1
|
Khan A, Siddiqui S, Husain SA, Mazurek S, Iqbal MA. Phytocompounds Targeting Metabolic Reprogramming in Cancer: An Assessment of Role, Mechanisms, Pathways, and Therapeutic Relevance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6897-6928. [PMID: 34133161 DOI: 10.1021/acs.jafc.1c01173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolism of cancer is remarkably different from that of normal cells and confers a variety of benefits, including the promotion of other cancer hallmarks. As the rewired metabolism is a near-universal property of cancer cells, efforts are underway to exploit metabolic vulnerabilities for therapeutic benefits. In the continued search for safer and effective ways of cancer treatment, structurally diverse plant-based compounds have gained substantial attention. Here, we present an extensive assessment of the role of phytocompounds in modulating cancer metabolism and attempt to make a case for the use of plant-based compounds in targeting metabolic vulnerabilities of cancer. We discuss the pharmacological interactions of phytocompounds with major metabolic pathways and evaluate the role of phytocompounds in the regulation of growth signaling and transcriptional programs involved in the metabolic transformation of cancer. Lastly, we examine the potential of these compounds in the clinical management of cancer along with limitations and challenges.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shumaila Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Sybille Mazurek
- Institute of Veterinary-Physiology and Biochemistry, University of Giessen, Giessen 35392, Germany
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
2
|
Luan F, He X, Zeng N. Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol 2020; 72:1491-1512. [PMID: 32696989 DOI: 10.1111/jphp.13339] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/21/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Tetrandrine, a natural bisbenzylisoquinoline alkaloid, possesses promising anticancer activities on diverse tumours. This review provides systematically organized information on cancers of tetrandrine in vivo and in vitro, discuss the related molecular mechanisms and put forward some new insights for the future investigations. KEY FINDINGS Anticancer activities of tetrandrine have been reported comprehensively, including lung cancer, colon cancer, bladder cancer, prostate cancer, ovarian cancer, gastric cancer, breast cancer, pancreatic cancer, cervical cancer and liver cancer. The potential molecular mechanisms corresponding to the anticancer activities of tetrandrine might be related to induce cancer cell apoptosis, autophagy and cell cycle arrest, inhibit cell proliferation, migration and invasion, ameliorate metastasis and suppress tumour cell growth. Pharmaceutical applications of tetrandrine combined with nanoparticle delivery system including liposomes, microspheres and nanoparticles with better therapeutic efficiency have been designed and applied encapsulate tetrandrine to enhance its stability and efficacy in cancer treatment. SUMMARY Tetrandrine was proven to have definite antitumour activities. However, the safety, bioavailability and pharmacokinetic parameter studies on tetrandrine are very limited in animal models, especially in clinical settings. Our present review on anticancer potentials of tetrandrine would be necessary and highly beneficial for providing guidelines and directions for further research of tetrandrine.
Collapse
Affiliation(s)
- Fei Luan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xirui He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Nan Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Liu C, Yang S, Wang K, Bao X, Liu Y, Zhou S, Liu H, Qiu Y, Wang T, Yu H. Alkaloids from Traditional Chinese Medicine against hepatocellular carcinoma. Biomed Pharmacother 2019; 120:109543. [PMID: 31655311 DOI: 10.1016/j.biopha.2019.109543] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has become one of the major diseases that are threatening human health in the 21st century. Currently there are many approaches to treat liver cancer, but each has its own advantages and disadvantages. Among various methods of treating liver cancer, natural medicine treatment has achieved promising results because of their superiorities of high efficiency and availability, as well as low side effects. Alkaloids, as a class of natural ingredients derived from traditional Chinese medicines, have previously been shown to exert prominent anti-hepatocarcinogenic effects, through various mechanisms including inhibition of proliferation, metastasis and angiogenesis, changing cell morphology, promoting apoptosis and autophagy, triggering cell cycle arrest, regulating various cancer-related genes as well as pathways and so on. As a consequence, alkaloids suppress the development and progression of liver cancer. In this study, the mechanisms of representative alkaloids against hepatocarcinoma in each class are described systematically according to the structure classification, which mainly divides alkaloids into piperidine alkaloids, isoquinoline alkaloids, indole alkaloids, terpenoids alkaloids, steroidal alkaloids and other alkaloids. Besides using them alone, synergistic effects created together with other chemotherapy drugs and some special preparation methods also have been demonstrated. In this review, we have summarized the potential roles of several common alkaloids in the prevention and treatment of HCC, by revising the preclinical studies, highlighting the potential applications of alkaloids when they function as a therapeutic choice for HCC treatment, and integrating them into clinical practices.
Collapse
Affiliation(s)
- Caiyan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shenshen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Kailong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yiman Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shiyue Zhou
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hongwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
4
|
Guerra AR, Duarte MF, Duarte IF. Targeting Tumor Metabolism with Plant-Derived Natural Products: Emerging Trends in Cancer Therapy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10663-10685. [PMID: 30227704 DOI: 10.1021/acs.jafc.8b04104] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recognition of neoplastic metabolic reprogramming as one of cancer's hallmarks has paved the way for developing novel metabolism-targeted therapeutic approaches. The use of plant-derived natural bioactive compounds for this endeavor is especially promising, due to their diverse structures and multiple targets. Hence, over the past decade, a growing number of studies have assessed the impact of phytochemicals on tumor cell metabolism, aiming at improving current knowledge on their mechanisms of action and, at the same time, evaluating their potential as anti-cancer metabolic modulators. In this Review, we focus on three classes of plant-derived compounds with promising anti-cancer activity-phenolic compounds, isoprenoids, and alkaloids-to describe their effects on major energetic and biosynthetic pathways of human tumor cells. Such a comprehensive and integrated account of the ability of these compounds to hit different metabolic targets is expected to contribute to the rational design and critical assessment of novel anti-cancer therapies based on natural-product-mediated metabolic reprogramming.
Collapse
Affiliation(s)
- Angela R Guerra
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja , Apartado 6158 , 7801-908 Beja , Portugal
- CICECO - Instituto de Materiais de Aveiro, Departamento de Quı́mica , Universidade de Aveiro , Campus de Santiago , 3810-193 Aveiro , Portugal
| | - Maria F Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja , Apartado 6158 , 7801-908 Beja , Portugal
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas , Universidade de Évora , Pólo da Mitra, 7006-554 Évora , Portugal
| | - Iola F Duarte
- CICECO - Instituto de Materiais de Aveiro, Departamento de Quı́mica , Universidade de Aveiro , Campus de Santiago , 3810-193 Aveiro , Portugal
| |
Collapse
|
5
|
Wei X, Qu TL, Yang YF, Xu JF, Li XW, Zhao ZB, Guo YW. Design and synthesis of new tetrandrine derivatives and their antitumor activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:966-975. [PMID: 27244089 DOI: 10.1080/10286020.2016.1188085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
A series of tetrandrine derivatives were designed and synthesized using Suzuki coupling reaction. Eleven targeted compounds with over 50% inhibition against HL60 and A549 human cancer cell lines at 10 μM were further evaluated for the in vitro antitumor activities by MTT or SRB assay. The biological results revealed that some compounds exhibited potent antitumor activities. Thiophene derivative 6 and acetylphenyl derivative 5 were the most active ones against HL60 and A549 cell lines, with IC50 values less than 5 μM, which thus could be considered as useful candidate for further development of new antitumor agents.
Collapse
Affiliation(s)
- Xiao Wei
- a School of Pharmaceutical Science , Shanxi Medical University , Taiyuan 030001 , China
| | - Ting-Li Qu
- a School of Pharmaceutical Science , Shanxi Medical University , Taiyuan 030001 , China
| | - Yi-Fang Yang
- b Shanghai Institute of Pharmaceutical Industry , Shanghai 200040 , China
| | - Jin-Fang Xu
- a School of Pharmaceutical Science , Shanxi Medical University , Taiyuan 030001 , China
| | - Xu-Wen Li
- c State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Zheng-Bao Zhao
- a School of Pharmaceutical Science , Shanxi Medical University , Taiyuan 030001 , China
| | - Yue-Wei Guo
- c State Key Laboratory of New Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| |
Collapse
|
6
|
Lu JJ, Lu DZ, Chen YF, Dong YT, Zhang JR, Li T, Tang ZH, Yang Z. Proteomic analysis of hepatocellular carcinoma HepG2 cells treated with platycodin D. Chin J Nat Med 2016; 13:673-9. [PMID: 26412427 DOI: 10.1016/s1875-5364(15)30065-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 12/27/2022]
Abstract
Platycodin D (PD), a triterpenoid saponin isolated from Platycodonis Radix, is a famous Chinese herbal medicine that has been shown to have anti-proliferative effects in several cancer cell lines. The aim of this study was to determine the changes in cellular proteins after the treatment of hepatocellular carcinoma HepG2 cells with PD using proteomics approaches. The cell viability was determined using the MTT assay. The proteome was analyzed by two-dimensional difference gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Western blot analysis was used to confirm the expression of changed proteins. Our results showed that PD inhibited the proliferation of HepG2 cells in concentration- and time-dependent manners. Sixteen proteins were identified to be up-regulated in PD-treated HepG2 cells, including ATP5H, OXCT1, KRT9, CCDC40, ERP29, RCN1, ZNF175, HNRNPH1, HSP27, PA2G4, PHB, BANF1, TPM3, ECH1, LGALS1, and MYL6. Three proteins (i.e., RPS12, EMG1, and KRT1) decreased in HepG2 cells after treatment with PD. The changes in HSP27 and PHB were further confirmed by Western blotting. In conclusion, our results shed new lights on the mechanisms of action for the anti-cancer activity of PD.
Collapse
Affiliation(s)
- Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - De-Zhao Lu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu-Fei Chen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ya-Ting Dong
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jun-Ren Zhang
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zheng-Hai Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhen Yang
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
7
|
Wang X, Wang N, Cheung F, Lao L, Li C, Feng Y. Chinese medicines for prevention and treatment of human hepatocellular carcinoma: current progress on pharmacological actions and mechanisms. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2015; 13:142-64. [PMID: 26006028 DOI: 10.1016/s2095-4964(15)60171-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of leading causes of death in the world. Although various treatments have been developed, the therapeutic side effects are far from desirable. Chinese medicines (CMs, including plants, animal parts and minerals) have drawn a great deal of attention in recent years for their potential in the treatment of HCC. Most studies have shown that CMs may be able to retard HCC progression with multiple actions, either alone or in combination with other conventional therapies to improve quality of life in HCC patients. Additionally, CMs are used for preventing HCC occurrence. The aim of this study is to review the potential prophylactic and curative effects of CMs on human HCC and the possible mechanisms that underlie these pharmacological actions. Publications were collected and reviewed from PubMed and China National Knowledge Infrastructure from 2000 to 2014. Keywords for literature searches include "Chinese medicine", "Chinese herb", "traditional Chinese Medicine", "hepatocellular carcinoma" and "liver cancer". CMs in forms of pure compounds, isolated fractions, and composite formulas are included. Combination therapies are also considered. Both in vitro and in vivo efficacies of CMs are being discussed and the translational potential to bedside is to be discussed with clinical cases, which show the actions of CMs on HCC may include tumor growth inhibition, antimetastatic activities, anti-inflammation, anti-liver cancer stem cells, reversal on multi-drug resistance and induction/reduction of oxidative stress. Multiple types of molecules are found to contribute in the above actions. The review paper indicated that CMs might have potential to both prevent HCC occurrence and retard HCC progression with several molecular targets involved.
Collapse
Affiliation(s)
- Xuanbin Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Charlie Li
- California Department of Public Health, Richmond, CA 94804, USA
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Suganya N, Bhakkiyalakshmi E, Subin TS, Krishnamurthi K, Devi SS, Lau K, Sekar TV, Paulmurugan R, Ramkumar KM. Proteomic Identification of Pterostilbene-Mediated Anticancer Activities in HepG2 Cells. Chem Res Toxicol 2014; 27:1243-52. [DOI: 10.1021/tx5001392] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- N. Suganya
- SRM
Research Institute, SRM University, Kattankulathur, Tamilnadu, India
| | - E. Bhakkiyalakshmi
- SRM
Research Institute, SRM University, Kattankulathur, Tamilnadu, India
| | - T. S. Subin
- Environmental
Health Division, National Environmental Engineering Research Institute, Nagpur, India
| | - K. Krishnamurthi
- Environmental
Health Division, National Environmental Engineering Research Institute, Nagpur, India
| | - S. Saravana Devi
- Environmental
Health Division, National Environmental Engineering Research Institute, Nagpur, India
| | - K. Lau
- Department
of Radiology, Stanford University School of Medicine, 3155 Porter
Drive, Stanford, California 94305, United States
| | - T. V. Sekar
- Department
of Radiology, Stanford University School of Medicine, 3155 Porter
Drive, Stanford, California 94305, United States
| | - R. Paulmurugan
- Department
of Radiology, Stanford University School of Medicine, 3155 Porter
Drive, Stanford, California 94305, United States
| | - K. M. Ramkumar
- SRM
Research Institute, SRM University, Kattankulathur, Tamilnadu, India
| |
Collapse
|
9
|
Cheng Z, Liu R, Jiang X. Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 115:92-105. [PMID: 23831983 DOI: 10.1016/j.saa.2013.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
The binding interactions of tetrandrine (TETD) with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by spectroscopic methods. These experimental data were further analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) method, and the concentration profiles and pure spectra for three species (BSA/HSA, TETD and TETD-BSA/HSA) existed in the interaction procedure, as well as, the apparent equilibrium constants Kapp were evaluated. The binding sites number n and the binding constants K were obtained at various temperatures. The binding distance between TETD and BSA/HSA was 1.455/1.451nm. The site markers competitive experiments indicated that TETD primarily bound to the tryptophan residue of BSA/HSA within site I. The thermodynamic parameters (ΔG, ΔH and ΔS) calculated on the basis of different temperatures revealed that the binding of TETD-BSA was mainly depended on the hydrophobic interaction strongly and electrostatic interaction, and yet the binding of TETD-HSA was strongly relied on the hydrophobic interaction. The results of synchronous fluorescence, 3D fluorescence and FT-IR spectra show that the conformation of proteins has altered in the presence of TETD. In addition, the effect of some common ions on the binding constants between TETD and proteins were also discussed.
Collapse
Affiliation(s)
- Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China.
| | | | | |
Collapse
|
10
|
Paulo JA, Kadiyala V, Banks PA, Conwell DL, Steen H. Mass spectrometry-based quantitative proteomic profiling of human pancreatic and hepatic stellate cell lines. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:105-13. [PMID: 23528454 PMCID: PMC4123426 DOI: 10.1016/j.gpb.2013.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/05/2013] [Accepted: 01/15/2013] [Indexed: 02/06/2023]
Abstract
The functions of the liver and the pancreas differ; however, chronic inflammation in both organs is associated with fibrosis. Evidence suggests that fibrosis in both organs is partially regulated by organ-specific stellate cells. We explore the proteome of human hepatic stellate cells (hHSC) and human pancreatic stellate cells (hPaSC) using mass spectrometry (MS)-based quantitative proteomics to investigate pathophysiologic mechanisms. Proteins were isolated from whole cell lysates of immortalized hHSC and hPaSC. These proteins were tryptically digested, labeled with tandem mass tags (TMT), fractionated by OFFGEL, and subjected to MS. Proteins significantly different in abundance (P < 0.05) were classified via gene ontology (GO) analysis. We identified 1223 proteins and among them, 1222 proteins were quantifiable. Statistical analysis determined that 177 proteins were of higher abundance in hHSC, while 157 were of higher abundance in hPaSC. GO classification revealed that proteins of relatively higher abundance in hHSC were associated with protein production, while those of relatively higher abundance in hPaSC were involved in cell structure. Future studies using the methodologies established herein, but with further upstream fractionation and/or use of enhanced MS instrumentation will allow greater proteome coverage, achieving a comprehensive proteomic analysis of hHSC and hPaSC.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
11
|
Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 2012; 53:421-36. [PMID: 22580150 DOI: 10.1016/j.freeradbiomed.2012.05.006] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 04/14/2012] [Accepted: 05/03/2012] [Indexed: 01/10/2023]
Abstract
The pentose phosphate pathway, one of the main antioxidant cellular defense systems, has been related for a long time almost exclusively to its role as a provider of reducing power and ribose phosphate to the cell. In addition to this "traditional" correlation, in the past years multiple roles have emerged for this metabolic cascade, involving the cell cycle, apoptosis, differentiation, motility, angiogenesis, and the response to anti-tumor therapy. These findings make the pentose phosphate pathway a very interesting target in tumor cells. This review summarizes the latest discoveries relating the activity of the pentose phosphate pathway to various aspects of tumor metabolism, such as cell proliferation and death, tissue invasion, angiogenesis, and resistance to therapy, and discusses the possibility that drugs modulating the pathway could be used as potential tools in tumor therapy.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Genetics, Biology, and Biochemistry, University of Torino, Turin, Italy.
| | | | | | | | | |
Collapse
|