1
|
Rani R, Marinho Righetto G, Schäfer AB, Wenzel M. The Diverse Activities and Mechanisms of the Acylphloroglucinol Antibiotic Rhodomyrtone: Antibacterial Activity and Beyond. Antibiotics (Basel) 2024; 13:936. [PMID: 39452203 PMCID: PMC11504083 DOI: 10.3390/antibiotics13100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: The rose myrtle Rhodomyrtus tomentosa is a medicinal plant used in traditional Asian medicine. The active compound in R. tomentosa leaf extracts is rhodomyrtone, a chiral acylphloroglucinol. Rhodomyrtone exhibits an impressive breadth of activities, including antibacterial, antiviral, antiplasmodial, immunomodulatory, and anticancer properties. Its antibacterial properties have been extensively studied. Methods: We performed a comprehensive literature review on rhodomyrtone and summarized the current knowledge about this promising acylphloroglucinol antibiotic and its diverse functions in this review. Results: Rhodomyrtone shows nano to micromolar activities against a broad range of Gram-positive pathogens, including multidrug-resistant clinical isolates, and possesses a unique mechanism of action. It increases membrane fluidity and creates hyperfluid domains that attract membrane proteins prior to forming large membrane vesicles, effectively acting as a membrane protein trap. This mechanism affects a multitude of cellular processes, including cell division and cell wall synthesis. Additionally, rhodomyrtone reduces the expression of inflammatory cytokines, such as TNF-α, IL-17A, IL1β, and IL8. Generally showing low toxicity against mammalian cells, rhodomyrtone does inhibit the proliferation of cancer cell lines, such as epidermal carcinoma cells. The primary mechanism behind this activity appears to be the downregulation of adhesion kinases and growth factors. Furthermore, rhodomyrtone has shown antioxidant activity and displays cognitive effects, such as decreasing depressive symptoms in mice. Conclusions: Rhodomyrtone shows great promise as therapeutic agent, mostly for antibacterial but also for diverse other applications. Yet, bottlenecks such as resistance development and a better understanding of mammalian cell toxictiy demand careful assessment.
Collapse
Affiliation(s)
- Rupa Rani
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| | - Gabriela Marinho Righetto
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| | - Ann-Britt Schäfer
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), 413 45 Gothenburg, Sweden
| |
Collapse
|
2
|
Issuriya A, Jatutasri K, Sanpinit S, Chusri S, Voravuthikunchai SP, Kaewmanee T, Phoopha S, Jetwanna KWN, Limsuwan S. Potential applications of Rhodomyrtus tomentosa leaf extract as natural anti-staphylococcal additive in food systems: Efficacy and in vivo safety evaluation. FOOD SCI TECHNOL INT 2024; 30:370-383. [PMID: 36959762 DOI: 10.1177/10820132231165667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
This work aimed to explore the potential use of Rhodomyrtus tomentosa ethanol leaf extract (RTEL) as an alternative food preservative agent for controlling the growth of Staphylococcus aureus. Antibacterial activities against food-isolated S. aureus were performed using disc diffusion and broth microdilution assays, followed by evaluating in vivo subacute oral toxicity of the extract. Salad dressing was used as a food model to study bactericidal properties and consumer acceptability. RTEL remarkably inhibited S. aureus with minimum inhibitory concentrations (MICs) ranging from 7.81-62.5 µg/mL. Repeated oral doses (5, 50, and 300 mg/kg RTEL) for 28 days did not affect any of the measured toxicity parameters. The no-observed-adverse-effect-level (NOAEL) of RTEL was noted as more than 300 mg/kg body weight/day. The utilization of RTEL (12.5 mg/mL) in the vinaigrette salad dressing did not affect the consumer acceptability of the product, remarkably killed the pathogen within 3-9 h of exposure. The results indicated that RTEL is safe and effective as a natural anti-staphylococcal controlling agent that could be utilized in food systems. Further work is required on the effects of enterotoxin production, an important virulence factor of S. aureus responsible for food-borne disease.
Collapse
Affiliation(s)
- Acharaporn Issuriya
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kawinsak Jatutasri
- Sirindhorn College of Public Health, Yala, Faculty of Public Health and Allied Health Sciences, Praboromarajchanok Institute, Thailand
| | - Sineenart Sanpinit
- School of Medicine, Walailak University, Thasala, Nakhon Si Thammarat, Thailand
| | - Sasitorn Chusri
- Biomedical Technology Research Group for Vulnerable Populations, and School of Health Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thammarat Kaewmanee
- Department of Food Science and Nutrition, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
| | - Sathianpong Phoopha
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - Surasak Limsuwan
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
3
|
Suwandecha T, Yingyongnarongkul BE, Towtawin K, Voravuthikunchai SP, Sriwiriyajan S. A Novel Antibiotic, Rhodomyrtone: Pharmacokinetic Studies in a Murine Model and Optimization and Validation of High-Performance Liquid Chromatographic Method for Plasma Analysis. Antibiotics (Basel) 2024; 13:156. [PMID: 38391542 PMCID: PMC10885983 DOI: 10.3390/antibiotics13020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Rhodomyrtone has indisputable and undeniable potential as a new antibiotic for antibiotic-resistant Gram-positive bacteria. Therefore, the main objective of this study was to determine the pharmacokinetics profiles of orally administered rhodomyrtone in rats. A reverse-phase HPLC-UV method was developed, optimized and validated for the analysis of rhodomyrtone concentrations in rat plasma. The retention time of papaverine and rhodomyrtone was 3.928 and 5.937 min, with no interference with the excipients used. The lower limit of quantification (LLOQ) of rhodomyrtone in the plasma sample was 0.04 μg/mL, the accuracy of rhodomyrtone at the LLOQ level ranged from 93.64 to 106.36%, precision was 6.59%, 80-120% for accuracy and <20% CV for precision. The calibration curve was linear at concentrations ranging from 0.04 to 128 µg/mL with a correlation coefficient (r) value of equal to or greater than 0.999. Sprague Dawley rats received a single dose of rhodomyrtone at 50 and 100 mg/kg. Blood samples were collected from tail veins. The peak plasma concentration was observed at 2 h, and the area under the curve of rhodomyrtone at 50 mg/kg and 100 mg/kg was 3.41 ± 1.04 and 7.82 ± 1.53 μg·h/mL, respectively. The results demonstrated linear pharmacokinetics characteristics at the studied dosage range. The plasma concentration of rhodomyrtone was above the minimal inhibition concentrations of several common pathogenic bacteria of medical importance. The proposed HPLC-UV method is fast, cost-effective, reliable and reproducible, and it is proposed for the routine analysis of rhodomyrtone.
Collapse
Affiliation(s)
- Tan Suwandecha
- School of Pharmacy and Drug and Cosmetic Excellence Center, Walailak University, Thaiburi, Thasala District, Nakhon Si Thammarat 80160, Thailand
| | - Boon-Ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Kanokkan Towtawin
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Somchai Sriwiriyajan
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
4
|
Nakkaew A, Masjon T, Voravuthikunchai SP. Genomic and Transcriptional Profiling Analysis and Insights into Rhodomyrtone Yield in Rhodomyrtus tomentosa (Aiton) Hassk. PLANTS (BASEL, SWITZERLAND) 2023; 12:3156. [PMID: 37687402 PMCID: PMC10490526 DOI: 10.3390/plants12173156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Rhodomyrtus tomentosa is a source of a novel antibiotic, rhodomyrtone. Because of the increasing industrial demand for this compound, germplasm with a high rhodomyrtone content is the key to sustainable future cultivation. In this study, rhodomyrtone genotypes were verified using the plastid genomic region marker matK and nuclear ribosomal internal transcribed spacer ITS. These two DNA barcodes proved to be useful tools for identifying different rhodomyrtone contents via the SNP haplotypes C569T and A561G, respectively. The results were correlated with rhodomyrtone content determined via HPLC. Subsequently, R. tomentosa samples with high- and low-rhodomyrtone genotypes were collected for de novo transcriptome and gene expression analyses. A total of 83,402 unigenes were classified into 25 KOG classifications, and 74,102 annotated unigenes were obtained. Analysis of differential gene expression between samples or groups using DESeq2 revealed highly expressed levels related to rhodomyrtone content in two genotypes. semiquantitative RT-PCR further revealed that the high rhodomyrtone content in these two genotypes correlated with expression of zinc transporter protein (RtZnT). In addition, we found that expression of RtZnT resulted in increased sensitivity of R. tomentosa under ZnSO4 stress. The findings provide useful information for selection of cultivation sites to achieve high rhodomyrtone yields in R. tomentosa.
Collapse
Affiliation(s)
- Alisa Nakkaew
- Center for Genomic and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
- Division of Biological Science, Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Thipphanet Masjon
- Center for Genomic and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
- Division of Biological Science, Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| |
Collapse
|
5
|
Rhodomyrtone Accumulates in Bacterial Cell Wall and Cell Membrane and Inhibits the Synthesis of Multiple Cellular Macromolecules in Epidemic Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10050543. [PMID: 34067029 PMCID: PMC8150934 DOI: 10.3390/antibiotics10050543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
As the burden of antibacterial resistance worsens and treatment options become narrower, rhodomyrtone—a novel natural antibiotic agent with a new antibacterial mechanism—could replace existing antibiotics for the treatment of infections caused by multi-drug resistant Gram-positive bacteria. In this study, rhodomyrtone was detected within the cell by means of an easy an inexpensive method. The antibacterial effects of rhodomyrtone were investigated on epidemic methicillin-resistant Staphylococcus aureus. Thin-layer chromatography demonstrated the entrapment and accumulation of rhodomyrtone within the bacterial cell wall and cell membrane. The incorporation of radiolabelled precursors revealed that rhodomyrtone inhibited the synthesis of macromolecules including DNA, RNA, proteins, the cell wall, and lipids. Following the treatment with rhodomyrtone at MIC (0.5–1 µg/mL), the synthesis of all macromolecules was significantly inhibited (p ≤ 0.05) after 4 h. Inhibition of macromolecule synthesis was demonstrated after 30 min at a higher concentration of rhodomyrtone (4× MIC), comparable to standard inhibitor compounds. In contrast, rhodomyrtone did not affect lipase activity in staphylococci—both epidemic methicillin-resistant S. aureus and S. aureus ATCC 29213. Interfering with the synthesis of multiple macromolecules is thought to be one of the antibacterial mechanisms of rhodomyrtone.
Collapse
|
6
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
7
|
Abstract
Rhodomyrtone (Rom) is a plant-derived broad-spectrum antibiotic active against many Gram-positive pathogens. A single point mutation in the regulatory farR gene (farR*) confers resistance to Rom in Staphylococcus aureus (RomR). The mutation in farR* alters the activity of the regulator, FarR*, in such a way that not only its own gene, farR*, but also the divergently transcribed farE gene and genes controlled by the global regulator, agr, are highly upregulated. Here, we show that mainly the upregulation of the fatty acid efflux pump FarE causes the RomR phenotype, as farE deletion in either the parent or the RomR strain (RomR ΔfarE) yielded hypersensitivity to Rom. Comparative lipidome analysis of the supernatant (exolipidomics) and the pellet fraction revealed that the RomR strain excreted about 10 times more phospholipids (PGs) than the parent strain or the ΔfarE mutants. Since the PG content in the supernatant (2,244 ng/optical density [OD]) was more than 100-fold higher than that of fatty acids (FA), we assumed that PG interacts with Rom, thereby abrogating its antimicrobial activity. Indeed, by static and dynamic light scattering (SLS and DLS) and isothermal titration calorimetry (ITC) analyses, we could demonstrate that both PG and Rom were vesicular and reacted with each other in milliseconds to form a 1:1.49 [Rom-PG(32:0), where PG(32:0) is PG with C32:0 lipids] complex. The binding is entropically driven and hence hydrophobic and of low specificity in nature. Our results indicate that the cytoplasmic membrane is the actual target of Rom, which is also in agreement with Rom's induced rapid collapse of the membrane potential and decreased membrane integrity. IMPORTANCE Antibiotic resistance is a growing public health problem, and alternative antibiotics are urgently needed. Rhodomyrtone (Rom), an antimicrobial compound originally isolated from Rhodomyrtus tomentosa, is active against multidrug-resistant Gram-positive pathogens. However, Rom-resistant (RomR) mutants occur with low frequency. In this study, we unraveled the underlying resistance mechanism, which is based on a point mutation in the farR regulator gene, causing overexpression of FarE, which most likely acts as a phospholipid (PG) efflux pump, as large amounts of PG were found in the supernatant and the pellet fraction. We show that PG can bind to Rom, thereby abrogating its antimicrobial activity. The direct interaction of Rom with PG suggests that Rom's actual target is the cytoplasmic membrane. Antibiotics that interact with PG are rare. Since Rom can be chemically synthesized, it serves as a lead compound for synthesis of improved variants.
Collapse
|
8
|
Chassagne F, Samarakoon T, Porras G, Lyles JT, Dettweiler M, Marquez L, Salam AM, Shabih S, Farrokhi DR, Quave CL. A Systematic Review of Plants With Antibacterial Activities: A Taxonomic and Phylogenetic Perspective. Front Pharmacol 2021; 11:586548. [PMID: 33488385 PMCID: PMC7821031 DOI: 10.3389/fphar.2020.586548] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Antimicrobial resistance represents a serious threat to human health across the globe. The cost of bringing a new antibiotic from discovery to market is high and return on investment is low. Furthermore, the development of new antibiotics has slowed dramatically since the 1950s' golden age of discovery. Plants produce a variety of bioactive secondary metabolites that could be used to fuel the future discovery pipeline. While many studies have focused on specific aspects of plants and plant natural products with antibacterial properties, a comprehensive review of the antibacterial potential of plants has never before been attempted. Objectives: This systematic review aims to evaluate reports on plants with significant antibacterial activities. Methods: Following the PRISMA model, we searched three electronic databases: Web of Science, PubMed and SciFinder by using specific keywords: "plant," "antibacterial," "inhibitory concentration." Results: We identified a total of 6,083 articles published between 1946 and 2019 and then reviewed 66% of these (4,024) focusing on articles published between 2012 and 2019. A rigorous selection process was implemented using clear inclusion and exclusion criteria, yielding data on 958 plant species derived from 483 scientific articles. Antibacterial activity is found in 51 of 79 vascular plant orders throughout the phylogenetic tree. Most are reported within eudicots, with the bulk of species being asterids. Antibacterial activity is not prominent in monocotyledons. Phylogenetic distribution strongly supports the concept of chemical evolution across plant clades, especially in more derived eudicot families. The Lamiaceae, Fabaceae and Asteraceae were the most represented plant families, while Cinnamomum verum, Rosmarinus vulgaris and Thymus vulgaris were the most studied species. South Africa was the most represented site of plant collection. Crude extraction in methanol was the most represented type of extraction and leaves were the main plant tissue investigated. Finally, Staphylococcus aureus was the most targeted pathogenic bacteria in these studies. We closely examine 70 prominent medicinal plant species from the 15 families most studied in the literature. Conclusion: This review depicts the current state of knowledge regarding antibacterials from plants and provides powerful recommendations for future research directions.
Collapse
Affiliation(s)
- François Chassagne
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | | | - Gina Porras
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | - Micah Dettweiler
- Department of Dermatology, Emory University, Atlanta, GA, United States
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
| | | | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, Atlanta, GA, United States
- Emory University Herbarium, Emory University, Atlanta, GA, United States
- Department of Dermatology, Emory University, Atlanta, GA, United States
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| |
Collapse
|
9
|
Traithan A, Tongtawe P, Thanongsaksrikul J, Voravuthikunchai S, Srimanote P. Antibacterial mechanism of rhodomyrtone involves the disruption of nucleoid segregation checkpoint in Streptococcus suis. AMB Express 2020; 10:110. [PMID: 32514868 PMCID: PMC7280372 DOI: 10.1186/s13568-020-01047-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
Rhodomyrtone has been recently demonstrated to possess a novel antibiotic mechanism of action against Gram-positive bacteria which involved the multiple targets, resulting in the interference of several bacterial biological processes including the cell division. The present study aims to closely look at the downstream effect of rhodomyrtone treatment on nucleoid segregation in Streptococcus suis, an important zoonotic pathogen. The minimum inhibition concentration (MIC) and the minimum bactericidal concentration (MBC) values of rhodomyrtone against the recombinant S. suis ParB-GFP, a nucleoid segregation reporter strain, were 0.5 and 1 µg/ml, respectively, which were equivalent to the potency of vancomycin. Using the fluorescence live-cell imaging, we demonstrated that rhodomyrtone at 2× MIC caused incomplete nucleoid segregation and septum misplacement, leading to the generation of anucleated cells. FtsZ immune-staining of rhodomyrtone-treated S. suis for 30 min revealed that the large amount of FtsZ was trapped in the region of high fluidity membrane and appeared to be able to polymerize to form a complete Z-ring. However, the Z-ring was shifted away from the midcell. Transmission electron microscopy further confirmed the disruption of nucleoid segregation and septum misplacement at 120 min following the rhodomyrtone treatment. Asymmetric septum formation resulted in either generation of minicells without nucleoid, septum formed over incomplete segregated nucleoid (guillotine effect), or formation of multi-constriction of Z-ring within a single cell. This finding spotlights on antibacterial mechanism of rhodomyrtone involves the early stage in bacterial cell division process.
Collapse
|
10
|
Zhang X, Cheng J, He P, Zhu J, Chen Z, Miao S, Wang G, Jiang J, Wang Y. Active Monomer RTR-1 Derived from the Root of Rhodomyrtus t omentosa Induces Apoptosis in Gastric Carcinoma Cells by Inducing ER Stress and Inhibiting the STAT3 Signaling Pathway. Cancer Manag Res 2020; 12:3117-3129. [PMID: 32440210 PMCID: PMC7211317 DOI: 10.2147/cmar.s237201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/06/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose Rhodomyrtus tomentosa, a flowering plant from the Myrtaceae family, is considered an antitumour substance with versatile biological and pharmacological activities. RTR-1 is an active monomer purified from the root of Rhodomyrtus tomentosa. However, the detail of mechanism involving in RTR-1 anti-cancer activity remains to be elucidated, and the effect on gastric cancer cells is unknown. Methods Cell proliferation was determined by MTT and clone formation assay. The effect of RTR-1 on cell cycle distribution and apoptosis was analysed utilizing flow cytometry, respectively. Moreover, Western blotting was used to detect the expression of cell cycle- and apoptosis-related protein. Results Based on MTT and clone formation assay, we noticed that RTR-1 inhibited the proliferation of gastric carcinoma (BGC823 and SGC7901) cells in a dose- and time-dependent manner. Furthermore, the results of flow cytometry and Western blotting showed that RTR-1 induced cell cycle arrest in the G2/M phase through the ATM-Chk2-p53-p21 signaling pathway and induced cell apoptosis by inhibiting the signal transducers and activators of transcription 3 (STAT3) pathway and activating the endoplasmic reticulum stress (ER stress) pathway. Conclusion Taken together, these results demonstrate that RTR-1 induces cell cycle arrest and promotes apoptosis in gastric carcinoma, indicating its potential application for gastric cancer therapy.
Collapse
Affiliation(s)
- Xiangqiang Zhang
- Department of Physiology, Basic Medical College, Jinan University, Guangzhou 510630, People's Republic of China
| | - Jinxia Cheng
- Department of Physiology, Basic Medical College, Jinan University, Guangzhou 510630, People's Republic of China
| | - Peiyan He
- Department of Biochemistry, Basic Medical College, Jinan University, Guangzhou 510630, People's Republic of China
| | - Jinyan Zhu
- Department of Immunology, Basic Medical College, Jinan University, Guangzhou 510630, People's Republic of China
| | - Zhixian Chen
- Department of Biochemistry, Basic Medical College, Jinan University, Guangzhou 510630, People's Republic of China
| | - Shenyu Miao
- School of Life Sciences, Guangzhou University, Guangzhou, People's Republic of China
| | - Guocai Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510630, People's Republic of China
| | - Jianwei Jiang
- Department of Biochemistry, Basic Medical College, Jinan University, Guangzhou 510630, People's Republic of China
| | - Yuechun Wang
- Department of Physiology, Basic Medical College, Jinan University, Guangzhou 510630, People's Republic of China
| |
Collapse
|
11
|
Rhodomyrtus tomentosa (Aiton.): A review of phytochemistry, pharmacology and industrial applications research progress. Food Chem 2020; 309:125715. [DOI: 10.1016/j.foodchem.2019.125715] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022]
|
12
|
Nguyen MT, Saising J, Tribelli PM, Nega M, Diene SM, François P, Schrenzel J, Spröer C, Bunk B, Ebner P, Hertlein T, Kumari N, Härtner T, Wistuba D, Voravuthikunchai SP, Mäder U, Ohlsen K, Götz F. Inactivation of farR Causes High Rhodomyrtone Resistance and Increased Pathogenicity in Staphylococcus aureus. Front Microbiol 2019; 10:1157. [PMID: 31191485 PMCID: PMC6547885 DOI: 10.3389/fmicb.2019.01157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022] Open
Abstract
Rhodomyrtone (Rom) is an acylphloroglucinol antibiotic originally isolated from leaves of Rhodomyrtus tomentosa. Rom targets the bacterial membrane and is active against a wide range of Gram-positive bacteria but the exact mode of action remains obscure. Here we isolated and characterized a spontaneous Rom-resistant mutant from the model strain Staphylococcus aureus HG001 (RomR) to learn more about the resistance mechanism. We showed that Rom-resistance is based on a single point mutation in the coding region of farR [regulator of fatty acid (FA) resistance] that causes an amino acid change from Cys to Arg at position 116 in FarR, that affects FarR activity. Comparative transcriptome analysis revealed that mutated farR affects transcription of many genes in distinct pathways. FarR represses for example the expression of its own gene (farR), its flanking gene farE (effector of FA resistance), and other global regulators such as agr and sarA. All these genes were consequently upregulated in the RomR clone. Particularly the upregulation of agr and sarA leads to increased expression of virulence genes rendering the RomR clone more cytotoxic and more pathogenic in a mouse infection model. The Rom-resistance is largely due to the de-repression of farE. FarE is described as an efflux pump for linoleic and arachidonic acids. We observed an increased release of lipids in the RomR clone compared to its parental strain HG001. If farE is deleted in the RomR clone, or, if native farR is expressed in the RomR strain, the corresponding strains become hypersensitive to Rom. Overall, we show here that the high Rom-resistance is mediated by overexpression of farE in the RomR clone, that FarR is an important regulator, and that the point mutation in farR (RomR clone) makes the clone hyper-virulent.
Collapse
Affiliation(s)
- Minh-Thu Nguyen
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Federal Regulatory Agency for Vaccines and Biomedicines, Paul Ehrlich Institute, Langen, Germany
| | - Jongkon Saising
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Paula Maria Tribelli
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | - Mulugeta Nega
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Seydina M Diene
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Patrice François
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Patrick Ebner
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Tobias Hertlein
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Nimerta Kumari
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Thomas Härtner
- Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Dorothee Wistuba
- Institute for Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Supayang P Voravuthikunchai
- Department of Microbiology, Natural Product Centre of Excellence, Prince of Songkla University, Hat Yai, Thailand
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Knut Ohlsen
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Mitsuwan W, Jiménez-Munguía I, Visutthi M, Sianglum W, Rodríguez-Ortega MJ, Voravuthikunchai SP. Rhodomyrtone decreases Staphylococcus aureus SigB activity during exponentially growing phase and inhibits haemolytic activity within membrane vesicles. Microb Pathog 2019; 128:112-118. [PMID: 30583020 DOI: 10.1016/j.micpath.2018.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 02/05/2023]
Abstract
Sigma factor B (SigB) controls the expression of Staphylococcus aureus genes including virulence factors and plays a role in the bacterial secretion system through membrane vesicle production. Inhibition of SigB could attenuate SigB dependent virulence and secretion system. The objective of this study was to determine the effects of rhodomyrtone on SigB and virulence factors related to SigB. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of rhodomyrtone against 67 clinical methicillin-resistant S. aureus isolates were 0.25-8 μg/ml, which were similar to those of vancomycin. Using luciferase gene fused to SigB dependent promoters of asp23, five time reduction in SigB activity was observed when the bacteria were treated with rhodomyrtone for 3 h. Rhodomyrtone significantly reduced SigB activity in a concentration dependent manner in exponentially growing cells (P < 0.05). In addition, sigB mutant was more sensitive towards increasing concentrations of rhodomyrtone than the wild type and yabJ-spoVG mutant. Rhodomyrtone at 0.625 μg/ml reduced the growth of sigB mutant by approximately 99%, compared with the yabJ-spoVG mutant and the wild type. Membrane vesicles were significantly reduced in the bacterial cells when treated with 0.5 × MIC rhodomyrtone (P < 0.05). Decreased haemolytic activity was detected within rhodomyrtone-treated membrane vesicles. The results indicated that rhodomyrtone inhibited S. aureus SigB activity during exponentially growing phase and inhibited haemolytic activity within membrane vesicles.
Collapse
Affiliation(s)
- Watcharapong Mitsuwan
- Department of Microbiology and Excellent Research Laboratory on Natural Products and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Irene Jiménez-Munguía
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain; Department of Engineering of Technological Equipment, National University of Science and Technology "MISiS", Moscow, Russia
| | - Monton Visutthi
- Department of Microbiology and Excellent Research Laboratory on Natural Products and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Wipawadee Sianglum
- Department of Microbiology and Excellent Research Laboratory on Natural Products and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | | | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, Córdoba, Spain
| | - Supayang P Voravuthikunchai
- Department of Microbiology and Excellent Research Laboratory on Natural Products and Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
14
|
The Health Beneficial Properties of Rhodomyrtus tomentosa as Potential Functional Food. Biomolecules 2019; 9:biom9020076. [PMID: 30795643 PMCID: PMC6406238 DOI: 10.3390/biom9020076] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022] Open
Abstract
Rhodomyrtus tomentosa (Aiton) Hassk. is a flowering plant belonging to the family Myrtaceae, native to southern and southeastern Asia. It has been used in traditional Vietnamese, Chinese, and Malaysian medicine for a long time for the treatment of diarrhea, dysentery, gynecopathy, stomachache, and wound healing. Moreover, R. tomentosa is used to make various food products such as wine, tea, and jam. Notably, R. tomentosa has been known to contain structurally diverse and biologically active metabolites, thus serving as a potential resource for exploring novel functional agents. Up to now, numerous phenolic and terpenoid compounds from the leaves, root, or fruits of R. tomentosa have been identified, and their biological activities such as antioxidant, antibacterial, anti-inflammatory, and anticancer have been evidenced. In this contribution, an overview of R. tomentosa and its health beneficial properties was focused on and emphasized.
Collapse
|
15
|
Bach QN, Hongthong S, Quach LT, Pham LV, Pham TV, Kuhakarn C, Reutrakul V, Nguyen PT. Antimicrobial activity of rhodomyrtone isolated from Rhodomyrtus tomentosa (Aiton) Hassk. Nat Prod Res 2019; 34:2518-2523. [DOI: 10.1080/14786419.2018.1540479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Quynh N. Bach
- Haiphong University of Medicine and Pharmacology, Haiphong, Vietnam
| | - Sakchai Hongthong
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lien T. Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Lieu V. Pham
- Haiphong University of Medicine and Pharmacology, Haiphong, Vietnam
| | - Thuc V. Pham
- Haiphong University of Medicine and Pharmacology, Haiphong, Vietnam
| | - Chutima Kuhakarn
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Vichai Reutrakul
- Center of Excellence for Innovation in Chemistry (PERCH-CIC) and Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Phuong T.M. Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
16
|
Structures and Bioactive Properties of Myrtucommulones and Related Acylphloroglucinols from Myrtaceae. Molecules 2018; 23:molecules23123370. [PMID: 30572614 PMCID: PMC6321051 DOI: 10.3390/molecules23123370] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Myrtaceae are a group of plants that include a number of renowned species used in ethnomedicine in many areas worldwide. Their valuable therapeutic properties have stimulated a fruitful research activity addressed to the identification of the bioactive components of their extracts yielding a great diversity of terpenes; polyphenols; and other exclusive products. Among the latter, starting with the discovery of myrtucommulone A from myrtle (Myrtus communis), a series of structurally-related acylphloroglucinol compounds have been characterized from several species that represent the basic active principles to be considered in view of possible drug development. Aspects concerning chemical and biological properties of these products are reviewed in the present paper.
Collapse
|
17
|
Na-Phatthalung P, Teles M, Voravuthikunchai SP, Tort L, Fierro-Castro C. Immune-related gene expression and physiological responses in rainbow trout (Oncorhynchus mykiss) after intraperitoneal administration of Rhodomyrtus tomentosa leaf extract: A potent phytoimmunostimulant. FISH & SHELLFISH IMMUNOLOGY 2018; 77:429-437. [PMID: 29571768 DOI: 10.1016/j.fsi.2018.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/13/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
The immunostimulatory effects of Rhodomyrtus tomentosa leaf extract were evaluated in rainbow trout through changes in expression profile of genes involved in innate immune and antioxidant response, hematology and stress indicators. The concentrations of R. tomentosa at 10 and 100 μg per fish were administrated by intraperitoneal injection, alone or in combination with LPS. After 6 h of administration, the gene expression was measured in head kidney, spleen, and intestine. Results indicated that R. tomentosa exerted immunostimulatory effects by inducing the expression of il10, saa, hepcidin, and sod in head kidney and the expression of il10, tgfβ, and inos in intestine. In combination with LPS, the plant suppressed the expression of pro-inflammtory cytokine il1β, il8 and other consisting of saa and gpx1 in head kidney and il1β in spleen, pointing out its anti-inflammatory activities. Furthermore, the plant did not exert any impact on hematological parameters, but it was able to reduce cortisol levels when co-administered with LPS, indicating that R. tomentosa could attenuate stress response in rainbow trout. Our observations suggest that R. tomentosa induced the expression of genes involved in cytokine and innate immune response and modulated the physiological stress response as indicated by the suppressed cortisol in rainbow trout.
Collapse
Affiliation(s)
- Pinanong Na-Phatthalung
- Department of Microbiology and Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain; CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros, Portugal.
| | - Supayang Piyawan Voravuthikunchai
- Department of Microbiology and Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Lluís Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Camino Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.
| |
Collapse
|
18
|
Tayeh M, Nilwarangkoon S, Tanunyutthawongse C, Mahabusarakum W, Watanapokasin R. Apoptosis and antimigration induction in human skin cancer cells by rhodomyrtone. Exp Ther Med 2018; 15:5035-5040. [PMID: 29904398 DOI: 10.3892/etm.2018.6044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/09/2018] [Indexed: 12/27/2022] Open
Abstract
Rhodomyrtone is a bioactive compound extracted from Rhodomyrtus tomentosa leaves. It has been used as a traditional herb medicine for many years. Rhodomyrtone exhibits antibacterial activity, anti-inflammatory and antioxidant activities. However, the anticancer activity of rhodomyrtone has not been previously reported. The present study investigated the anticancer effect of rhomyrtone on human epidermoid carcinoma A431 cells. The cytotoxic and antiproliferative effects of rhodomyrtone on A431 cells were investigated by an MTT assay. Cell morphological alterations and apoptotic cells were observed with Hoechst 33342 staining following rhodomyrtone treatment. Flow cytometry and western blotting were performed to detect cell cycle and apoptosis induction. The results demonstrated that rhodomyrtone inhibited proliferation of A431 cells in a dose-dependent manner with IC50 value of 8.04±0.11 µg/ml. The results also indicated that rhodomyrtone increased chromatin condensation, nuclear fragmentation and apoptotic bodies in treated A431 cells in a time-dependent manner. Apoptosis was also induced through the activation of caspase-7 and poly (ADP-Ribose) polymerase cleavage. Flow cytometry analysis revealed that rhodomyrtone induced cell cycle arrest at the G1 phase. Notably, the non-toxic concentration of rhodomyrtone markedly inhibited A431 cell migration in a dose- and time-dependent manner. These finding suggested that rhodomyrtone may be used as an anticancer agent for human skin cancer.
Collapse
Affiliation(s)
- Malatee Tayeh
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Sirinun Nilwarangkoon
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Chantra Tanunyutthawongse
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wilawan Mahabusarakum
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
19
|
Saeloh D, Tipmanee V, Jim KK, Dekker MP, Bitter W, Voravuthikunchai SP, Wenzel M, Hamoen LW. The novel antibiotic rhodomyrtone traps membrane proteins in vesicles with increased fluidity. PLoS Pathog 2018; 14:e1006876. [PMID: 29451901 PMCID: PMC5833292 DOI: 10.1371/journal.ppat.1006876] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 03/01/2018] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
The acylphloroglucinol rhodomyrtone is a promising new antibiotic isolated from the rose myrtle Rhodomyrtus tomentosa, a plant used in Asian traditional medicine. While many studies have demonstrated its antibacterial potential in a variety of clinical applications, very little is known about the mechanism of action of rhodomyrtone. Preceding studies have been focused on intracellular targets, but no specific intracellular protein could be confirmed as main target. Using live cell, high-resolution, and electron microscopy we demonstrate that rhodomyrtone causes large membrane invaginations with a dramatic increase in fluidity, which attract a broad range of membrane proteins. Invaginations then form intracellular vesicles, thereby trapping these proteins. Aberrant protein localization impairs several cellular functions, including the respiratory chain and the ATP synthase complex. Being uncharged and devoid of a particular amphipathic structure, rhodomyrtone did not seem to be a typical membrane-inserting molecule. In fact, molecular dynamics simulations showed that instead of inserting into the bilayer, rhodomyrtone transiently binds to phospholipid head groups and causes distortion of lipid packing, providing explanations for membrane fluidization and induction of membrane curvature. Both its transient binding mode and its ability to form protein-trapping membrane vesicles are unique, making it an attractive new antibiotic candidate with a novel mechanism of action. Bacterial antibiotic resistance constitutes a major public healthcare issue and deaths caused by antimicrobial resistance are expected to soon exceed the number of cancer-related fatalities. In order to fight resistance, new antibiotics have to be developed that are not affected by existing microbial resistance strategies. Thus, antibiotics with novel or multiple targets are urgently needed. Rhodomyrtone displays excellent antibacterial activity, has been safely used in traditional Asian medicine for a long time, and resistance against this promising antibiotic candidate could not be detected in multiple passaging experiments. Here we demonstrate that rhodomyrtone possesses a completely novel mechanism of action, which is opposed to that of existing cell envelope-targeting drugs, minimizing the risk of cross-resistance, and in fact rhodomyrtone is highly active against e.g. vancomycin-resistant Staphylococcus aureus. Thus, rhodomyrtone is an extremely interesting compound for further antibacterial drug development.
Collapse
Affiliation(s)
- Dennapa Saeloh
- Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kin Ki Jim
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Marien P. Dekker
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Supayang P. Voravuthikunchai
- Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Michaela Wenzel
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (MW); (LWH)
| | - Leendert W. Hamoen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (MW); (LWH)
| |
Collapse
|
20
|
Saising J, Nguyen MT, Härtner T, Ebner P, Al Mamun Bhuyan A, Berscheid A, Muehlenkamp M, Schäkermann S, Kumari N, Maier ME, Voravuthikunchai SP, Bandow J, Lang F, Brötz-Oesterhelt H, Götz F. Rhodomyrtone (Rom) is a membrane-active compound. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1114-1124. [PMID: 29317198 DOI: 10.1016/j.bbamem.2018.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/15/2017] [Accepted: 01/04/2018] [Indexed: 12/24/2022]
Abstract
Particularly in Asia medicinal plants with antimicrobial activity are used for therapeutic purpose. One such plant-derived antibiotic is rhodomyrtone (Rom) isolated from Rhodomyrtus tomentosa leaves. Rom shows high antibacterial activity against a wide range of Gram-positive bacteria, however, its mode of action is still unclear. Reporter gene assays and proteomic profiling experiments in Bacillus subtilis indicate that Rom does not address classical antibiotic targets like translation, transcription or DNA replication, but acts at the cytoplasmic membrane. In Staphylococcus aureus, Rom decreases the membrane potential within seconds and at low doses, causes release of ATP and even the excretion of cytoplasmic proteins (ECP), but does not induce pore-formation as for example nisin. Lipid staining revealed that Rom induces local membrane damage. Rom's antimicrobial activity can be antagonized in the presence of a very narrow spectrum of saturated fatty acids (C15:0, C16:0, or C18:0) that most likely contribute to counteract the membrane damage. Gram-negative bacteria are resistant to Rom, presumably due to reduced penetration through the outer membrane and its neutralization by LPS. Rom is cytotoxic for many eukaryotic cells and studies with human erythrocytes showed that Rom induces eryptosis accompanied by erythrocyte shrinkage, cell membrane blebbing, and membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Rom's distinctive interaction with the cytoplasmic membrane reminds on the amphipathic, alpha-helical peptides, the phenol-soluble modulins (PSMs), and renders Rom an important tool for the investigation of membrane physiology.
Collapse
Affiliation(s)
- Jongkon Saising
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany; School of Health Science, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
| | - Minh-Thu Nguyen
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany; School of Biological and Food Technology, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Thomas Härtner
- Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Patrick Ebner
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | | | - Anne Berscheid
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Germany
| | - Melanie Muehlenkamp
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Germany
| | | | - Nimerta Kumari
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Martin E Maier
- Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | | | - Julia Bandow
- Applied Microbiology, Ruhr University Bochum, Bochum, Germany
| | - Florian Lang
- Departments of Cardiology, Vascular Medicine & Physiology, University of Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
21
|
Liu J, Song JG, Su JC, Huang XJ, Ye WC, Wang Y. Tomentodione E, a new sec-pentyl syncarpic acid-based meroterpenoid from the leaves of Rhodomyrtus tomentosa. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:67-74. [PMID: 28429610 DOI: 10.1080/10286020.2017.1318852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
A new meroterpenoid, tomentodione E (1), along with four known ones (2-5) were isolated from the leaves of Rhodomyrtus tomentosa. Their structures were elucidated based on extensive spectroscopic data as well as computational methods. Compound 1 represents the first example of meroterpenoid possessing a sec-pentyl syncarpic acid motif coupled with a caryophyllene. Compounds 1-4 were evaluated for their in vitro antiviral activity against respiratory syncytial virus (RSV) with cytopathic effect (CPE) reduction assay, and 2 showed potent in vitro anti-RSV effect.
Collapse
Affiliation(s)
- Jie Liu
- a Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research , Jinan University , Guangzhou 510632 , China
- b JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research , College of Pharmacy, Jinan University , Guangzhou 510632 , China
| | - Jian-Guo Song
- a Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research , Jinan University , Guangzhou 510632 , China
- b JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research , College of Pharmacy, Jinan University , Guangzhou 510632 , China
| | - Jun-Cheng Su
- a Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research , Jinan University , Guangzhou 510632 , China
- b JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research , College of Pharmacy, Jinan University , Guangzhou 510632 , China
| | - Xiao-Jun Huang
- a Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research , Jinan University , Guangzhou 510632 , China
- b JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research , College of Pharmacy, Jinan University , Guangzhou 510632 , China
| | - Wen-Cai Ye
- a Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research , Jinan University , Guangzhou 510632 , China
- b JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research , College of Pharmacy, Jinan University , Guangzhou 510632 , China
| | - Ying Wang
- a Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research , Jinan University , Guangzhou 510632 , China
- b JNU-HKUST Joint Laboratory for Neuroscience & Innovative Drug Research , College of Pharmacy, Jinan University , Guangzhou 510632 , China
| |
Collapse
|
22
|
Limsuwan S, Moosigapong K, Jarukitsakul S, Joycharat N, Chusri S, Jaisamut P, Voravuthikunchai SP. Lupinifolin from Albizia myriophylla wood: A study on its antibacterial mechanisms against cariogenic Streptococcus mutans. Arch Oral Biol 2017; 93:195-202. [PMID: 29102025 DOI: 10.1016/j.archoralbio.2017.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To determine the anti-Streptococcus mutans mechanisms of action of lupinifolin from Albizia myriophylla Benth. (Fabaceae) wood and provide scientific evidence to support the traditional use of the plant against dental caries. METHODS The minimum inhibitory concentration (MIC) was evaluated using the broth micro-dilution method. The effects of lupinifolin on bactericidal activity, bacterial cell walls, and membranes were investigated by time-kill, lysis, and leakage assays, respectively. Electron microscopy was utilized to observe any cell morphological changes caused by the compound. Localization of lupinifolin in S. mutans was detected using the thin layer chromatography technique. RESULTS The MIC range of lupinifolin against S. mutans (n=6) was 2-4 μg/ml. This compound displayed bactericidal effects on S. mutans ATCC 25175 by 90-99.9% killing at 4MIC-16MIC after 8-24 hours. Lupinifolin-treated cells demonstrated no lysis. However, significant cytoplasmic leakage through the bacterial membrane was observed after treatment with lupinifolin at 4MIC-16MIC. As revealed by ultrastructural analysis, lupinifolin produced some changes in bacterial cell walls and membranes. Moreover, the compound was observed in the cytoplasmic fraction of the lupinifolin-treated cells. These results suggest that lupinifolin can enter the cell of bacteria but does not accumulate in the cell envelope and subsequently disrupts the integrity of the cytoplasmic membrane, leading to cell death. CONCLUSION The scientific evidence from this study offers valuable insights into the potential role of lupinifolin in pharmaceutical and antibiotic applications and supports the therapeutic effects of A. myriophylla, which has traditionally been used as an alternative treatment for dental caries.
Collapse
Affiliation(s)
- Surasak Limsuwan
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Kotchakorn Moosigapong
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Siriporn Jarukitsakul
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Nantiya Joycharat
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Sasitorn Chusri
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Patcharawalai Jaisamut
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
23
|
Integrated proteomic and metabolomic analysis reveals that rhodomyrtone reduces the capsule in Streptococcus pneumoniae. Sci Rep 2017; 7:2715. [PMID: 28578394 PMCID: PMC5457420 DOI: 10.1038/s41598-017-02996-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/21/2017] [Indexed: 01/12/2023] Open
Abstract
The emergence of antibiotic-resistant pathogenic bacteria is a healthcare problem worldwide. We evaluated the antimicrobial activity of rhodomyrtone, an acylphloroglucinol present in Rhodomyrtus tomentosa leaves, against the human Gram-positive pathogen Streptococcus pneumoniae. The compound exhibited pronounced anti-pneumococcal activity against a broad collection of clinical isolates. We studied the effects at the molecular level by integrated proteomic and metabolomic analysis. The results revealed alterations in enzymes and metabolites involved in several metabolic pathways including amino acid biosynthesis, nucleic acid biosynthesis, glucid, and lipid metabolism. Notably, the levels of two enzymes (glycosyltransferase and UTP-glucose-1-phosphate uridylyltransferase) and three metabolites (UDP-glucose, UDP-glucuronic acid and UDP-N-acetyl-D-galactosamine) participating in the synthesis of the pneumococcal capsule clearly diminished in the bacterial cells exposed to rhodomyrtone. Rhodomyrtone-treated pneumococci significantly possessed less amount of capsule, as measured by a colorimetric assay and visualized by electron microscopy. These findings reveal the utility of combining proteomic and metabolomic analyses to provide insight into phenotypic features of S. pneumoniae treated with this potential novel antibiotic. This can lead to an alternative antibiotic for the treatment of S. pneumoniae infections, because of the growing concern regarding antimicrobial resistance.
Collapse
|
24
|
Zhuang L, Chen LF, Zhang YB, Liu Z, Xiao XH, Tang W, Wang GC, Song WJ, Li YL, Li MM. Watsonianone A from Rhodomyrtus tomentosa Fruit Attenuates Respiratory-Syncytial-Virus-Induced Inflammation In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3481-3489. [PMID: 28436225 DOI: 10.1021/acs.jafc.7b00537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Respiratory syncytial virus (RSV) is one of the most common respiratory pathogens. Immoderate inflammation plays a great role in causing RSV-induced diseases. In the present study, watsonianone A, isolated from the fruit of Rhodomyrtus tomentosa (Ait.) Hassk, was found to show a good inhibitory effect on RSV-induced NO production, with a half-maximal inhibitory concentration of 37.2 ± 1.6 μM. Enzyme-linked immunosorbent assay and fluorescence quantitative polymerase chain reaction analyses indicated that watsonianone A markedly reduced both mRNA and protein levels of tumor necrosis factor α, interleukin 6, and monocyte chemoattractant protein 1 in RSV-infected RAW264.7 cells. Mechanistically, watsonianone A inhibited nuclear factor κB (NF-κB) activation by suppressing IκBα phosphorylation. Further analysis revealed that watsonianone A activated the thioredoxin system and decreased intracellular reactive oxygen species (ROS) levels, which are closely associated with NF-κB activation in RSV-infected cells. These results reveal that watsonianone A can attenuate RSV-induced inflammation via the suppression of ROS-sensitive inflammatory signaling.
Collapse
Affiliation(s)
- Ling Zhuang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Li-Feng Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Yu-Bo Zhang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Zhong Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Xu-Hui Xiao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Wei Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Wen-Jun Song
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Yao-Lan Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| | - Man-Mei Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and ‡Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
25
|
Na-Phatthalung P, Chusri S, Suanyuk N, Voravuthikunchai SP. In vitro and in vivo assessments of Rhodomyrtus tomentosa leaf extract as an alternative anti-streptococcal agent in Nile tilapia (Oreochromis niloticus L.). J Med Microbiol 2017; 66:430-439. [PMID: 28425874 DOI: 10.1099/jmm.0.000453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Rhodomyrtustomentosa is a Thai medicinal plant that has been attracting attention for its remarkable antibacterial properties against Gram-positive pathogenic bacteria. The purpose of this study was to evaluate the antibacterial properties of R. tomentosa leaf extract against Streptococcus agalactiae and Streptococcus iniae isolated from infected tilapia. METHODOLOGY The anti-streptococcal activity of R. tomentosa was determined using broth microdilution assays. RESULTS The extract demonstrated strong antibacterial activity against the fish pathogens, with minimum inhibitory concentrations (MICs) ranging from 7.8‒62.5 µg ml-1. It was found to possess a dose-dependent bacteriostatic effect on this organism. Scanning electron microscopy revealed irregular and long chains of swollen cells, as well as corkscrew shapes andincomplete separation of cell division of S. agalactiae cells following the treatment at sub-MIC. Moreover, S. agalactiae cells pre-treated with the extract became more sensitive to oxidative stress induced by H2O2 than the untreated cells. Based on the mortality of Nile tilapia after intraperitoneal infection of S. agalactiae at median lethal dose (LD50), the pre-treated cells caused a significant (P<0.01) reduction in mortality of S. agalactiae-infected Nile tilapia. CONCLUSION The results suggested that R. tomentosa could be further developed as a simple and effective agent for the treatment of streptococcosis in Nile tilapia.
Collapse
Affiliation(s)
- Pinanong Na-Phatthalung
- Department of Microbiology and Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sasitorn Chusri
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Naraid Suanyuk
- Department of Aquatic Science, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Department of Microbiology and Excellence Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
26
|
Dos Santos BS, da Silva LCN, da Silva TD, Rodrigues JFS, Grisotto MAG, Correia MTDS, Napoleão TH, da Silva MV, Paiva PMG. Application of Omics Technologies for Evaluation of Antibacterial Mechanisms of Action of Plant-Derived Products. Front Microbiol 2016; 7:1466. [PMID: 27729901 PMCID: PMC5037136 DOI: 10.3389/fmicb.2016.01466] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 09/01/2016] [Indexed: 01/15/2023] Open
Abstract
In the face of increasing bacterial resistance to antibiotics currently in use, the search for new antimicrobial agents has received a boost in recent years, with natural products playing an important role in this field. In fact, several methods have been proposed to investigate the antibacterial activities of natural products. However, given that the ultimate aim is future therapeutic use as novel drugs, it is extremely necessary to elucidate their modes of action, stating the molecular effects in detail, and identifying their targets in the bacterial cell. This review analyzes the application of “omics technologies” to understand the antibacterial mechanisms of bioactive natural products, to stimulate research interest in this area and promote scientific collaborations. Some studies have been specifically highlighted herein by examining their procedures and results (targeted proteins and metabolic pathways). These approaches have the potential to provide new insights into our comprehension of antimicrobial resistance/susceptibility, creating new perspectives for the struggle against bacteria, and leading to the development of novel products in the future.
Collapse
Affiliation(s)
- Bruno S Dos Santos
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco Pernambuco, Brazil
| | - Luís C N da Silva
- Programa de Pós-graduação em Biologia Parasitária, Universidade CEUMA Maranhão, Brazil
| | - Túlio D da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de PernambucoPernambuco, Brazil; Centro de Tecnologias Estratégicas do NordestePernambuco, Brazil
| | - João F S Rodrigues
- Programa de Pós-graduação em Biologia Parasitária, Universidade CEUMA Maranhão, Brazil
| | - Marcos A G Grisotto
- Programa de Pós-graduação em Biologia Parasitária, Universidade CEUMAMaranhão, Brazil; Instituto Florence de Ensino SuperiorMaranhão, Brazil
| | - Maria T Dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco Pernambuco, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco Pernambuco, Brazil
| | - Márcia V da Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco Pernambuco, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco Pernambuco, Brazil
| |
Collapse
|
27
|
Liu HX, Chen K, Yuan Y, Xu ZF, Tan HB, Qiu SX. Rhodomentones A and B, novel meroterpenoids with unique NMR characteristics from Rhodomyrtus tomentosa. Org Biomol Chem 2016; 14:7354-60. [DOI: 10.1039/c6ob01215a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel meroterpenoids were isolated from Rhodomyrtus tomentosa. Their structures with unique NMR characteristics were determined by extensive spectroscopic analysis, single-crystal X-ray diffraction, quantum molecular calculation, chemical transformation as well as total synthesis.
Collapse
Affiliation(s)
- Hong-Xin Liu
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Kai Chen
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Yao Yuan
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Zhi-Fang Xu
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Hai-Bo Tan
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| | - Sheng-Xiang Qiu
- Program for Natural Products Chemical Biology
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization
- South China Botanical Garden
- Chinese Academy of Sciences
- Guangzhou 510650
| |
Collapse
|
28
|
Wong FC, Tan ST, Chai TT. Phytochemical-mediated Protein Expression Profiling and the Potential Applications in Therapeutic Drug Target Identifications. Crit Rev Food Sci Nutr 2015; 56 Suppl 1:S162-70. [DOI: 10.1080/10408398.2015.1045967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Inhibition of microbial adhesion to plastic surface and human buccal epithelial cells by Rhodomyrtus tomentosa leaf extract. Arch Oral Biol 2014; 59:1256-65. [PMID: 25146902 DOI: 10.1016/j.archoralbio.2014.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/02/2014] [Accepted: 07/22/2014] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The adherence of oral pathogenic microorganisms to host tissues is the initial step for successful process of oral diseases. This study aimed to determine the effect of the Rhodomyrtus tomentosa leaf extract and rhodomyrtone, an antibacterial compound from R. tomentosa leaf, on adhesion of some oral pathogens to polystyrene plastic surface and human buccal epithelial cells. METHODS The minimum inhibitory concentration (MIC) was evaluated using broth microdilution method. The microbial adhesion to the plastic surface and buccal cells was determined using microtiter plate method and microscopy technique. RESULTS The ethanol extract of leaf demonstrated antibacterial activity against oral microorganisms including Staphylococcus aureus ATCC 25923, Streptococcus mutans (clinical isolate), and Candida albicans ATCC 90028 with the MIC values of 31.25, 15.62, and 1000μg/ml, respectively. Rhodomyrtone displayed activity with the MIC values of 0.78 and 0.39μg/ml against S. aureus ATCC 25923 and S. mutans, respectively. The MIC value of the compound against C. albicans ATCC 90028 was more than 100μg/ml which was the highest test concentration. All pathogenic microorganisms treated with the extract and rhodomyrtone at their subinhibitory concentrations resulted in a decrease in their adherence ability to both plastic surface and buccal cells. CONCLUSION It is suggested that R. tomentosa extract and rhodomyrtone may be useful in therapy or as prophylaxis in infections involving oral pathogens.
Collapse
|
30
|
Fani MM, Kohanteb J, Araghizadeh A. Inhibitory activity of Myrtus communis oil on some clinically isolated oral pathogens. Med Princ Pract 2014; 23:363-8. [PMID: 24902496 PMCID: PMC5586892 DOI: 10.1159/000362238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 03/16/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To determine the antimicrobial activities of Myrtus communis oil (MCO) on some oral pathogens. MATERIAL AND METHODS Thirty strains of Streptococcus mutans, Aggregatibacteractinomycetemcomitans, Porphyromonas gingivalis and 20 strains of Streptococcus pyogenes and Candida albicans isolated from patients with dental caries, periodontal diseases, pharyngitis and oral lesions associated with artificial dentures were used for the antimicrobial activity of MCO. The oil was prepared by hydrodistillation procedures using a Clevenger apparatus. Agar disk diffusion and broth microdilution methods were performed on various concentrations of MCO (3.9-1,000 µg/ml) using all the pathogens isolated. RESULTS All isolates were sensitive to MCO at 125-1,000 µg/ml by agar disk diffusion producing inhibition zones of 8.1-41.25 mm in diameter. All of the S. pyogenes, S. mutans and C. albicans strains were sensitive to 62.5 µg/ml while 70% (21/30) of A. actinomycetemcomitans and 66.6% (20/30) of P. gingivalis were resistant to these concentrations. All S. pyogenes and S. mutans strains were sensitive to 31.25 µg/ml. All S. pyogenes strains were sensitive to 15.6 and 7.8 µg/ml of MCO. None of the clinical isolates in this study were sensitive to 3.9 µg/ml or to a lower concentration of oil. The minimum inhibitory concentrations of MCO for S. pyogenes, S. mutans, C. albicans, A.actinomycetemcomitans and P. gingivalis were 29.68 ± 4.8, 31.25 ± 0, 46.9 ± 16, 62.5 ± 0 and 62.5 ± 0 µg/ml, respectively. CONCLUSIONS Data obtained in this study revealed a strong antimicrobial activity of MCO on the tested oral pathogens, and MCO could therefore be useful in the prevention of the related oral infections.
Collapse
Affiliation(s)
- Mohammad Mehdi Fani
- Department of Oral Medicine, School of Dentistry and Research Center for Traditional Medicine and History of Medicine, Bandar Abbas, Iran
- *Dr. Mohammad Mehdi Fani, Assoc. Prof. of Oral Medicine, Department of Oral Medicine, School of Dentistry and, Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz 711 (Iran), E-Mail
| | - Jamshid Kohanteb
- Department of Medical Microbiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmehdi Araghizadeh
- Department of Endodontics, School of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
31
|
Shou Q, Smith JE, Mon H, Brkljača Z, Smith AS, Smith DM, Griesser HJ, Wohlmuth H. Rhodomyrtals A–D, four unusual phloroglucinol-sesquiterpene adducts from Rhodomyrtus psidioides. RSC Adv 2014. [DOI: 10.1039/c4ra00154k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Four unusual phloroglucinol-sesquiterpene adducts, rhodomyrtals A–D (1–4), representing two unprecendented carbon frameworks of phloroglucinol coupled eudesmane with the linkage at C-12′, were isolated from Rhodomyrtus psidioides.
Collapse
Affiliation(s)
- Qingyao Shou
- Southern Cross Plant Science
- Southern Cross University
- Lismore NSW 2480, Australia
| | - Joshua E. Smith
- Southern Cross Plant Science
- Southern Cross University
- Lismore NSW 2480, Australia
| | - Htwe Mon
- Ian Wark Research Institute
- University of South Australia
- Mawson Lakes SA 5095, Australia
| | - Zlatko Brkljača
- Institute for Theoretical Physics
- Friedrich Alexander University Erlangen-Nürnberg
- Erlangen, Germany
| | - Ana-Sunčana Smith
- Institute for Theoretical Physics
- Friedrich Alexander University Erlangen-Nürnberg
- Erlangen, Germany
- Ruđer Bošković Institute
- 10000 Zagreb, Croatia
| | - David M. Smith
- Institute for Theoretical Physics
- Friedrich Alexander University Erlangen-Nürnberg
- Erlangen, Germany
- Ruđer Bošković Institute
- 10000 Zagreb, Croatia
| | - Hans J. Griesser
- Ian Wark Research Institute
- University of South Australia
- Mawson Lakes SA 5095, Australia
| | - Hans Wohlmuth
- Southern Cross Plant Science
- Southern Cross University
- Lismore NSW 2480, Australia
| |
Collapse
|
32
|
Liposomal encapsulated rhodomyrtone: a novel antiacne drug. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:157635. [PMID: 23762104 PMCID: PMC3670529 DOI: 10.1155/2013/157635] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/23/2013] [Indexed: 11/18/2022]
Abstract
Rhodomyrtone isolated from the leaves of Rhodomyrtus tomentosa possesses antibacterial, anti-inflammatory, and anti-oxidant activities. Since rhodomyrtone is insoluble in water, it is rather difficult to get to the target sites in human body. Liposome exhibited ability to entrap both hydrophilic and hydrophobic compounds and easily penetrate to the target site. The present study aimed to develop a novel liposomal encapsulated rhodomyrtone formulations. In addition, characterization of liposome, stability profiles, and their antiacne activity were performed. Three different formulations of total lipid concentrations 60, 80, and 100 μmol/mL were used. Formulation with 60 μmol/mL total lipid (phosphatidylcholine from soybean and cholesterol from lanolin in 4 : 1, w/w) exhibited the highest rhodomyrtone encapsulation efficacy (65.47 ± 1.7%), average particle size (209.56 ± 4.8 nm), and ζ-potential (–41.19 ± 1.3 mV). All formulations demonstrated good stability when stored for 2 months in dark at 4°C as well as room temperature. Minimal inhibitory concentration and minimal bactericidal concentration values of liposomal formulation against 11 clinical bacterial isolates and reference strains ranged from 1 to 4 and from 4 to 64 μg/mL, respectively, while those of rhodomyrtone were 0.25–1 and 0.5–2 μg/mL, respectively. The MIC and MBC values of liposome formulation were more effective than topical drugs against Staphylococcus aureus and Staphylococcus epidermidis.
Collapse
|
33
|
Antibacterial substances from Albizia myriophylla wood against cariogenic Streptococcus mutans. Arch Pharm Res 2013; 36:723-30. [DOI: 10.1007/s12272-013-0085-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/02/2013] [Indexed: 12/21/2022]
|
34
|
Jeong D, Yang WS, Yang Y, Nam G, Kim JH, Yoon DH, Noh HJ, Lee S, Kim TW, Sung GH, Cho JY. In vitro and in vivo anti-inflammatory effect of Rhodomyrtus tomentosa methanol extract. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:205-213. [PMID: 23295168 DOI: 10.1016/j.jep.2012.12.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/19/2012] [Accepted: 12/25/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhodomyrtus tomentosa (Aiton) Hassk. is a representative Thai medicinal plant traditionally used in South Asian countries to relieve various inflammatory symptoms. However, no systematic studies on its anti-inflammatory activity and mechanisms have been reported. MATERIALS AND METHODS The effect of the methanol extract from the leaves of this plant (Rt-ME) on the production of inflammatory mediators [nitric oxide (NO) and prostaglandin E2 (PGE2)] and the molecular mechanism of Rt-ME-mediated inhibition, including target enzymes, were studied with RAW264.7, peritoneal macrophage, and HEK293 cells. Additionally, the in vivo anti-inflammatory activity of this extract was evaluated with mouse gastritis and colitis models. RESULTS Rt-ME clearly inhibited the production of NO and PGE2 in lipopolysaccharide (LPS)-activated RAW264.7 cells and peritoneal macrophages in a dose-dependent manner. According to RT-PCR, immunoblotting and immunoprecipitation analyses and a kinase assay with mRNA, whole cell extract, and nucleus lysates from RAW264.7 cells and mice, it was revealed that Rt-ME was capable of suppressing the activation of both nuclear factor (NF)-κB and activator protein (AP)-1 pathways by directly targeting Syk/Src and IRAK1/IRAK4. CONCLUSION Rt-ME could have anti-inflammatory properties by suppressing Syk/Src/NF-kB and IRAK1/IRAK4/AP-1 pathways and will be further developed as a herbal remedy for preventive and/or curative purposes in various inflammatory diseases.
Collapse
Affiliation(s)
- Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Leejae S, Taylor PW, Voravuthikunchai SP. Antibacterial mechanisms of rhodomyrtone against important hospital-acquired antibiotic-resistant pathogenic bacteria. J Med Microbiol 2013; 62:78-85. [DOI: 10.1099/jmm.0.049205-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sukanlaya Leejae
- Department of Microbiology and Natural Products Research Center, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | | | - Supayang Piyawan Voravuthikunchai
- Department of Microbiology and Natural Products Research Center, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| |
Collapse
|
36
|
Neamsuvan O, Tuwaemaengae T, Bensulong F, Asae A, Mosamae K. A survey of folk remedies for gastrointestinal tract diseases from Thailand's three southern border provinces. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:11-21. [PMID: 22940242 DOI: 10.1016/j.jep.2012.07.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/30/2012] [Accepted: 07/28/2012] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrointestinal tract diseases commonly occur in Thailand. However, surveying for finding out traditional drugs has never been done. AIM OF STUDY To quantify and categorize the folk medicinal remedies that are used for healing the gastrointestinal tract by the traditional healers living in Thailand's three southern border provinces. MATERIALS AND METHODS The Pattani, Yala and Narathiwat provinces were selected. Semi-structured interviews of nine healers were conducted to collect information that included the remedy names, herbal ingredients, plant parts used, preparation, properties and treatment methods. The data were then further analyzed. RESULT The results revealed that 39 multi-species remedies and 36 single-species remedies were used to treat gastrointestinal disorders. A total of 103 plant species and 5 other materia medica were used as therapeutics. Most of the plants used were of the Zingiberaceae, Fabaceae and Euphorbiaceae families. Furthermore, it was found that although most of the healers used different remedies for a particular disease, some of the ingredients might have been similar. For example, Caesalpinia bonduc (L.) Roxb. was an ingredient used for parasitic disease remedies, and Senna alata (L.) Roxb. was used for constipation remedies. CONCLUSION A review of the literature revealed 57 plant species and 2 other materia medica that have already been tested for their biological activities, whereas 46 plant species and 3 materia medica have never been tested. Consequently, research should be performed to confirm the pharmacological properties of folk remedies.
Collapse
Affiliation(s)
- Oratai Neamsuvan
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Songkhla 90110, Thailand.
| | | | | | | | | |
Collapse
|
37
|
Acetone Extract from Rhodomyrtus tomentosa: A Potent Natural Antioxidant. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:535479. [PMID: 23125869 PMCID: PMC3484404 DOI: 10.1155/2012/535479] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/18/2012] [Indexed: 11/17/2022]
Abstract
Rhodomyrtus tomentosa (Myrtaceae) has been employed in traditional Thai medicine to treat colic diarrhoea, dysentery, abscesses, haemorrhage, and gynaecopathy. In addition, it has been used to formulate skin-whitening, anti-aging and skin beautifying agents. Ethnomedical activities of this plant may be due its antioxidant property. Hence, the aim of this study was to evaluate both in vitro and in vivo antioxidant activities of R. tomentosa leaf extract. In vitro antioxidant activity of the extract was assessed by lipid peroxidation inhibition capacity, ferric reducing antioxidant power, and metal chelating activity. R. tomentosa extract demonstrated its free radical scavenging effects in concentration dependent manner. In vivo antioxidant activity of the extract was conducted in Swiss Albino mice. Levels of thio-barbituric acid reactive substances (TBARS), glutathione (GSH), and the activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in blood, liver, and kidney were analyzed using microtitre plate photometer. Administration of CCl4 caused significant increase in TBARS and decrease in GSH, SOD, CAT and GPx levels. In contrast, R. tomentosa extract (0.8 g/kg) effectively prevented these alterations and maintained the antioxidant status. The results suggest that R. tomentosa extract can serve as a potent antioxidant.
Collapse
|
38
|
Antibacterial Activity of Rhodomyrtus tomentosa (Aiton) Hassk. Leaf Extract against Clinical Isolates of Streptococcus pyogenes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:697183. [PMID: 22973404 PMCID: PMC3438885 DOI: 10.1155/2012/697183] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 11/18/2022]
Abstract
Ethanol extract of Rhodomyrtus tomentosa (Aiton) Hassk. leaf was evaluated for antibacterial activity against 47 clinical isolates of Streptococcus pyogenes. The extract exhibited good anti-S. pyogenes activity against all the tested isolates with similar minimum inhibitory concentration (MIC, 3.91-62.5 μg mL(-1)) and minimum bactericidal concentration (MBC, 3.91-62.5 μg mL(-1)) ranges. No surviving cells were detected at 16 h after treatment with 8 × MIC of the extract. The extract-treated cells demonstrated no lysis and cytoplasmic leakage through the bacterial membrane. Electron micrographs further revealed that the extract did not cause any dramatic changes on the treated cells. Rhodomyrtone, an isolated compound, exhibited good anti-S. pyogenes activity (14 isolates), expressed very low MIC (0.39-1.56 μg mL(-1)) and MBC (0.39-1.56 μg mL(-1)) values. Rhodomyrtus tomentosa leaf extract and rhodomyrtone displayed promising antibacterial activity against clinical isolates of S. pyogenes.
Collapse
|
39
|
Saising J, Voravuthikunchai SP. Anti Propionibacterium acnes activity of rhodomyrtone, an effective compound from Rhodomyrtus tomentosa (Aiton) Hassk. leaves. Anaerobe 2012; 18:400-4. [PMID: 22626672 DOI: 10.1016/j.anaerobe.2012.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/05/2012] [Accepted: 05/10/2012] [Indexed: 11/28/2022]
Abstract
Propionibacterium acnes have been recognized as one of the main causative agents in pathogenesis of acne. Twenty one isolates of P. acnes isolated from acne lesions were screened for lipase and protease activity which are reported to be associated in acne and inflammation. Interestingly, all P. acnes isolates demonstrated lipase activity. Similarly, 90% of test P. acnes produced protease enzyme. Antibacterial activity of the ethanol extract of Rhodomyrtus tomentosa (Aiton) Hassk. leaves and rhodomyrtone, its principle compound were tested against P. acnes using broth macrodilution method. The MIC(90) values of the ethanol extract and rhodomyrtone were 32 and 0.5 μg/mL, respectively. The numbers of the bacterial cells were reduced at least 99% after treatment with the ethanol extract and rhodomyrtone within 72 and 24 h, respectively. Cytotoxicity test of the extract and rhodomyrtone was performed on human normal fibroblast. The IC(50) values of the ethanol extract and rhodomyrtone were 476 and more than 200 μg/mL, approximately 15 and 400 folds higher than the MIC(90) values indicating that both substances were very low cytotoxic which could be applied as topical therapeutic anti-acne agents.
Collapse
Affiliation(s)
- Jongkon Saising
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | | |
Collapse
|
40
|
Saising J, Ongsakul M, Voravuthikunchai SP. Rhodomyrtus tomentosa (Aiton) Hassk. ethanol extract and rhodomyrtone: a potential strategy for the treatment of biofilm-forming staphylococci. J Med Microbiol 2011; 60:1793-1800. [DOI: 10.1099/jmm.0.033092-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jongkon Saising
- Natural Products Research Center, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Metta Ongsakul
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Natural Products Research Center, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|