1
|
Guo Q, Zhai Q, Ji P. The Role of Mitochondrial Homeostasis in Mesenchymal Stem Cell Therapy-Potential Implications in the Treatment of Osteogenesis Imperfecta. Pharmaceuticals (Basel) 2024; 17:1297. [PMID: 39458939 PMCID: PMC11510265 DOI: 10.3390/ph17101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary disorder characterized by bones that are fragile and prone to breaking. The efficacy of existing therapies for OI is limited, and they are associated with potentially harmful side effects. OI is primarily due to a mutation of collagen type I and hence impairs bone regeneration. Mesenchymal stem cell (MSC) therapy is an attractive strategy to take advantage of the potential benefits of these multipotent stem cells to address the underlying molecular defects of OI by differentiating osteoblasts, paracrine effects, or immunomodulation. The maintenance of mitochondrial homeostasis is an essential component for improving the curative efficacy of MSCs in OI by affecting the differentiation, signaling, and immunomodulatory functions of MSCs. In this review, we highlight the MSC-based therapy pathway in OI and introduce the MSC regulation mechanism by mitochondrial homeostasis. Strategies aiming to modulate the metabolism and reduce the oxidative stress, as well as innovative strategies based on the use of compounds (resveratrol, NAD+, α-KG), antioxidants, and nanomaterials, are analyzed. These findings may enable the development of new strategies for the treatment of OI, ultimately resulting in improved patient outcomes.
Collapse
Affiliation(s)
- Qingling Guo
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| |
Collapse
|
2
|
Zhong Q. Resveratrol enhances the protective effects of calcium supplements on spinal cord injury-induced osteoporosis by targeting the SIRT1/FOXO3a pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03412-0. [PMID: 39287671 DOI: 10.1007/s00210-024-03412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
Spinal cord injury (SCI) often leads to osteoporosis due to factors like immobilization and hormonal imbalances. Calcium supplements are prescribed to help maintain bone health, but their efficacy may be limited. This study investigated whether resveratrol (RSV), a polyphenolic compound, could enhance the protective effects of calcium supplements on SCI-induced osteoporosis via the SIRT1/FOXO3a pathway, which regulates bone metabolism. Surgical cord transection induced SCI at the T9 vertebral level. An SCI mouse model was used with four groups: sham, SCI, SCI + 2% calcium, and SCI + calcium + RSV (20 mg/kg body weight). Biomechanical testing, gene expression, and Western blots were performed. Resveratrol and calcium supplementation synergistically preserved bone mass, microarchitecture, strength, and fracture resistance compared to calcium alone after SCI. This was accompanied by upregulated osteoblast markers, downregulated osteoclast markers, and increased SIRT1/FOXO3a expression and activation. The results suggest resveratrol enhances calcium's bone-protective effects in SCI-induced osteoporosis by modulating the SIRT1/FOXO3a pathway and osteoblast/osteoclast activities. Combining resveratrol with calcium supplementation may be a promising therapeutic approach for managing SCI-induced osteoporosis.
Collapse
Affiliation(s)
- Qiuwen Zhong
- Department of Orthopedics Guangdong Yingde People's Hospital, Yingde City, 513000, China.
| |
Collapse
|
3
|
Wang Y, Jiang Y, Chen J, Gong H, Qin Q, Wei S. In vitro antiviral activity of eugenol on Singapore grouper iridovirus. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109748. [PMID: 38964434 DOI: 10.1016/j.fsi.2024.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
The high mortality rate of Singapore grouper iridovirus (SGIV) posing a serious threat to the grouper aquaculture industry and causing significant economic losses. Therefore, finding effective drugs against SGIV is of great significance. Eugenol (C10H12O2) is a phenolic aromatic compound, has been widely studied for its anti-inflammatory, antioxidant and antiviral capacity. In this study, we explored the effect of eugenol on SGIV infection and its possible mechanisms using grouper spleen cells (GS) as an in vitro model. We found that treatment of GS cells with 100 μM eugenol for 4 h exhibited the optimal inhibitory effect on SGIV. Eugenol was able to reduce the expression level of inflammatory factors by inhibiting the activation of MAPK pathway and also inhibited the activity of NF-κB and AP-1 promoter. On the other hand, eugenol attenuated cellular oxidative stress by reducing intracellular ROS and promoted the expression of interferon-related genes. Therefore, we conclude that eugenol inhibits SGIV infection by enhancing cellular immunity through its anti-inflammatory and antioxidant functions.
Collapse
Affiliation(s)
- Yewen Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiatao Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hannan Gong
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
4
|
Meyer C, Brockmueller A, Ruiz de Porras V, Shakibaei M. Microbiota and Resveratrol: How Are They Linked to Osteoporosis? Cells 2024; 13:1145. [PMID: 38994996 PMCID: PMC11240679 DOI: 10.3390/cells13131145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Osteoporosis (OP), which is characterized by a decrease in bone density and increased susceptibility to fractures, is closely linked to the gut microbiota (GM). It is increasingly realized that the GM plays a key role in the maintenance of the functioning of multiple organs, including bone, by producing bioactive metabolites such as short-chain fatty acids (SCFA). Consequently, imbalances in the GM, referred to as dysbiosis, have been identified with a significant reduction in beneficial metabolites, such as decreased SCFA associated with increased chronic inflammatory processes, including the activation of NF-κB at the epigenetic level, which is recognized as the main cause of many chronic diseases, including OP. Furthermore, regular or long-term medications such as antibiotics and many non-antibiotics such as proton pump inhibitors, chemotherapy, and NSAIDs, have been found to contribute to the development of dysbiosis, highlighting an urgent need for new treatment approaches. A promising preventive and adjuvant approach is to combat dysbiosis with natural polyphenols such as resveratrol, which have prebiotic functions and ensure an optimal microenvironment for beneficial GM. Resveratrol offers a range of benefits, including anti-inflammatory, anti-oxidant, analgesic, and prebiotic effects. In particular, the GM has been shown to convert resveratrol, into highly metabolically active molecules with even more potent beneficial properties, supporting a synergistic polyphenol-GM axis. This review addresses the question of how the GM can enhance the effects of resveratrol and how resveratrol, as an epigenetic modulator, can promote the growth and diversity of beneficial GM, thus providing important insights for the prevention and co-treatment of OP.
Collapse
Affiliation(s)
- Christine Meyer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain
- Badalona Applied Research Group in Oncology (B⋅ARGO), Catalan Institute of Oncology, Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| |
Collapse
|
5
|
Hwang SM, Kim TY, Kim A, Kim YG, Park JW, Lee JM, Kim JY, Suh JY. Resveratrol facilitates bone formation in high-glucose conditions. Front Physiol 2024; 15:1347756. [PMID: 38706943 PMCID: PMC11066205 DOI: 10.3389/fphys.2024.1347756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Periodontitis is known to be affected by high-glucose conditions, which poses a challenge to periodontal tissue regeneration, particularly in bone formation. In this study, the potential effects of resveratrol (3,5,4'-trihydroxystilbene, RSV) in facilitating bone formation under high-glucose conditions after periodontitis has been investigated. We focused on the analysis of osteoblasts and periodontal ligament cells, which are essential for bone formation including cell proliferation and differentiation. And we aimed to investigate the impact of RSV on bone healing, employed diabetic mouse model induced by streptozotocin and confirmed through histological observation. High-glucose conditions adversely affected cell proliferation and ALP activity in both MC3T3-E1 and hPDLF in vitro, with more significant impact on MC3T3-E1 cells. RSV under high-glucose conditions had positive effects on both, showing early-stage effects for MC3T3-E1 cells and later-stage effects for hPDLF cells. RSV seemed to have a more pronounced rescuing role in MC3T3-E1 cells. Increased ALP activity was observed and the expression levels of significant genes, such as Col 1, TGF-β1, ALP, and OC, in osteogenic differentiation were exhibited stage-specific expression patterns. Upregulated Col 1 and TGF-β1 were detected in the early stage, and then ALP and OC expressions became more pronounced in the later stages. Similarly, stronger positive reactions against RUNX2 were detected in the RSV-treated group compared to the control. Furthermore, in in vivo experiment, RSV stimulates the growth and differentiation of osteoblasts, thereby promoting bone formation. High-glucose levels have the potential to impair cellular functions and the regenerative capacity to facilitate bone formation with MC3T3-E1 rather than hPDLF cells. Resveratrol appears to facilitate the inherent abilities of MC3T3-E1 cells compared with hPDLF cells, indicating its potential capacity to restore functionality during periodontal regeneration.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Anna Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
6
|
An R, Luo Q, Li L, Cui D, Jin J. The effects of resveratrol in animal models of primary osteoporosis: a systematic review and meta-analysis. J Orthop Surg Res 2024; 19:137. [PMID: 38350991 PMCID: PMC10863264 DOI: 10.1186/s13018-024-04595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND There is still a lack of sufficient evidence-based medical data on the effect of resveratrol (Res) on primary osteoporosis (OP). This meta-analysis aimed to comprehensively evaluate the role of Res in animal models of primary OP. METHODS The PubMed, Cochrane Library, Web of Science and Embase databases were searched up to August 2023. The risk of bias was assessed by the SYRCLE RoB tool. Random- or fixed-effects models were used to determine the 90% confidence interval (CI) or standardized mean difference (SMD). Statistical analysis was performed with RevMan 5.4 and Stata 14.0. RESULTS A total of 24 studies containing 714 individuals were included. Compared with those in the control group, the bone mineral density (BMD) (P < 0.00001), bone volume/total volume (BV/TV) (P < 0.001), trabecular thickness (Tb.Th) (P < 0.00001), and trabecular number (Tb.N) (P < 0.00001) were markedly greater, and the trabecular separation (Tb.Sp) (P < 0.00001) was significantly greater. Compared with the control group, the Res group also exhibited marked decreases in alkaline phosphatase (ALP) (P < 0.05), tartrate-resistant acid phosphatase 5b (TRAP5b) (P < 0.01), and type I collagen strong carboxyl peptide (CTX-1) (P < 0.00001) and a marked increase in osteoprotegerin (OPG) (P < 0.00001). CONCLUSION In summary, we concluded that Res can markedly increase BMD, improve morphometric indices of trabecular microstructure and serum bone turnover markers (BTMs), and exert a protective effect in animal models of primary osteoporosis. This study can supply experimental reference for Res in primary osteoporosis treatment.
Collapse
Affiliation(s)
| | - Qian Luo
- Baoji Traditional Chinese Medicine Hospital, Baoji, China
| | - Lei Li
- Yanbian University Hospital, Yanji, China
| | - Dinglu Cui
- Yanbian University Hospital, Yanji, China
| | | |
Collapse
|
7
|
Barreiro-Sisto U, Fernández-Fariña S, González-Noya AM, Pedrido R, Maneiro M. Enemies or Allies? Hormetic and Apparent Non-Dose-Dependent Effects of Natural Bioactive Antioxidants in the Treatment of Inflammation. Int J Mol Sci 2024; 25:1892. [PMID: 38339170 PMCID: PMC10855620 DOI: 10.3390/ijms25031892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
This review aims to analyze the emerging number of studies on biological media that describe the unexpected effects of different natural bioactive antioxidants. Hormetic effects, with a biphasic response depending on the dose, or activities that are apparently non-dose-dependent, have been described for compounds such as resveratrol, curcumin, ferulic acid or linoleic acid, among others. The analysis of the reported studies confirms the incidence of these types of effects, which should be taken into account by researchers, discarding initial interpretations of imprecise methodologies or measurements. The incidence of these types of effects should enhance research into the different mechanisms of action, particularly those studied in the field of basic research, that will help us understand the causes of these unusual behaviors, depending on the dose, such as the inactivation of the signaling pathways of the immune defense system. Antioxidative and anti-inflammatory activities in biological media should be addressed in ways that go beyond a mere statistical approach. In this work, some of the research pathways that may explain the understanding of these activities are revised, paying special attention to the ability of the selected bioactive compounds (curcumin, resveratrol, ferulic acid and linoleic acid) to form metal complexes and the activity of these complexes in biological media.
Collapse
Affiliation(s)
- Uxía Barreiro-Sisto
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| | - Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| | - Ana M. González-Noya
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (U.B.-S.); (S.F.-F.)
| |
Collapse
|
8
|
Ma Y, Qian Y, Chen Y, Ruan X, Peng X, Sun Y, Zhang J, Luo J, Zhou S, Deng C. Resveratrol modulates the inflammatory response in hPDLSCs via the NRF2/HO-1 and NF-κB pathways and promotes osteogenic differentiation. J Periodontal Res 2024; 59:162-173. [PMID: 37905727 DOI: 10.1111/jre.13200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate resveratrol's specific role as an anti-inflammatory and osteogenic differentiation of hPDLSCs in periodontitis and to reveal the mechanisms involved. BACKGROUND Numerous studies have shown that inhibiting the inflammatory response of periodontal tissues and promoting the regeneration of alveolar bone are crucial treatments for periodontitis. Resveratrol has been found to have certain anti-inflammatory property. However, the anti-inflammatory mechanism and osteogenic effect of resveratrol in periodontitis are poorly understood. MATERIALS AND METHODS We constructed an in vitro periodontitis model by LPS stimulation of hPDLSCs and performed WB, RT-qPCR, and immunofluorescence to analyze inflammatory factors and related pathways. In addition, we explored the osteogenic ability of resveratrol in in vitro models. RESULTS In vitro, resveratrol ameliorated the inflammatory response associated with activation of the NF-κB pathway through activation of the NRF2/HO-1 pathway, characterized by inhibition of p65/p50 nuclear translocation and the proinflammatory cytokines interleukin-1β levels. Resveratrol also has a positive effect on osteogenic differentiation. CONCLUSIONS Observations suggest that resveratrol modulates the inflammatory response in hPDLSCs via the NRF2/HO-1 and NF-κB pathways and promotes osteogenic differentiation.
Collapse
Affiliation(s)
- Yifan Ma
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Yi Qian
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Yuteng Chen
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Xiaoxu Ruan
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Xiaoya Peng
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Yi Sun
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Jue Zhang
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Jingjing Luo
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Songlin Zhou
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Chao Deng
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| |
Collapse
|
9
|
Liao S, Zhou J, Chen H, Wei W, Ye F, Zhang Y, Zhang Z. The relationship between caffeine and its metabolites and bone mineral density in postmenopausal women: a cross-sectional analysis from the NHANES database. J Nutr Sci 2024; 12:e131. [PMID: 38415243 PMCID: PMC10897510 DOI: 10.1017/jns.2023.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 02/29/2024] Open
Abstract
We aim to explore the association between caffeine and its metabolites and bone mineral density (BMD) in postmenopausal women. Data of 4286 postmenopausal women were extracted from the National Health and Nutrition Examination Survey (NHANES) database in 2009-14 in this cross-sectional study. Weighted linear regression and stepwise regression analyses were used to screen the covariates. Weighted univariate and multivariate linear regression analyses were used to explore the associations between caffeine and its metabolites and BMD. The evaluation index was estimated value (β) with 95 % confidence intervals (CIs). We also explored these relationships in age subgroups. The median BMD level among the eligible women was 0⋅7 gm/cm2. After adjusting for covariates including age, body mass index (BMI), fat intake, Calcium (Ca) supplements, diabetes mellitus (DM), angina pectoris, parental history of osteoporosis (OP), anti-osteoporosis therapy, poverty income ratio (PIR), vitamin D (VD) supplements, coronary heart disease (CHD), and previous fracture, we found that caffeine intake was not significantly related to the BMD reduction (β = 0, P = 0⋅135). However, caffeine metabolites, including MethyluricAcid3, MethyluricAcid7, MethyluricAcid37, Methylxanthine3, and Methylxanthine37, were negatively associated with the BMD (all P < 0⋅05). In addition, MethyluricAcid37 and Methylxanthine37 were negatively associated with BMD in females aged <65 years old, while MethyluricAcid3 and Methylxanthine3 were noteworthy in those who aged ≥65 years old. The roles of caffeine and its metabolites in BMD reduction and OP in postmenopausal women needed further exploration.
Collapse
Affiliation(s)
- Sheng Liao
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, 958th Hospital of the PLA Army, No. 29 Jianxin East Road, JiangbeiDistrict, Chongqing 400000, P.R. China
| | - Jianhong Zhou
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, 958th Hospital of the PLA Army, No. 29 Jianxin East Road, JiangbeiDistrict, Chongqing 400000, P.R. China
| | - Hui Chen
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, 958th Hospital of the PLA Army, No. 29 Jianxin East Road, JiangbeiDistrict, Chongqing 400000, P.R. China
| | - Wei Wei
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, 958th Hospital of the PLA Army, No. 29 Jianxin East Road, JiangbeiDistrict, Chongqing 400000, P.R. China
| | - Feng Ye
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, 958th Hospital of the PLA Army, No. 29 Jianxin East Road, JiangbeiDistrict, Chongqing 400000, P.R. China
| | - Yidong Zhang
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, 958th Hospital of the PLA Army, No. 29 Jianxin East Road, JiangbeiDistrict, Chongqing 400000, P.R. China
| | - Zhongrong Zhang
- Department of Orthopaedic, Jiangbei Branch of Southwest Hospital, 958th Hospital of the PLA Army, No. 29 Jianxin East Road, JiangbeiDistrict, Chongqing 400000, P.R. China
| |
Collapse
|
10
|
Bajpai AK, Gu Q, Jiao Y, Starlard-Davenport A, Gu W, Quarles LD, Xiao Z, Lu L. Systems genetics and bioinformatics analyses using ESR1-correlated genes identify potential candidates underlying female bone development. Genomics 2024; 116:110769. [PMID: 38141931 PMCID: PMC10811775 DOI: 10.1016/j.ygeno.2023.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Estrogen receptor α (ESR1) is involved in E2 signaling and plays a major role in postmenopausal bone loss. However, the molecular network underlying ESR1 has not been explored. We used systems genetics and bioinformatics to identify important genes associated with Esr1 in postmenopausal bone loss. We identified ~2300 Esr1-coexpressed genes in female BXD bone femur, functional analysis of which revealed 'osteoblast signaling' as the most enriched pathway. PPI network led to the identification of 25 'female bone candidates'. The gene-regulatory analysis revealed RUNX2 as a key TF. ANKRD1 and RUNX2 were significantly different between osteoporosis patients and healthy controls. Sp7, Col1a1 and Pth1r correlated with multiple femur bone phenotypes in BXD mice. miR-3121-3p targeted Csf1, Ankrd1, Sp7 and Runx2. β-estradiol treatment markedly increased the expression of these candidates in mouse osteoblast. Our study revealed that Esr1-correlated genes Ankrd1, Runx2, Csf1 and Sp7 may play important roles in female bone development.
Collapse
Affiliation(s)
- Akhilesh K Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China
| | - Yan Jiao
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Weikuan Gu
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leigh Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
11
|
Li J, Yu J, Zou H, Zhang J, Ren L. Estrogen receptor-mediated health benefits of phytochemicals: a review. Food Funct 2023; 14:10681-10699. [PMID: 38047630 DOI: 10.1039/d3fo04702d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Estrogen receptors (ERs) are transcription factors with two subtypes: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), which are essential for the maintenance of human health and play a regulatory role in common diseases such as breast cancer, osteoporosis, neurodegenerative disorders, liver injuries and lung cancers. A number of phytochemicals extracted from various fruits and vegetables have been demonstrated to exhibit estrogenic effects and are termed phytoestrogens. As modulators of ERs, phytoestrogens can be involved in the prevention and treatment of multiple diseases as complementary or alternative therapeutic agents and have a variety of health benefits for humans. This article reviews the health benefits of phytoestrogens in clinical and epidemiologic studies for several diseases and also provides a detailed description of the molecular mechanisms of their action. A brief comparison of the advantages and disadvantages of natural phytochemicals compared to synthetic drugs is also presented. The role of phytoestrogens in the treatment of diseases and human health requires further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Junfeng Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
12
|
Liu Z, Li Q, Wang X, Wu Y, Zhang Z, Mao J, Gong S. Proanthocyanidin enhances the endogenous regeneration of alveolar bone by elevating the autophagy of PDLSCs. J Periodontal Res 2023; 58:1300-1314. [PMID: 37715945 DOI: 10.1111/jre.13186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE This study aimed to investigate the effect of proanthocyanidin (PA) on osteogenesis mediated by periodontal ligament stem cells (PDLSCs) and endogenous alveolar bone regeneration. BACKGROUND Leveraging the osteogenic potential of resident stem cells is a promising strategy for alveolar bone regeneration. PA has been reported to be effective in osteogenesis. However, the effect and mechanism of PA on the osteogenic differentiation of PDLSCs remain elusive. METHODS Human PDLSCs were treated with various doses of PA to assess the cell proliferation using Cell Counting Kit-8. The osteogenic differentiation ability was detected by qRT-PCR analysis, western blot analysis, Alizarin red S staining, and Alkaline Phosphatase staining. The level of autophagy was evaluated by confocal laser scanning microscopy, transmission electron microscopy, and western blot analysis. RNA sequencing was utilized to screen the potential signaling pathway. The alveolar bone defect model of rats was created to observe endogenous bone regeneration. RESULTS PA activated intracellular autophagy in PDLSCs, resulting in enhanced osteogenic differentiation. Moreover, this effect could be abolished by the autophagy inhibitor 3-Methyladenine. Mechanistically, the PI3K/Akt/mTOR pathway was negatively correlated with PA-mediated autophagy activation. Lastly, PA promoted the alveolar bone regeneration in vivo, and this effect was reversed when the autophagy process was blocked. CONCLUSION PA may activate autophagy by inhibiting PI3K/Akt/mTOR signaling pathway to promote the osteogenesis of PDLSCs and enhance endogenous alveolar bone regeneration.
Collapse
Affiliation(s)
- Zhuo Liu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qilin Li
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiangyao Wang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yaxin Wu
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhixing Zhang
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jing Mao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shiqiang Gong
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
13
|
Jiang X, Li W, Ge L, Lu M. Mesenchymal Stem Cell Senescence during Aging:From Mechanisms to Rejuvenation Strategies. Aging Dis 2023; 14:1651-1676. [PMID: 37196126 PMCID: PMC10529739 DOI: 10.14336/ad.2023.0208] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 05/19/2023] Open
Abstract
In cell transplantation therapy, mesenchymal stem cells(MSCs)are ideal seed cells due to their easy acquisition and cultivation, strong regenerative capacity, multi-directional differentiation abilities, and immunomodulatory effects. Autologous MSCs are better applicable compared with allogeneic MSCs in clinical practice. The elderly are the main population for cell transplantation therapy, but as donor aging, MSCs in the tissue show aging-related changes. When the number of generations of in vitro expansion is increased, MSCs will also exhibit replicative senescence. The quantity and quality of MSCs decline during aging, which limits the efficacy of autologous MSCs transplantation therapy. In this review, we examine the changes in MSC senescence as a result of aging, discuss the progress of research on mechanisms and signalling pathways of MSC senescence, and discuss possible rejuvenation strategies of aged MSCs to combat senescence and enhance the health and therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Xinchen Jiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| | - Wenshui Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China, Changsha
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| |
Collapse
|
14
|
Zhu Y, Jiang S, Xu D, Cheng G, Shi B. Resveratrol-loaded co-axial electrospun poly(ε-caprolactone)/chitosan/polyvinyl alcohol membranes for promotion of cells osteogenesis and bone regeneration. Int J Biol Macromol 2023; 249:126085. [PMID: 37536411 DOI: 10.1016/j.ijbiomac.2023.126085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
The guided bone regeneration (GBR) membranes currently used in clinics are usually compromised by their limited osteogenic induction potential. In this study, we fabricate a core-shell poly(ε-caprolactone)/chitosan/polyvinyl alcohol (PCL/CS/PVA) GBR membrane with different amount of resveratrol (RSV), endowing the PCL/CS/PVA GBR membrane with superior osteogenic induction ability, which was not attained by the regular GBR membrane. The prepared GBR membranes were characterized by scanning electron microscopy, transmission electron microscopy, and CCK-8 and live-dead staining assays, and their osteogenic induction ability was evaluated using Col-I immunofluorescence staining, micro-computed tomography, haematoxylin and eosin staining and immunohistochemical staining. Results of the in vitro release experiment confirmed that the membranes exhibited a continuous RSV release profile for 15 days. Furthermore, the cumulative releasing of RSV was increased from 39.68 ± 2.09 μg to 65.8 ± 2.91 μg with increasing contents of RSV from 0.1 % to 0.5 % (w/v) in the core layer of GBR membranes. In particular, the PCL/CS/PVA GBR membrane loading with 0.5 % RSV most efficiently release RSV in a sustained and controlled manner, which significantly induced osteogenic differentiation of pre-osteoblasts in vitro and bone regeneration in vivo. Based on the in vivo histological findings, newly formed bone tissues with 82.46 ± 9.86 % BV/TV and 0.70 ± 0.07gcm-3 BMD were generated in the defect sites treated by the GBR membrane loaded with 0.5 % RSV, which were the largest values among those for all three groups after 12 weeks of post implantation. Overall, the PCL/CS/PVA GBR membrane loaded with 0.5 % RSV has significant potential for bone regeneration.
Collapse
Affiliation(s)
- Yan Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China; Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Shengjun Jiang
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Dongdong Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325002, Zhejiang, China
| | - Gu Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China; School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325002, Zhejiang, China.
| | - Bin Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China.
| |
Collapse
|
15
|
TAMURA N, HEIDARI N, FARAGHER RG, SMITH RK, DUDHIA J. Effects of resveratrol and its analogues on the cell cycle of equine mesenchymal stem/stromal cells. J Equine Sci 2023; 34:67-72. [PMID: 37781569 PMCID: PMC10534064 DOI: 10.1294/jes.34.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/28/2023] [Indexed: 10/03/2023] Open
Abstract
Resveratrol (RSV; trans-3,5,4'-trihydroxystilbene) strongly activates sirtuin 1, and it and its analogue V29 enhance the proliferation of mesenchymal stem/stromal cells (MSCs).Although culture medium containing 5-azacytydine and RSV inhibits senescence of adipose tissue-derived MSCs isolated from horses with metabolic syndrome, few studies have reported the effects of RSV on equine bone marrow-derived MSCs (eBMMSCs) isolated from horses without metabolic syndrome. The aim of this study was to investigate the effects of RSV and V29 on the cell cycle of eBMMSCs. Following treatment with 5 µM RSV or 10 µM V29, the cell proliferation capacity of eBMMSCs derived from seven horses was evaluated by EdU (5-ethynyl-2'-deoxyuridine) and Ki-67 antibody assays. Brightfield images of cells and immunofluorescent images of EdU, Ki-67, and DAPI staining were recorded by fluorescence microscopy, and the number of cells positive for each was quantified and compared by Friedman's test at P<0.05. The growth fraction of eBMMSCs was significantly increased by RSV and V29 as measured by the EdU assay (control 28.1% ± 13.8%, V29 31.8% ± 14.6%, RSV 32.0% ± 10.8%; mean ± SD; P<0.05) but not as measured by the Ki-67 antibody assay (control 27.0% ± 11.2%, V29 27.4% ± 10.8%, RSV 27.7% ± 6.8%). RSV and V29 promoted progression of the cell cycle of eBMMSCs into the S phase and may be useful for eBMMSC expansion.
Collapse
Affiliation(s)
- Norihisa TAMURA
- Clinical Veterinary Medicine Division, Equine
Research Institute, Japan Racing Association, Tochigi 329-0412,
Japan
- Department of Clinical Sciences and Services,
Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| | - Neda HEIDARI
- Department of Clinical Sciences and Services,
Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| | - Richard G.A. FARAGHER
- School of Pharmacy and Biomolecular Sciences,
University of Brighton, Brighton BN2 4GJ, UK
| | - Roger K.W. SMITH
- Department of Clinical Sciences and Services,
Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| | - Jayesh DUDHIA
- Department of Clinical Sciences and Services,
Royal Veterinary College, University of London, Hatfield AL9 7TA, UK
| |
Collapse
|
16
|
Jiang H, Ni J, Hu L, Xiang Z, Zeng J, Shi J, Chen Q, Li W. Resveratrol May Reduce the Degree of Periodontitis by Regulating ERK Pathway in Gingival-Derived MSCs. Int J Mol Sci 2023; 24:11294. [PMID: 37511053 PMCID: PMC10378998 DOI: 10.3390/ijms241411294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Gingival-derived mesenchymal stem cells (GMSCs) have strong self-renewal, multilineage differentiation, and immunomodulatory properties and are expected to be applied in anti-inflammatory and tissue regeneration. However, achieving the goal of using endogenous stem cells to treat diseases and even regenerate tissues remains a challenge. Resveratrol is a natural compound with multiple biological activities that can regulate stem cell immunomodulation when acting on them. This study found that resveratrol can reduce inflammation in human gingival tissue and upregulate the stemness of GMSCs in human gingiva. In cell experiments, it was found that resveratrol can reduce the expression of TLR4, TNFα, and NFκB and activate ERK/Wnt crosstalk, thereby alleviating inflammation, promoting the proliferation and osteogenic differentiation ability of GMSCs, and enhancing their immunomodulation. These results provide a new theoretical basis for the application of resveratrol to activate endogenous stem cells in the treatment of diseases in the future.
Collapse
Affiliation(s)
- Han Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou 310000, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jia Ni
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Longshuang Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou 310000, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zichao Xiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou 310000, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou 310000, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou 310000, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Wen Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou 310000, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| |
Collapse
|
17
|
Tyuryaeva I, Lyublinskaya O. Expected and Unexpected Effects of Pharmacological Antioxidants. Int J Mol Sci 2023; 24:ijms24119303. [PMID: 37298254 DOI: 10.3390/ijms24119303] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
In this review, we have collected the existing data on the bioactivity of antioxidants (N-acetylcysteine, polyphenols, vitamin C) which are traditionally used in experimental biology and, in some cases, in the clinic. Presented data show that, despite the capacity of these substances to scavenge peroxides and free radicals in cell-free systems, their ability to exhibit these properties in vivo, upon pharmacological supplementation, has not been confirmed so far. Their cytoprotective activity is explained mainly by the ability not to suppress, but to activate multiple redox pathways, which causes biphasic hormetic responses and highly pleiotropic effects in cells. N-acetylcysteine, polyphenols, and vitamin C affect redox homeostasis by generating low-molecular-weight redox-active compounds (H2O2 or H2S), known for their ability to stimulate cellular endogenous antioxidant defense and promote cytoprotection at low concentrations but exert deleterious effects at high concentrations. Moreover, the activity of antioxidants strongly depends on the biological context and mode of their application. We show here that considering the biphasic and context-dependent response of cells on the pleiotropic action of antioxidants can help explain many of the conflicting results obtained in basic and applied research and build a more logical strategy for their use.
Collapse
Affiliation(s)
- Irina Tyuryaeva
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretskii pr. 4, 194064 St. Petersburg, Russia
| | - Olga Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretskii pr. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
18
|
Ahmad Hairi H, Jayusman PA, Shuid AN. Revisiting Resveratrol as an Osteoprotective Agent: Molecular Evidence from In Vivo and In Vitro Studies. Biomedicines 2023; 11:1453. [PMID: 37239124 PMCID: PMC10216404 DOI: 10.3390/biomedicines11051453] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Resveratrol (RSV) (3,5,4'-trihydroxystilbene) is a stilbene found in abundance in berry fruits, peanuts, and some medicinal plants. It has a diverse range of pharmacological activities, underlining the significance of illness prevention and health promotion. The purpose of this review was to delve deeper into RSV's bone-protective properties as well as its molecular mechanisms. Several in vivo studies have found the bone-protective effects of RSV in postmenopausal, senile, and disuse osteoporosis rat models. RSV has been shown to inhibit NF-κB and RANKL-mediated osteoclastogenesis, oxidative stress, and inflammation while increasing osteogenesis and boosting differentiation of mesenchymal stem cells to osteoblasts. Wnt/β-catenin, MAPKs/JNK/ERK, PI3K/AKT, FoxOs, microRNAs, and BMP2 are among the possible kinases and proteins involved in the underlying mechanisms. RSV has also been shown to be the most potent SIRT1 activator to cause stimulatory effects on osteoblasts and inhibitory effects on osteoclasts. RSV may, thus, represent a novel therapeutic strategy for increasing bone growth and reducing bone loss in the elderly and postmenopausal population.
Collapse
Affiliation(s)
- Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia;
| | - Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, Sungai Buloh 47000, Malaysia
| |
Collapse
|
19
|
Zhang Z, Zhang M, Sun Y, Li M, Chang C, Liu W, Zhu X, Wei L, Wen F, Liu Y. Effects of adipose derived stem cells pretreated with resveratrol on sciatic nerve regeneration in rats. Sci Rep 2023; 13:5812. [PMID: 37037844 PMCID: PMC10085980 DOI: 10.1038/s41598-023-32906-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
Adipose derived stem cells (ADSCs) are popular in regenerative medicine due to their easy availability, low immunogenicity and lack of controversy regarding their ethical debate use. Although ADSCs can repair nerve damage, the oxidative microenvironment of damaged tissue can induce apoptosis of transplanted stem cells, which weakens the therapeutic efficacy of ADSCs. Resveratrol (Res) is a type of natural polyphenol compound that regulates the proliferation, senescence and differentiation of stem cells. Therefore, we investigated whether incubation of ADSCs with Res improves their to promote peripheral nerve regeneration. ADSCs were cultured in vitro and treated with H2O2 to establish an apoptosis model. The control, H2O2 and Res groups were set up. The cell survival rate was detected by the CCK-8 method. The TUNEL assay was used to detect the apoptosis of the cells. qRT‒PCR was used to analyze the expression of apoptosis-related mRNA, and the effect of Res on the proliferation of ADSCs was investigated. In vivo, 40 SD rats were randomly divided into the control, model, ADSCs and ADSC + Res groups, with 13 rats in each group. The sciatic nerve injury rat model was established by the clamp method. Gait was observed on Days 7, 14, 21, and 28. Sciatic nerve regeneration was detected on Day 28. Res had no effect on the proliferation of ADSCs, and the TUNEL assay confirmed that Res pretreatment could significantly improve H2O2-induced apoptosis in ADSCs. Compared with the control group, caspase-3, Bax and Bcl-2 expression levels were significantly increased in the H2O2 group. Compared with the H2O2 group caspase-3 and Bax expression levels were significantly decreased, and Bcl-2 expression levels were significantly increased in ADSCs + Res group. At 4 weeks after surgery, the functional index of the sciatic nerve in the ADSCs + Res group was significantly higher than that in the model group. On Day 28, the average density of the sciatic nerve myelin sheath in the ADSCs + Res group was significantly increased compared with that in the model group, and Nissl staining showed that the number of motor neurons in the spinal cord was significant compared with that in the model group. Compared with the control group, the wet weight ratio of gastrocnemius muscle and muscle fiber area in ADSCs + Res group were significantly increased. Res enhanced the ability of ADSCs to promote sciatic nerve regeneration in rats.
Collapse
Affiliation(s)
- Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Mengyu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yingying Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Monan Li
- The School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Chenhao Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Weiqi Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xuemin Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Lan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Fengyun Wen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| |
Collapse
|
20
|
Coelho MC, Vetucci VR, Fernandes RR, Sanchez PKV, Siessere S, Bombonato-Prado KF. Low concentrations of grape seed extract maintain osteoblast morphology, cell adhesion, and mineralization. Braz Dent J 2023; 34:97-104. [PMID: 37194860 DOI: 10.1590/0103-6440202304987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/04/2023] [Indexed: 05/18/2023] Open
Abstract
The increase in life expectancy has led to a higher incidence of osteoporosis, characterized by an imbalance in bone remodeling. Several drugs are used for its treatment, but most promote undesirable side effects. The present investigation evaluated the effects of two low concentrations of grape seed extract (GSE) rich in proanthocyanidins on MC3T3-E1 osteoblastic cells. The cells were cultured in an osteogenic medium and divided into control (C), 0.1 µg/mL GSE (GSE0.1), and 1.0 µg/mL GSE (GSE1.0) groups to evaluate cell morphology, adhesion, and proliferation, in situ alkaline phosphatase (ALP) detection, mineralization and immunolocalization of osteopontin (OPN). The data obtained were analyzed by statistical tests for a significance of 5%. Cell morphology was maintained with both GSE concentrations, whereas cell adhesion significantly increased within three days in all groups. Cell proliferation increased significantly at seven days of culture, followed by a significant decrease in all experimental periods, with no statistical difference among them. In situ detection of ALP and mineralization increased with time, but within each period, no statistical differences among groups were observed. The expression of osteopontin was distributed regularly with more intensity after 24 hours in the GSE0.1 group. After three days, OPN expression was more intense in the control group, followed by GSE0.1 and GSE1.0 groups. Data obtained suggest that low concentrations of GSE do not affect the morphology and may stimulate the functional activity of osteoblastic cells.
Collapse
Affiliation(s)
- Maria Carolina Coelho
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Viviann Ruocco Vetucci
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roger Rodrigo Fernandes
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Selma Siessere
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karina Fittipaldi Bombonato-Prado
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
Chen H, Huang Z, Chen C. The Role of Histone Acetylation Modification in Dental Tissue-Derived Mesenchymal Stem Cells and Odontogenesis. Cell Reprogram 2023; 25:11-19. [PMID: 36594932 DOI: 10.1089/cell.2022.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Odontogenesis is a complex physiological process that is based on dental tissue-derived mesenchymal stem cells (MSCs). Dental tissue-derived MSCs are the stem cell populations isolated and characterized from different parts of the oral cavity, and are considered as promising candidates for stem cell-based therapy. During odontogenesis, epigenetic factors can influence the proliferation, differentiation, or apoptosis of dental tissue-derived MSCs. As one of the epigenetic modifications, histone acetylation modification is critical for the proper regulation of many biological processes, including transcriptional regulation of cell cycle progression and cell fate. In odontogenesis, histone acetylation and deacetylation play crucial roles in odontogenic differentiation of dental tissue-derived MSCs. In this review, we aim to outline the general features of acetylation modification and describe their roles in odontogenic differentiation of dental tissue-derived MSCs, as well as their future implications in the field of novel regenerative therapies for the dentine-pulp complex.
Collapse
Affiliation(s)
- Haoling Chen
- Department of Pediatric Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zijing Huang
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Chuxiao Chen
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Liu ZM, Li SY, Huang Q, Zeng FF, Li BL, Cao WT, Chen YM. Greater habitual resveratrol intakes were associated with lower risk of hip fracture- a 1:1 matched case-control study in Chinese elderly. Phytother Res 2023; 37:672-678. [PMID: 36205605 DOI: 10.1002/ptr.7645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/27/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022]
Abstract
The aim of the study was to testify the association of dietary resveratrol (RSV) intakes with hip fracture risk in Chinese elderly. This was a 1:1 age- and gender- matched case-control study. Eligible cases were newly diagnosed patients of hip fracture. Dietary assessment was made by a 79-item validated food frequency questionnaire. Habitual RSV intakes were estimated as the sum of trans- and cis- isomers of resveratrol and piceid according to the available database. Multivariable conditional logistic regression was applied to examine the relationship of dietary RSV and RSV-rich foods with hip fracture risk. A total of 1,070 pairs of hip fracture incident cases and controls were recruited and 1,065 were included for analysis. Compared with the lowest group, total RSV in the highest quartile group had significantly reduced hip fracture risk by 66.3% (OR: 0.337, 0.222 ~ 0.571, ptrend < 0.001). Similar findings were observed for cis- and trans-RSV, cis- and trans-Piceid, as well as RSV-rich foods (grapes, apples and nuts) respectively. Subgroup analysis suggested more evident findings among female and less obese participants. Our findings demonstrated that higher habitual RSV intakes and RSV-rich foods, even in a relatively low amount, were associated with reduced risk of hip fracture in Chinese elderly.
Collapse
Affiliation(s)
- Zhao-Min Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shu-Yi Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qi Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fang-Fang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Bao-Lin Li
- Guangzhou Orthopaedics Trauma Hospital, Guangzhou, China
| | - Wen-Ting Cao
- Department of Epidemiology, School of Public Health, Hainan Medical University, Haikou, China
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Sakr HF, Ammar B, AlKharusi A, Al-Lawati I, AlKhateeb M, Elesawy BH. Resveratrol Modulates Bone Mineral Density and Bone Mineral Content in A Rat Model of Male Hypogonadism. Chin J Integr Med 2023; 29:146-154. [PMID: 35799086 DOI: 10.1007/s11655-022-2895-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To determine whether resveratrol (Res) can correct osteoporosis induced in a rat model of male hypogonadism. METHODS Thirty-two rats were randomly divided into 4 groups, 8 in each group; 1) a control sham group: underwent a similar surgical procedure for induction of orchiectomy (ORCD) without ligation of any arteries or veins or removal of the testis and epididymis; 2) a control + Res-treated group (Con+Res): underwent sham surgery similar to the control, but was then treated with Res, as described below; 3) an ORCD-induced group: bilateral ORCD surgery as described above, and 4) a ORCD+Res-treated group: bilateral ORCD surgery followed by Res treatment. Res treatment began 4 weeks after ORCD and continued for 12 weeks. After 12 weeks, bone mineral density (BMD) and bone mineral content (BMC) were measured in the tibia and femur of each rat's right hind leg. Blood levels of bone turnover indicators such as deoxypyridinoline (Dpd), N-telopeptide of type I collagen (NTX I), alkaline phosphatase (ALP), and osteocalcin (OC), as well as receptor activator of nuclear factor kappa B (RANK) and osteoprotegerin (OPG) were assessed. RESULTS ORCD significantly decreased BMD (P<0.01) and significantly increased bone resorption, manifested by increased RANK. In addition, it inhibited serum levels of OPG and OC. Res treatment after ORCD effectively increased serum levels of bone formation markers such as OPG and OC, compared with testisectomized rats (P<0.05). CONCLUSION Res could ameliorate bone loss induced by male hypogonadism, possible via restoration of the normal balance between RANK and OPG.
Collapse
Affiliation(s)
- Hussein F Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, 123, Oman. .,Medical Physiology Department, Faculty of Medicine, Mansoura, University, Mansoura, 35516, Egypt.
| | - Boudaka Ammar
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, 123, Oman
| | - Amira AlKharusi
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, 123, Oman
| | - I Al-Lawati
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, 123, Oman
| | - Mahmoud AlKhateeb
- Basic Medical Sciences Department, College of Medicine at King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, 11481, Saudi Arabia
| | - Basim H Elesawy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, 21944, Saudi Arabia
| |
Collapse
|
24
|
Radu ER, Voicu SI, Thakur VK. Polymeric Membranes for Biomedical Applications. Polymers (Basel) 2023; 15:polym15030619. [PMID: 36771921 PMCID: PMC9919920 DOI: 10.3390/polym15030619] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes are selective materials used in a wide range of applications that require separation processes, from water filtration and purification to industrial separations. Because of these materials' remarkable properties, namely, selectivity, membranes are also used in a wide range of biomedical applications that require separations. Considering the fact that most organs (apart from the heart and brain) have separation processes associated with the physiological function (kidneys, lungs, intestines, stomach, etc.), technological solutions have been developed to replace the function of these organs with the help of polymer membranes. This review presents the main biomedical applications of polymer membranes, such as hemodialysis (for chronic kidney disease), membrane-based artificial oxygenators (for artificial lung), artificial liver, artificial pancreas, and membranes for osseointegration and drug delivery systems based on membranes.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Correspondence: (S.I.V.); (V.K.T.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
- Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
- Correspondence: (S.I.V.); (V.K.T.)
| |
Collapse
|
25
|
Effects of phytoestrogens on reproductive organ health. Arch Pharm Res 2022; 45:849-864. [DOI: 10.1007/s12272-022-01417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
|
26
|
Ahmadi A, Mazloomnejad R, Kasravi M, Gholamine B, Bahrami S, Sarzaeem MM, Niknejad H. Recent advances on small molecules in osteogenic differentiation of stem cells and the underlying signaling pathways. Stem Cell Res Ther 2022; 13:518. [PMID: 36371202 PMCID: PMC9652959 DOI: 10.1186/s13287-022-03204-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022] Open
Abstract
Bone-related diseases are major contributors to morbidity and mortality in elderly people and the current treatments result in insufficient healing and several complications. One of the promising areas of research for healing bone fractures and skeletal defects is regenerative medicine using stem cells. Differentiating stem cells using agents that shift cell development towards the preferred lineage requires activation of certain intracellular signaling pathways, many of which are known to induce osteogenesis during embryological stages. Imitating embryological bone formation through activation of these signaling pathways has been the focus of many osteogenic studies. Activation of osteogenic signaling can be done by using small molecules. Several of these agents, e.g., statins, metformin, adenosine, and dexamethasone have other clinical uses but have also shown osteogenic capacities. On the other hand, some other molecules such as T63 and tetrahydroquinolines are not as well recognized in the clinic. Osteogenic small molecules exert their effects through the activation of signaling pathways known to be related to osteogenesis. These pathways include more well-known pathways including BMP/Smad, Wnt, and Hedgehog as well as ancillary pathways including estrogen signaling and neuropeptide signaling. In this paper, we review the recent data on small molecule-mediated osteogenic differentiation, possible adjunctive agents with these molecules, and the signaling pathways through which each small molecule exerts its effects.
Collapse
Affiliation(s)
- Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Babak Gholamine
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Mohammad Mahdi Sarzaeem
- Department of Orthopedic Surgery, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985711151, Tehran, Iran.
| |
Collapse
|
27
|
Li C, Cui Z, Deng S, Chen P, Li X, Yang H. The potential of plant extracts in cell therapy. STEM CELL RESEARCH & THERAPY 2022; 13:472. [PMID: 36104798 PMCID: PMC9476258 DOI: 10.1186/s13287-022-03152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/23/2022] [Indexed: 11/10/2022]
Abstract
Cell therapy is the frontier technology of biotechnology innovation and the most promising method for the treatment of refractory diseases such as tumours. However, cell therapy has disadvantages, such as toxicity and poor therapeutic effects. Plant extracts are natural, widely available, and contain active small molecule ingredients that are widely used in the treatment of various diseases. By studying the effect of plant extracts on cell therapy, active plant extracts that have positive significance in cell therapy can be discovered, and certain contributions to solving the current problems of attenuation and adjuvant therapy in cell therapy can be made. Therefore, this article reviews the currently reported effects of plant extracts in stem cell therapy and immune cell therapy, especially the effects of plant extracts on the proliferation and differentiation of mesenchymal stem cells and nerve stem cells and the potential role of plant extracts in chimeric antigen receptor T-cell immunotherapy (CAR-T) and T-cell receptor modified T-cell immunotherapy (TCR-T), in the hope of encouraging further research and clinical application of plant extracts in cell therapy.
Collapse
|
28
|
[Experimental study of resveratrol-solid lipid nanoparticles in promotion of osteogenic differentiation of bone marrow mesenchymal stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1155-1165. [PMID: 36111480 PMCID: PMC9626288 DOI: 10.7507/1002-1892.202205009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To investigate the effect of solid lipid nanoparticles (SLNs) on enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro by resveratrol (Res), and provide a method for the treatment of bone homeostasis disorders. METHODS Res-SLNs were prepared by high-temperature emulsification and low-temperature solidification method, and then the 2nd-3rd generation BMSCs from Sprague Dawley rat were co-cultured with different concentrations (0, 0.1, 1, 5, 10, 20 μmol/L) of Res and Res-SLNs. The effects of Res and Res-SLNs on the cell viability of BMSCs were detected by cell counting kit 8 (CCK-8) and live/dead cell staining; the effects of Res and Res-SLNs on the osteogenic differentiation of BMSCs were detected by alkaline phosphatase (ALP) staining and alizarin red S (ARS) staining after osteogenic differentiation induction, and the optimal concentration of Res-SLNs for gene detection was determined. Anti-osteocalcin (OCN) immunofluorescence staining and real-time fluorescent quantitative PCR (RT-qPCR) were used to detect the effect of Res and Res-SLNs on osteoblast-related genes (ALP and OCN) of BMSCs. RESULTS Live/dead cell staining showed that there was no significant difference in the number of dead cells between Res and Res-SLNs groups; CCK-8 detection showed that the activity of BMSCs in Res group was significantly reduced at the concentration of 20 μmol/L (P<0.05), while Res-SLNs activity was not affected by Res concentration (P>0.05). After osteogenic differentiation, the staining intensity of ALP and ARS in both groups was dose-dependent. The percentage of ALP positive staining area and the percentage of mineralized nodule area in Res group and Res-SLNs group reached the maximum at the concentrations of 10 μmol/L and 1 μmol/L, respectively (P<0.05), and then decreased gradually; the most effective concentration of Res-SLNs was 1 μmol/L. The expression of OCN and the relative expression of ALP and OCN mRNA in Res-SLNs group were significantly higher than those in Res group (P<0.05). CONCLUSION Encapsulation of SLNs can improve the effect of Res on promoting osteogenesis, and achieve the best effect of osteogenic differentiation of BMSCs at a lower concentration, which is expected to be used in the treatment of bone homeostasis imbalance diseases.
Collapse
|
29
|
Hernández-Pérez OR, Juárez-Navarro KJ, Diaz NF, Padilla-Camberos E, Beltran-Garcia MJ, Cardenas-Castrejon D, Corona-Perez H, Hernández-Jiménez C, Díaz-Martínez NE. Biomolecules resveratrol + coenzyme Q10 recover the cell state of human mesenchymal stem cells after 1-methyl-4-phenylpyridinium-induced damage and improve proliferation and neural differentiation. Front Neurosci 2022; 16:929590. [PMID: 36117620 PMCID: PMC9471188 DOI: 10.3389/fnins.2022.929590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Neurodegenerative disorders are a critical affection with a high incidence around the world. Currently, there are no effective treatments to solve this problem. However, the application of mesenchymal stem cells (MSCs) and antioxidants in neurodegenerative diseases has shown to be a promising tool due to their multiple therapeutic effects. This work aimed to evaluate the effects of a combination of resveratrol (RSV) and coenzyme Q10 (CoQ10) on the proliferation and differentiation of MSC and the protector effects in induced damage. To characterize the MSCs, we performed flow cytometry, protocols of cellular differentiation, and immunocytochemistry analysis. The impact of RSV + CoQ10 in proliferation was evaluated by supplementing 2.5 and 10 μM of RSV + CoQ10 in a cellular kinetic for 14 days. Cell viability and lactate dehydrogenase levels (LDH) were also analyzed. The protective effect of RSV + CoQ10 was assessed by supplementing the treatment to damaged MSCs by 1-methyl-4-phenylpyridinium (MPP+); cellular viability, LDH, and reactive oxygen species (ROS) were evaluated.. MSCs expressed the surface markers CD44, CD73, CD90, and CD105 and showed multipotential ability. The combination of RSV + CoQ10 increased the proliferation potential and cell viability and decreased LDH levels. In addition, it reverted the effect of MPP+-induced damage in MSCs to enhance cell viability and decrease LDH and ROS. Finally, RSV + CoQ10 promoted the differentiation of neural progenitors. The combination of RSV + CoQ10 represents a potential treatment to improve MSCs capacities and protect against neurodegenerative damage.
Collapse
Affiliation(s)
- Oscar R. Hernández-Pérez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Karen J. Juárez-Navarro
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Nestor F. Diaz
- Instituto Nacional de Perinatología (INPER), Mexico City, Mexico
| | - Eduardo Padilla-Camberos
- Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Miguel J. Beltran-Garcia
- Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Zapopan, Mexico
| | | | | | | | - Néstor E. Díaz-Martínez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
- *Correspondence: Néstor E. Díaz-Martínez,
| |
Collapse
|
30
|
Ekambaram R, Dharmalingam S. Design and development of biomimetic electrospun sulphonated polyether ether ketone nanofibrous scaffold for bone tissue regeneration applications: in vitro and in vivo study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:947-975. [PMID: 34985405 DOI: 10.1080/09205063.2022.2025637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Bone defect restoration remains challenging in orthopedic medical practices. In this study an attempt is carried out to probe the use of new biomimetic SPEEK (sulfonated polyether ether ketone) based nanofibrous scaffold to deliver amine functionalized hydroxyapatite nanoparticles loaded resveratrol for its potent functionality in osteogenic differentiation. SPEEK polymer with reactive functional group SO3H was synthesized through process of sulphonation reaction. Amine functionalized nanoparticles with protonated amino groups revamp the molecular interaction by the formation of hydrogen bonds that in turn intensify the bioactivity of the nanofibrous scaffold. Osteoconductive functionalized nanohydroxyapatite enhances the cell proliferation and osteogenicity with improved cell attachment and spreading. The results of FT-IR, XRD, Carbon-Silica NMR and EDX analysis confirmed the amine functionalization of the hydroxyapatite nanoparticles. Surface morphological analysis of the fabricated nanofibers through SEM and AFM analysis shows vastly interconnected porous structure that mimics the bone extracellular matrix, which enhances the cell compatibility. Cell adhesion and live dead assay of the nanoscaffolds express less cytotoxicity. Mineralization and alkaline phosphatase assay establish the osteogenic differentiation of the nanofibrous scaffold. The in vitro biocompatibility studies reveal that the fabricated scaffold was osteo-compatible with MG63 cell lines. Hemocompatibility study further proved that the designed biomimetic nanofibrous scaffold was highly suitable for bone tissue engineering. The results of in vivo analysis in zebrafish model for the fabricated nanofibers demonstrated significant increase in the caudal fin regeneration indicating mineralization of osteoblast. Thus, the commending results obtained instigate the potentiality of the composite nanofibrous scaffold as an effective biomimetic substrate for bone tissue regeneration.
Collapse
|
31
|
Inchingolo AD, Malcangi G, Inchingolo AM, Piras F, Settanni V, Garofoli G, Palmieri G, Ceci S, Patano A, De Leonardis N, Di Pede C, Montenegro V, Azzollini D, Garibaldi MG, Kruti Z, Tarullo A, Coloccia G, Mancini A, Rapone B, Semjonova A, Hazballa D, D’Oria MT, Jones M, Macchia L, Bordea IR, Scarano A, Lorusso F, Tartaglia GM, Maspero C, Del Fabbro M, Nucci L, Ferati K, Ferati AB, Brienza N, Corriero A, Inchingolo F, Dipalma G. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int J Mol Sci 2022; 23:4027. [PMID: 35409389 PMCID: PMC8999966 DOI: 10.3390/ijms23074027] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 01/27/2023] Open
Abstract
Resveratrol is a polyphenol that has been shown to possess many applications in different fields of medicine. This systematic review has drawn attention to the axis between resveratrol and human microbiota, which plays a key role in maintaining an adequate immune response that can lead to different diseases when compromised. Resveratrol can also be an asset in new technologies, such as gene therapy. PubMed, Cochrane Library, Scopus, Web of Science, and Google Scholar were searched to find papers that matched our topic dating from 1 January 2017 up to 18 January 2022, with English-language restriction using the following Boolean keywords: ("resveratrol" AND "microbio*"). Eighteen studies were included as relevant papers matching the purpose of our investigation. Immune response, prevention of thrombotic complications, microbiota, gene therapy, and bone regeneration were retrieved as the main topics. The analyzed studies mostly involved resveratrol supplementation and its effects on human microbiota by trials in vitro, in vivo, and ex vivo. The beneficial activity of resveratrol is evident by analyzing the changes in the host's genetic expression and the gastrointestinal microbial community with its administration. The possibility of identifying individual microbial families may allow to tailor therapeutic plans with targeted polyphenolic diets when associated with microbial dysbiosis, such as inflammatory diseases of the gastrointestinal tract, degenerative diseases, tumors, obesity, diabetes, bone tissue regeneration, and metabolic syndrome.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Valentina Montenegro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Maria Grazia Garibaldi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Zamira Kruti
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonella Tarullo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Alexandra Semjonova
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Kongresi Elbasanit, Aqif Pasha, Rruga, 3001 Elbasan, Albania
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
- Department of Medical and Biological Sciences, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
| | - Megan Jones
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Cinzia Maspero
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy; (G.M.T.); (C.M.); (M.D.F.)
- IRCCS Orthopedic Institute Galeazzi, 20161 Milan, Italy
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy;
| | - Kenan Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Arberesha Bexheti Ferati
- Faculty of Medical Sciences, University of Tetovo, 1220 Tetovo, North Macedonia; (K.F.); (A.B.F.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (A.D.I.); (G.M.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (N.D.L.); (C.D.P.); (V.M.); (D.A.); (M.G.G.); (Z.K.); (A.T.); (G.C.); (A.M.); (B.R.); (A.S.); (D.H.); (M.T.D.); (M.J.); (F.I.); (G.D.)
| |
Collapse
|
32
|
Poudel S, Izquierdo M, Cancela ML, Gavaia PJ. Reversal of Doxorubicin-Induced Bone Loss and Mineralization by Supplementation of Resveratrol and MitoTEMPO in the Early Development of Sparus aurata. Nutrients 2022; 14:nu14061154. [PMID: 35334811 PMCID: PMC8950850 DOI: 10.3390/nu14061154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 01/03/2023] Open
Abstract
Doxorubicin is a widely used chemotherapeutic drug known to induce bone loss. The mechanism behind doxorubicin-mediated bone loss is unclear, but oxidative stress has been suggested as a potential cause. Antioxidants that can counteract the toxic effect of doxorubicin on the bone would be helpful for the prevention of secondary osteoporosis. We used resveratrol, a natural antioxidant, and MitoTEMPO, a mitochondria-targeted antioxidant, to counteract doxorubicin-induced bone loss and mineralization on Sparus aurata larvae. Doxorubicin supplemented Microdiets increased bone deformities, decreased mineralization, and lipid peroxidation, whereas Resveratrol and MitoTEMPO supplemented microdiets improved mineralization, decreased bone deformities, and reversed the effects of doxorubicin in vivo and in vitro, using osteoblastic VSa13 cells. Partial Least-Squares Discriminant Analysis highlighted differences between groups on the distribution of skeletal anomalies and mineralization of skeleton elements. Calcium and Phosphorus content was negatively affected in the doxorubicin supplemented group. Doxorubicin reduced the mRNA expression of antioxidant genes, including catalase, glutathione peroxidase 1, superoxide dismutase 1, and hsp90 suggesting that ROS are central for Doxorubicin-induced bone loss. The mRNA expression of antioxidant genes was significantly increased on resveratrol alone or combined treatment. The length of intestinal villi was increased in response to antioxidants and reduced on doxorubicin. Antioxidant supplements effectively prevent bone deformities and mineralization defects, increase antioxidant response and reverse doxorubicin-induced effects on bone anomalies, mineralization, and oxidative stress. A combined treatment of doxorubicin and antioxidants was beneficial in fish larvae and showed the potential for use in preventing Doxorubicin-induced bone impairment.
Collapse
Affiliation(s)
- Sunil Poudel
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, FMCB, University of Algarve, 8005-139 Faro, Portugal
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura, Universidad de Las Palmas de Gran Canaria, Taliarte, 35214 Telde, Spain;
| | - Maria Leonor Cancela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Paulo J. Gavaia
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (S.P.); (M.L.C.)
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-800057 or +351-289-800900 (ext. 7057); Fax: +351-289-800069
| |
Collapse
|
33
|
Phoenix dactilyfera L. Pits Extract Restored Bone Homeostasis in Glucocorticoid-Induced Osteoporotic Animal Model through the Antioxidant Effect and Wnt5a Non-Canonical Signaling. Antioxidants (Basel) 2022; 11:antiox11030508. [PMID: 35326158 PMCID: PMC8944842 DOI: 10.3390/antiox11030508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress associated with long-term glucocorticoids administration is a route through which secondary osteoporosis can be developed. The therapeutic potential of Phoenix dactilyfera L. pits is offered by their balanced, valuable and diverse phytochemical composition providing protective potential against oxidative reactions, making it a good candidate to treat glucocorticoid-induced osteoporosis (GIO). This study evaluates the possible anti-osteoporotic effect of date pit extract (DPE) against dexamethasone (DEXA)-induced osteoporosis. Male rats were allocated into three control groups, which received saline, low and high doses of DPE (150 and 300 mg/kg/day), respectively. Osteoporosis-induced groups that received DEXA (1 mg/kg/day) were divided into DEXA only, DPE (2 doses) + DEXA, and ipriflavone + DEXA. Femoral bone minerals density and bone mineral content, bone oxidative stress markers, Wnt signaling, osteoblast and osteoclast differentiation markers, and femur histopathology were evaluated. DPE defeated the oxidative stress, resulting in ameliorative changes in Wnt signaling. DPE significantly reduced the adipogenicity and abolished the osteoclastogenic markers (RANKL/OPG ratio, ACP, TRAP) while enhancing the osteogenic differentiation markers (Runx2, Osx, COL1A1, OCN). In Conclusion DPE restored the balanced proliferation and differentiation of osteoclasts and osteoblasts precursors. DPE can be considered a promising remedy for GIO, especially at a low dose that had more potency.
Collapse
|
34
|
Shi G, Yang C, Wang Q, Wang S, Wang G, Ao R, Li D. Traditional Chinese Medicine Compound-Loaded Materials in Bone Regeneration. Front Bioeng Biotechnol 2022; 10:851561. [PMID: 35252158 PMCID: PMC8894853 DOI: 10.3389/fbioe.2022.851561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Bone is a dynamic organ that has the ability to repair minor injuries via regeneration. However, large bone defects with limited regeneration are debilitating conditions in patients and cause a substantial clinical burden. Bone tissue engineering (BTE) is an alternative method that mainly involves three factors: scaffolds, biologically active factors, and cells with osteogenic potential. However, active factors such as bone morphogenetic protein-2 (BMP-2) are costly and show an unstable release. Previous studies have shown that compounds of traditional Chinese medicines (TCMs) can effectively promote regeneration of bone defects when administered locally and systemically. However, due to the low bioavailability of these compounds, many recent studies have combined TCM compounds with materials to enhance drug bioavailability and bone regeneration. Hence, the article comprehensively reviewed the local application of TCM compounds to the materials in the bone regeneration in vitro and in vivo. The compounds included icariin, naringin, quercetin, curcumin, berberine, resveratrol, ginsenosides, and salvianolic acids. These findings will contribute to the potential use of TCM compound-loaded materials in BTE.
Collapse
Affiliation(s)
- Guiwen Shi
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chaohua Yang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Song Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gaoju Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rongguang Ao
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Dejian Li
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| |
Collapse
|
35
|
Yarmohammadi R, Ghollasi M, Kheirollahzadeh F, Soltanyzadeh M, Heshmati M, Amirkhani MA. Osteogenic differentiation of human induced pluripotent stem cell in the presence of testosterone and 17 β-estradiol in vitro. In Vitro Cell Dev Biol Anim 2022; 58:179-188. [PMID: 35175493 DOI: 10.1007/s11626-022-00652-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
Abstract
Recently, numerous scientific approaches have been explored to treat various diseases using stem cells. In 2006, induced pluripotent stem cell (iPSC) were introduced by Takahashi and Yamanaka and showed the potential of self-renewing and differentiation into all types of targeted cells in vitro. In this investigation, we studied the effect of testosterone (T) individually or in the presence of 17 β-estradiol (E2) on osteogenic differentiation of human iPSC (hiPSC) during 2 wk. The optimal concentrations of sex steroid hormones were examined by MTT assay and acridine orange (AO) staining. The impact of E2 and T either individually or together as a combination was examined by ALP activity; the content of total mineral calcium, by von Kossa and alizarin red staining. Additionally, the expression rate of osteogenic specific markers was studied via real-time RT-PCR and immunocytochemistry analyses at day 14 of differentiation. The obtained results illustrated that the differentiation medium supplemented with T-E2 increased not only the ALP enzyme activity and the content of calcium but also the osteogenic-related gene and protein expressions on the 14th day. Furthermore, the results were confirmed by mineralized matrix staining. In conclusion, these data suggest that T could be used as an effective factor for osteogenic induction of hiPSCs combined with the E2 in bone regeneration.
Collapse
Affiliation(s)
- Reyhaneh Yarmohammadi
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box, 15719-14911, Tehran, Iran.
| | | | - Maryam Soltanyzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box, 15719-14911, Tehran, Iran
| | - Masoumeh Heshmati
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Dobrzyńska MM, Gajowik A. Protection and Mitigation by Resveratrol of DNA Damage Induced in Irradiated Human Lymphocytes In Vitro. Radiat Res 2022; 197:149-156. [PMID: 34724059 DOI: 10.1667/rade-20-00037.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/30/2021] [Indexed: 11/03/2022]
Abstract
The aim of this study was to examine the protective and/or mitigative properties of resveratrol (RSV) administered before or after irradiation of human lymphocytes in vitro. The isolated lymphocytes were incubated for 1 h with resveratrol, at doses of 0.1 (lowest), 0.5 (medium) or 1 (highest) mM/ml: 1 h before; immediately before; immediately after irradiation; and 1 h after irradiation with 0.5, 1 and 2 Gy. The degree of DNA damage was evaluated by Comet Assay. Treatment of human lymphocytes with resveratrol 1 h before or immediately after radiation exposure showed protection from radiation-induced DNA damage. However, 1 Gy irradiation + 1 mM/ml RSV, and 2 Gy irradiation + 0.5 and 1 mM/ml RSV 1 h before irradiation did not provide the same protection. Significant dose-dependent reduction of the level of DNA damage was observed after application of RSV immediately postirradiation or 1 h postirradiation. The reduction in DNA damage was the highest at the 0.1 dose of resveratrol. Our results lead to the conclusion that resveratrol may act both as a radioprotector as well as a radiomitigator. Resveratrol at the lowest (0.5 mM/ml) dose was more effective when combined with 0.5 and 1 Gy doses of radiation.
Collapse
Affiliation(s)
- Małgorzata M Dobrzyńska
- National Institute of Public Health NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, 00-791 Warsaw, Poland
| | - Aneta Gajowik
- National Institute of Public Health NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, 00-791 Warsaw, Poland
| |
Collapse
|
37
|
Calabrese EJ. Hormesis and bone marrow stem cells: Enhancing cell proliferation, differentiation and resilience to inflammatory stress. Chem Biol Interact 2021; 351:109730. [PMID: 34728189 DOI: 10.1016/j.cbi.2021.109730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022]
Abstract
This paper identifies and provides the first detailed assessment of hormetic dose responses by bone marrow stem cells (BMSCs) from a broad range of animal models and humans with particular emphasis on cell renewal (proliferation), cell differentiation and enhancing resilience to inflammatory stress. Such hormetic dose responses are commonly reported, being induced by a broad range of chemicals, including pharmaceuticals (e.g., caffeine, dexamethasone, nicotine), dietary supplements (e.g., curcumin, Ginkgo biloba, green tea extracts. resveratrol, sulforaphane), endogenous agents (e.g., hydrogen sulfide, interleukin 10), environmental contaminants (e.g., arsenic, PFOS) and physical stressor agents (e.g., EMF, shockwaves). Hormetic dose responses reported here for BMSCs are similar to those induced with other stem cell types [e.g., adipose-derived stem cells (ADSCs), dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), neuro stem cells (NSCs), embryonic stem cells (ESCs)], indicating a substantial degree of generality for hormetic responses in stem cells. The paper assesses both the underlying mechanistic foundations of BMSC hormetic responses and their potential therapeutic implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Professor of Toxicology, Environmental Health Sciences, School of Public Health and Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
38
|
Toxic Effects of Indoxyl Sulfate on Osteoclastogenesis and Osteoblastogenesis. Int J Mol Sci 2021; 22:ijms222011265. [PMID: 34681927 PMCID: PMC8538618 DOI: 10.3390/ijms222011265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Uremic toxins, such as indoxyl sulfate (IS) and kynurenine, accumulate in the blood in the event of kidney failure and contribute to further bone damage. To maintain the homeostasis of the skeletal system, bone remodeling is a persistent process of bone formation and bone resorption that depends on a dynamic balance of osteoblasts and osteoclasts. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates the toxic effects of uremic toxins. IS is an endogenous AhR ligand and is metabolized from tryptophan. In osteoclastogenesis, IS affects the expression of the osteoclast precursor nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) through AhR signaling. It is possible to increase osteoclast differentiation with short-term and low-dose IS exposure and to decrease differentiation with long-term and/or high-dose IS exposure. Coincidentally, during osteoblastogenesis, through the AhR signaling pathway, IS inhibits the phosphorylation of ERK, and p38 reduces the expression of the transcription factor 2 (Runx2), disturbing osteoblastogenesis. The AhR antagonist resveratrol has a protective effect on the IS/AhR pathway. Therefore, it is necessary to understand the multifaceted role of AhR in CKD, as knowledge of these transcription signals could provide a safe and effective method to prevent and treat CKD mineral bone disease.
Collapse
|
39
|
Bourne LE, Patel JJ, Davies BK, Neven E, Verhulst A, D'Haese PC, Wheeler-Jones CPD, Orriss IR. N-acetylcysteine (NAC) differentially affects arterial medial calcification and bone formation: The role of l-cysteine and hydrogen sulphide. J Cell Physiol 2021; 237:1070-1086. [PMID: 34658034 DOI: 10.1002/jcp.30605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022]
Abstract
Arterial medial calcification (AMC) is the deposition of calcium phosphate in the arteries. AMC is widely thought to share similarities with physiological bone formation; however, emerging evidence suggests several key differences between these processes. N-acetylcysteine (NAC) displays antioxidant properties and can generate hydrogen sulphide (H2 S) and glutathione (GSH) from its deacetylation to l-cysteine. This study found that NAC exerts divergent effects in vitro, increasing osteoblast differentiation and bone formation by up to 5.5-fold but reducing vascular smooth muscle cell (VSMC) calcification and cell death by up to 80%. In vivo, NAC reduced AMC in a site-specific manner by 25% but had no effect on the bone. The actions of l-cysteine and H2 S mimicked those of NAC; however, the effects of H2 S were much less efficacious than NAC and l-cysteine. Pharmacological inhibition of H2 S-generating enzymes did not alter the actions of NAC or l-cysteine; endogenous production of H2 S was also unaffected. In contrast, NAC and l-cysteine increased GSH levels in calcifying VSMCs and osteoblasts by up to 3-fold. This suggests that the beneficial actions of NAC are likely to be mediated via the breakdown of l-cysteine and the subsequent GSH generation. Together, these data show that while the molecular mechanisms driving the actions of NAC appear similar, the downstream effects on cell function differ significantly between osteoblasts and calcifying VSMCs. The ability of NAC to exert these differential actions further supports the notion that there are differences between the development of pathological AMC and physiological bone formation. NAC could represent a therapeutic option for treating AMC without exerting negative effects on bone.
Collapse
Affiliation(s)
- Lucie E Bourne
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Jessal J Patel
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Bethan K Davies
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Ellen Neven
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Anja Verhulst
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | - Patrick C D'Haese
- Department of Biomedical Sciences, Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium
| | | | - Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
40
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
41
|
Wei B, Wang W, Liu X, Xu C, Wang Y, Wang Z, Xu J, Guan J, Zhou P, Mao Y. Gelatin methacrylate hydrogel scaffold carrying resveratrol-loaded solid lipid nanoparticles for enhancement of osteogenic differentiation of BMSCs and effective bone regeneration. Regen Biomater 2021; 8:rbab044. [PMID: 34394955 PMCID: PMC8358478 DOI: 10.1093/rb/rbab044] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Critical-sized bone defects caused by traumatic fractures, tumour resection and congenital malformation are unlikely to heal spontaneously. Bone tissue engineering is a promising strategy aimed at developing in vitro replacements for bone transplantation and overcoming the limitations of natural bone grafts. In this study, we developed an innovative bone engineering scaffold based on gelatin methacrylate (GelMA) hydrogel, obtained via a two-step procedure: first, solid lipid nanoparticles (SLNs) were loaded with resveratrol (Res), a drug that can promote osteogenic differentiation and bone formation; these particles were then encapsulated at different concentrations (0.01%, 0.02%, 0.04% and 0.08%) in GelMA to obtain the final Res-SLNs/GelMA scaffolds. The effects of these scaffolds on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and bone regeneration in rat cranial defects were evaluated using various characterization assays. Our in vitro and in vivo investigations demonstrated that the different Res-SLNs/GelMA scaffolds improved the osteogenic differentiation of BMSCs, with the ideally slow and steady release of Res; the optimal scaffold was 0.02 Res-SLNs/GelMA. Therefore, the 0.02 Res-SLNs/GelMA hydrogel is an appropriate release system for Res with good biocompatibility, osteoconduction and osteoinduction, thereby showing potential for application in bone tissue engineering.
Collapse
Affiliation(s)
- Bangguo Wei
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - Wenrui Wang
- School of Life Sciences, Bengbu Medical College, Bengbu 233030, China
| | - Xiangyu Liu
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - Chenxi Xu
- School of Life Sciences, Bengbu Medical College, Bengbu 233030, China
| | - Yanan Wang
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - Ziqi Wang
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233030, China
| | - Jinnuo Xu
- School of Life Sciences, Bengbu Medical College, Bengbu 233030, China
| | - Jianzhong Guan
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - Pinghui Zhou
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| | - Yingji Mao
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
42
|
Dziadek M, Dziadek K, Checinska K, Zagrajczuk B, Golda-Cepa M, Brzychczy-Wloch M, Menaszek E, Kopec A, Cholewa-Kowalska K. PCL and PCL/bioactive glass biomaterials as carriers for biologically active polyphenolic compounds: Comprehensive physicochemical and biological evaluation. Bioact Mater 2021; 6:1811-1826. [PMID: 34632164 PMCID: PMC8484899 DOI: 10.1016/j.bioactmat.2020.11.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
In this work, polymeric and bioactive glass (BG)-modified composite films were successfully loaded with polyphenols (PPh) extracted from sage. It was hypothesized that PPh, alone and in combination with BGs particles, would affect physicochemical and biological properties of the films. Furthermore, sol-gel-derived BG particles would serve as an agent for control the release of the polyphenolic compounds, and other important properties related to the presence of PPh. The results showed that polyphenolic compounds significantly modified numerous material properties and also acted as biologically active substances. On the one hand, PPh can be considered as plasticizers for PCL, on the other hand, they can act as coupling agent in composite materials, improving their mechanical performance. The presence of PPh in materials improved their hydrophilicity and apatite-forming ability, and also provided antioxidant activity. What is important is that the aforementioned properties and kinetics of PPh release can be modulated by the use of various concentrations of PPh, and by the modification of PCL matrix with sol-gel-derived BG particles, capable of binding PPh. The films containing the lowest concentration of PPh exhibited cytocompatibility, significantly increased alkaline phosphatase activity and the expression of bone extracellular matrix proteins (osteocalcin and osteopontin) in human normal osteoblasts, while they reduced intracellular reactive oxygen species production in macrophages. Furthermore, materials loaded with PPh showed antibiofilm properties against Gram positive and Gram negative bacteria. The results suggest that obtained materials represent potential multifunctional biomaterials for bone tissue engineering with a wide range of tunable properties.
Collapse
Affiliation(s)
- Michal Dziadek
- Jagiellonian University, Faculty of Chemistry, 2 Gronostajowa St., 30-387, Krakow, Poland
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059, Krakow, Poland
| | - Kinga Dziadek
- University of Agriculture in Krakow, Faculty of Food Technology, Department of Human Nutrition and Dietetics, 122 Balicka St., 30-149, Krakow, Poland
| | - Kamila Checinska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059, Krakow, Poland
| | - Barbara Zagrajczuk
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059, Krakow, Poland
| | - Monika Golda-Cepa
- Jagiellonian University, Faculty of Chemistry, 2 Gronostajowa St., 30-387, Krakow, Poland
| | - Monika Brzychczy-Wloch
- Jagiellonian University, Medical College, Department of Molecular Medical Microbiology, 18 Czysta St., 31-121, Krakow, Poland
| | - Elzbieta Menaszek
- Jagiellonian University, Medical College, Department of Cytobiology, 9 Medyczna St., 30-688, Krakow, Poland
| | - Aneta Kopec
- University of Agriculture in Krakow, Faculty of Food Technology, Department of Human Nutrition and Dietetics, 122 Balicka St., 30-149, Krakow, Poland
| | - Katarzyna Cholewa-Kowalska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059, Krakow, Poland
| |
Collapse
|
43
|
Mei W, Song D, Wu Z, Yang L, Wang P, Zhang R, Zhu X. Resveratrol protects MC3T3-E1 cells against cadmium-induced suppression of osteogenic differentiation by modulating the ERK1/2 and JNK pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112080. [PMID: 33677380 DOI: 10.1016/j.ecoenv.2021.112080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Resveratrol (RES) is a natural polyphenolic compound with a broad range of physiological and pharmacological properties. Previous studies have shown that RES also plays an important role in protecting and promoting early bone metabolism and differentiation. The accumulation of cadmium (Cd), one of the world's most poisonous substances, can inhibit skeletal growth and bone maturation, thus causing osteoporosis. However, whether RES can prevent the Cd-induced inhibition of osteogenic differentiation remains unknown. In this study, we found that RES promoted the early maturity of osteoblastic MC3T3-E1 cells, as demonstrated by the significantly increased mRNA and protein expression of a range of differentiation markers, including alkaline phosphatase (ALP), collagen 1 (COL1), bone morphogenetic protein-2 (BMP-2), and runt-related transcription factor 2 (RUNX2). In contrast, we found that cadmium chloride (CdCl2) inhibited the viability and osteogenic maturity of MC3T3-E1 cells. We also demonstrated that RES pretreatment for 30 min provided significant protection against Cd-induced apoptosis and attenuated the inhibition of osteogenic differentiation induced by Cd by modulating ERK1/2 and JNK signaling. In conclusion, our results indicate that RES is a potential femoral protectant that not only enhance the viability and early differentiation of osteoblasts, but also protect osteoblasts from cadmium damage.
Collapse
Affiliation(s)
- Wenhui Mei
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Dan Song
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Zhidi Wu
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Li Yang
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Panpan Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Ronghua Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China; Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong 510630, PR China.
| | - Xiaofeng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
44
|
Ornelas-González A, González-González M, Rito-Palomares M. Microcarrier-based stem cell bioprocessing: GMP-grade culture challenges and future trends for regenerative medicine. Crit Rev Biotechnol 2021; 41:1081-1095. [PMID: 33730936 DOI: 10.1080/07388551.2021.1898328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recently, stem cell-based therapies have been proposed as an alternative for the treatment of many diseases. Stem cells (SCs) are well known for their capacity to preserve themselves, proliferate, and differentiate into multiple lineages. These characteristics allow stem cells to be a viable option for the treatment of diverse diseases. Traditional methodologies based on 2-dimensional culture techniques (T-flasks and Petri dishes) are simple and well standardized; however, they present disadvantages that limit the production of the cell yield required for regenerative medicine applications. Lately, microcarrier (MC)-based culture techniques have emerged as an attractive platform for expanding stem cells in suspension systems. Although the use of stem cell expansion on MCs has recently shown significant increase, their implementation for medical purposes is been hampered by bottlenecks in upstream and downstream processing. Therefore, there is an urgent need in the development of bioprocesses that simplify stem cell cultures under xeno-free conditions and detachment from MCs without diminishing their pluripotency and viability. A critical analysis of the factors that impact the up and downstream bioprocessing on MC-based stem cell cultures is presented in this review. This analysis aims to raise the awareness of the current drawbacks that limit MC-based stem cell bioprocessing in regenerative medicine and propose alternatives to overcome them.
Collapse
Affiliation(s)
| | | | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| |
Collapse
|
45
|
Sharifi S, Moghaddam FA, Abedi A, Maleki Dizaj S, Ahmadian S, Abdolahinia ED, Khatibi SMH, Samiei M. Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells. Biofactors 2020; 46:874-893. [PMID: 33037744 DOI: 10.1002/biof.1682] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Medicinal plants have always been utilized for the prevention and treatment of the spread of different diseases all around the world. To name some traditional medicine that has been used over centuries, we can refer to phytochemicals such as naringin, icariin, genistein, and resveratrol gained from plants. Osteogenic differentiation and mineralization of stem cells can be the result of specific bioactive compounds from plants. One of the most appealing choices for therapy can be mesenchymal stem cells (MSCs) because it has a great capability of self-renewal and differentiation into three descendants, namely, endoderm, mesoderm, and ectoderm. Stem cell gives us the glad tidings of great advances in tissue regeneration and transplantation field for treatment of diseases. Using plant bioactive phytochemicals also holds tremendous promises in treating diseases such as osteoporosis. The purpose of the present review article thus is to investigate what are the roles and consequences of phytochemicals on osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Atefeh Abedi
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Ahmadian
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center of Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Liu WC, Shyu JF, Lin YF, Chiu HW, Lim PS, Lu CL, Zheng CM, Hou YC, Chen PH, Lu KC. Resveratrol Rescue Indoxyl Sulfate-Induced Deterioration of Osteoblastogenesis via the Aryl Hydrocarbon Receptor /MAPK Pathway. Int J Mol Sci 2020; 21:ijms21207483. [PMID: 33050571 PMCID: PMC7589702 DOI: 10.3390/ijms21207483] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
Indoxyl sulfate (IS), a uremic toxin derived from dietary tryptophan metabolism by the gut microbiota, is an endogenous aryl hydrocarbon receptor (AhR) agonist and a key player in bone remodeling. Resveratrol (RSV), an AhR antagonist, plays a protective role in shielding against AhR ligands. Our study explored the impact of IS on osteoblast differentiation and examined the possible mechanism of IS in controlling the expression of osteoblastogenesis markers through an in-depth investigation of AhR signaling. In vivo, we found histological architectural disruption of the femoral bones in 5/6 nephrectomies of young adult IS exposed mice, including reduced Runx2 antigen expression. RSV improved the diaphysis architecture, Runx2 expression, and trabecular quality. In vitro data suggest that IS at 500 and 1000 μM disturbed osteoblastogenesis through suppression of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways, which were found to be downstream of AhR. RSV proved to ameliorate the anti-osteoblastogenic effects of IS through the inhibition of AhR and downstream signaling. Taken together, we demonstrated that the IS/AhR/MAPK signaling pathway plays a crucial role in the inhibition of osteoblastogenesis, and RSV has a potential therapeutic role in reversing the IS-induced decline in osteoblast development and suppressing abnormal bone turnover in chronic kidney disease patients.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Internal Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (J.-F.S.); (P.-H.C.)
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| | - Paik Seong Lim
- Division of Nephrology, Department of Internal Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung City 435, Taiwan;
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Cai-Mei Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Chou Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-C.L.); (Y.-F.L.); (H.-W.C.); (C.-M.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan
| | - Po-Han Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan; (J.-F.S.); (P.-H.C.)
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Correspondence: ; Tel.: +886-9-3573-4537
| |
Collapse
|
47
|
Bone marrow fat: friend or foe in people with diabetes mellitus? Clin Sci (Lond) 2020; 134:1031-1048. [PMID: 32337536 DOI: 10.1042/cs20200220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
Global trends in the prevalence of overweight and obesity put the adipocyte in the focus of huge medical interest. This review highlights a new topic in adipose tissue biology, namely the emerging pathogenic role of fat accumulation in bone marrow (BM). Specifically, we summarize current knowledge about the origin and function of BM adipose tissue (BMAT), provide evidence for the association of excess BMAT with diabetes and related cardiovascular complications, and discuss potential therapeutic approaches to correct BMAT dysfunction. There is still a significant uncertainty about the origins and function of BMAT, although several subpopulations of stromal cells have been suggested to have an adipogenic propensity. BM adipocytes are higly plastic and have a distinctive capacity to secrete adipokines that exert local and endocrine functions. BM adiposity is abundant in elderly people and has therefore been interpreted as a component of the whole-body ageing process. BM senescence and BMAT accumulation has been also reported in patients and animal models with Type 2 diabetes, being more pronounced in those with ischaemic complications. Understanding the mechanisms responsible for excess and altered function of BMAT could lead to new treatments able to preserve whole-body homeostasis.
Collapse
|
48
|
Jozkowiak M, Hutchings G, Jankowski M, Kulcenty K, Mozdziak P, Kempisty B, Spaczynski RZ, Piotrowska-Kempisty H. The Stemness of Human Ovarian Granulosa Cells and the Role of Resveratrol in the Differentiation of MSCs-A Review Based on Cellular and Molecular Knowledge. Cells 2020; 9:E1418. [PMID: 32517362 PMCID: PMC7349183 DOI: 10.3390/cells9061418] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian Granulosa Cells (GCs) are known to proliferate in the developing follicle and undergo several biochemical processes during folliculogenesis. They represent a multipotent cell population that has been differentiated to neuronal cells, chondrocytes, and osteoblasts in vitro. However, progression and maturation of GCs are accompanied by a reduction in their stemness. In the developing follicle, GCs communicate with the oocyte bidirectionally via gap junctions. Together with neighboring theca cells, they play a crucial role in steroidogenesis, particularly the production of estradiol, as well as progesterone following luteinization. Many signaling pathways are known to be important throughout the follicle development, leading either towards luteinization and release of the oocyte, or follicular atresia and apoptosis. These signaling pathways include cAMP, PI3K, SMAD, Hedgehog (HH), Hippo and Notch, which act together in a complex manner to control the maturation of GCs through regulation of key genes, from the primordial follicle to the luteal phase. Small molecules such as resveratrol, a phytoalexin found in grapes, peanuts and other dietary constituents, may be able to activate/inhibit these signaling pathways and thereby control physiological properties of GCs. This article reviews the current knowledge about granulosa stem cells, the signaling pathways driving their development and maturation, as well as biological activities of resveratrol and its properties as a pro-differentiation agent.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland;
| | - Greg Hutchings
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
| | - Katarzyna Kulcenty
- Radiology Lab, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 St., PL-61-866 Poznan, Poland;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Campus Box 7608, Raleigh, NC 27695-7608, USA;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 60200 Brno, Czech Republic
| | - Robert Z. Spaczynski
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Polna 33 St., PL-60-535 Poznan, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland;
| |
Collapse
|
49
|
Hedderich J, El Bagdadi K, Angele P, Grässel S, Meurer A, Straub RH, Zaucke F, Jenei-Lanzl Z. Norepinephrine Inhibits the Proliferation of Human Bone Marrow-Derived Mesenchymal Stem Cells via β2-Adrenoceptor-Mediated ERK1/2 and PKA Phosphorylation. Int J Mol Sci 2020; 21:ijms21113924. [PMID: 32486305 PMCID: PMC7312191 DOI: 10.3390/ijms21113924] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) represent an alternative to chondrocytes to support cartilage regeneration in osteoarthritis (OA). The sympathetic neurotransmitter norepinephrine (NE) has been shown to inhibit their chondrogenic potential; however, their proliferation capacity under NE influence has not been studied yet. Therefore, we used BMSCs obtained from trauma and OA donors and compared the expression of adrenergic receptors (AR). Then, BMSCs from both donor groups were treated with NE, as well as with combinations of NE and α1-, α2- or β1/2-AR antagonists (doxazosin, yohimbine or propranolol). Activation of AR-coupled signaling was investigated by analyzing ERK1/2 and protein kinase A (PKA) phosphorylation. A similar but not identical subset of ARs was expressed in trauma (α2B-, α2C- and β2-AR) and OA BMSCs (α2A-, α2B-, and β2-AR). NE in high concentrations inhibited the proliferation of both trauma and OA BMCSs significantly. NE in low concentrations did not influence proliferation. ERK1/2 as well as PKA were activated after NE treatment in both BMSC types. These effects were abolished only by propranolol. Our results demonstrate that NE inhibits the proliferation and accordingly lowers the regenerative capacity of human BMSCs likely via β2-AR-mediated ERK1/2 and PKA phosphorylation. Therefore, targeting β2-AR-signaling might provide novel OA therapeutic options.
Collapse
Affiliation(s)
- Jessica Hedderich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
| | - Karima El Bagdadi
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
| | - Peter Angele
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Susanne Grässel
- Department of Orthopedic Surgery, Experimental Orthopedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, 93053 Regensburg, Germany;
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
| | - Rainer H. Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
| | - Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim, 60528 Frankfurt/Main, Germany; (J.H.); (K.E.B.); (A.M.); (F.Z.)
- Correspondence: ; Tel.: +49-69-6705-408
| |
Collapse
|
50
|
Rahmani-Kukia N, Abbasi A, Abtahi Froushani SM, Shahgaldi S, Mokarram P. The effects of 17 Beta-Estradiol primed mesenchymal stem cells on the biology of co-cultured neutrophil. Int Immunopharmacol 2020; 84:106602. [PMID: 32417655 DOI: 10.1016/j.intimp.2020.106602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/15/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) can influence immune effector cells. It is proved that MSCs respond to various Toll-like receptor (TLR) ligands, which could ultimately result in changes in their immunomodulatory effects. Neutrophils play an essential role in the first line defense system and their function can be regulated by MSCs. Estrogen is a female hormone that contributes to sex differences in several immune-related diseases. With regard to the stated facts, this research aims to elucidate the effects of estrogen treatment on the ability of TLR4-primed MSCs to regulate neutrophil functions. METHODS Following isolation and characterization, MSCs were stimulated with LPS as a TLR4 ligand and subsequently incubated with different concentrations (0, 10, 20 and 40 nM) of estrogen for 48 hrs. Then, MSCs were co-cultured with neutrophils to investigate the vitality and function of the co-cultured neutrophils. RESULTS Our results indicated that TLR4-primed MSCs could decrease the viability and neutral red uptake potential of co-cultured neutrophils. Furthermore, neutrophils co-cultured with TLR4-primed MSCs exhibited a decrease in the respiratory burst intensity after being challenged with opsonized yeast. Interestingly, treating TLR4-primed MSCs with estrogen reversed the observed alterations in neutrophil functions. CONCLUSION It appears that estrogen can alter the interaction between MSCs and neutrophils.
Collapse
Affiliation(s)
- Nasim Rahmani-Kukia
- Department of biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Shahab Shahgaldi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|