(s)
- Xian Pan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Shan Jiang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Xinzhuang Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Zhenzhong Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Liang Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Xiao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| |
Collapse
|
2
|
Yeshi K, Jamtsho T, Wangchuk P. Current Treatments, Emerging Therapeutics, and Natural Remedies for Inflammatory Bowel Disease. Molecules 2024; 29:3954. [PMID: 39203033 PMCID: PMC11357616 DOI: 10.3390/molecules29163954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, lifelong disorder characterized by inflammation of the gastrointestinal (GI) tract. The exact etiology of IBD remains incompletely understood due to its multifaceted nature, which includes genetic predisposition, environmental factors, and host immune response dysfunction. Currently, there is no cure for IBD. This review discusses the available treatment options and the challenges they present. Importantly, we examine emerging therapeutics, such as biologics and immunomodulators, that offer targeted treatment strategies for IBD. While many IBD patients do not respond adequately to most biologics, recent clinical trials combining biologics with small-molecule drugs (SMDs) have provided new insights into improving the IBD treatment landscape. Furthermore, numerous novel and specific therapeutic targets have been identified. The high cost of IBD drugs poses a significant barrier to treatment, but this challenge may be alleviated with the development of more affordable biosimilars. Additionally, emerging point-of-care protein biomarkers from serum and plasma are showing potential for enhancing the precision of IBD diagnosis and prognosis. Several natural products (NPs), including crude extracts, small molecules, and peptides, have demonstrated promising anti-inflammatory activity in high-throughput screening (HTS) systems and advanced artificial intelligence (AI)-assisted platforms, such as molecular docking and ADMET prediction. These platforms are advancing the search for alternative IBD therapies derived from natural sources, potentially leading to more affordable and safer treatment options with fewer side effects.
Collapse
Affiliation(s)
- Karma Yeshi
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia;
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
| | - Tenzin Jamtsho
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia;
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
| | - Phurpa Wangchuk
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia;
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
| |
Collapse
|
3
|
Ou SM, Hsu YC, Fu SL, Lin LC, Lin CH. Galgravin Isolated from Piper kadsura Ameliorates Lipopolysaccharide (LPS)-Induced Endotoxemia in Mice. Int J Mol Sci 2023; 24:16572. [PMID: 38068895 PMCID: PMC10706620 DOI: 10.3390/ijms242316572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Sepsis results from uncontrolled inflammation, characterized by cytokine storm and immunoparalysis. To assess whether galgravin, a natural lignan isolated from Piper kadsura, can be used to treat sepsis, models of bacterial lipopolysaccharide (LPS)-activated macrophages and LPS-induced endotoxemia mice were used. Galgravin suppressed NF-κB activation in LPS-activated RAW 264.7 macrophages without causing significant cytotoxicity, in which proinflammatory molecules like TNF-α, IL-6, iNOS, and COX-2 were downregulated. In addition, the expression of TNF-α and IL-6 was also suppressed by galgravin in LPS-activated murine bone marrow-derived macrophages. Moreover, galgravin significantly downregulated the mRNA expression of TNF-α, IL-6, and iNOS in the lungs and decreased TNF-α and IL-6 in the serum and IL-6 in the bronchoalveolar lavage fluid of LPS-challenged mice. The COX-2 expression in tissues, including the lung, liver, and kidney, as well as the lung alveolar hemorrhage, was also reduced by galgravin. The present study reveals the anti-inflammatory effects of galgravin in mouse models and implies its potential application in inflammation diseases.
Collapse
Affiliation(s)
- Shih-Ming Ou
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11467, Taiwan
| | - Yin-Chieh Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-C.H.); (S.-L.F.)
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-C.H.); (S.-L.F.)
| | - Lie-Chwen Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|