1
|
Teng CLJ, Cheng PT, Cheng YC, Tsai JR, Chen MC, Lin H. Dinaciclib inhibits the growth of acute myeloid leukemia cells through either cell cycle-related or ERK1/STAT3/MYC pathways. Toxicol In Vitro 2024; 96:105768. [PMID: 38135130 DOI: 10.1016/j.tiv.2023.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Although immature differentiation and uncontrolled proliferation of hematopoietic stem cells are thought to be the primary mechanisms of acute myeloid leukemia (AML), the pathophysiology in most cases remains unclear. Dinaciclib, a selective small molecule targeting multiple cyclin-dependent kinases (CDKs), is currently being evaluated in oncological clinical trials. Despite the proven anticancer potential of dinaciclib, the differential molecular mechanisms by which it inhibits the growth of different AML cell lines remain unclear. In the current study, we treated HL-60 and KG-1 AML cell lines with dinaciclib and investigated the potential mechanisms of dinaciclib-induced AML cell growth inhibition using flow cytometry and western blotting assays. Data from HL-60 and KG-1 AML cells were validated using human primary AML cells. The results showed that the growth inhibitory effect of dinaciclib was more sensitive in HL-60 cells (IC50: 8.46 nM) than in KG-1 cells (IC50: 14.37 nM). The protein decline in Cyclin A/B and CDK1 and cell cycle arrest in the G2/M phase were more profound in HL-60 cells, corresponding to its growth inhibition. Although the growth inhibition of KG-1 cells by dinaciclib was still pronounced, the cell cycle-associated proteins were relatively insensitive. In addition to cell cycle regulation, the activation/expression of ERK1/STAT3/MYC signaling was significantly reduced by dinaciclib in KG-1 cells compared with that in HL-60 cells. Regarding the results of primary AML cells, we observed ERK1/STAT3/MYC inhibition and cell cycle regulation in different patients. These findings suggest that the cell cycle-associated and ERK1/STAT3/MYC signaling pathways might be two distinct mechanisms by which dinaciclib inhibits AML cells, which could facilitate the development of combination therapy for AML in the future.
Collapse
Affiliation(s)
- Chieh-Lin Jerry Teng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pang-Ting Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Chiao Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jia-Rung Tsai
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
2
|
Sharma J, Prabha P, Sharma R, Gupta S, Dixit A. Anti-leukemic principle(s) from Momordica charantia seeds induce differentiation of HL-60 cells through ERK/MAPK signalling pathway. Cytotechnology 2022; 74:591-611. [PMID: 36238266 PMCID: PMC9525536 DOI: 10.1007/s10616-022-00547-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Myeloid leukemia is one of the major causes of deaths among elderly with very poor prognosis. Due to the adverse effects of existing chemotherapeutic agents, plant-derived components are being screened for their anti-leukemic potential. Momordica charantia (bitter gourd) possesses a variety of therapeutic activities. We have earlier demonstrated anti-leukemic activity of acetone extract of M. charantia seeds. The present study reports purification of differentiation inducing principle(s) from further fractionated seed extract (hexane fraction of the acetone extract, Mc2-Ac-hex) using HL-60 cells. Out of the 5 peak fractions (P1-P5) obtained from normal phase HPLC of the Mc2-Ac-hex, only peak fraction 3 (P3) induced differentiation of HL-60 cells as evident from an increase in NBT-positive cells and increased expression of cell surface marker CD11b. The P3 differentiated the HL-60 cells to granulocytic lineage, established by increased CD15 (granulocytic cell surface marker) expression in the treated cells. Further, possible molecular mechanism and the signalling pathway involved in the differentiation of HL-60 cells were also investigated. Use of specific signalling pathway inhibitors in the differentiation study, and proteome array analysis of the treated cells collectively revealed the involvement the of ERK/MAPK mediated pathway. Partial characterization of the P3 by GC-MS analysis revealed the presence of dibutyl phthalate, and derivatives of 2,5-dihydrofuran to be the highest among the 5 identified compounds. This study thus demonstrated that purified differentiation-inducing principle(s) from M. charantia seed extract induce HL-60 cells to granulocytic lineage through ERK/MAPK signalling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00547-x.
Collapse
Affiliation(s)
- Jeetesh Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Punit Prabha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Rohit Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Shalini Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Aparna Dixit
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
3
|
Chen Y, Gao J, Xie J, Liang J, Zheng G, Xie L, Zhang R. Transcriptional regulation of the matrix protein Shematrin-2 during shell formation in pearl oyster. J Biol Chem 2018; 293:17803-17816. [PMID: 30282805 DOI: 10.1074/jbc.ra118.005281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/21/2018] [Indexed: 01/17/2023] Open
Abstract
The molluscan shell is a fascinating biomineral consisting of a highly organized calcium carbonate composite. Biomineralization is elaborately controlled and involves several macromolecules, especially matrix proteins, but little is known about the regulatory mechanisms. The matrix protein Shematrin-2, expression of which peaks in the mantle tissues and in the shell components of the pearl oyster Pinctada fucata, has been suggested to be a key participant in biomineralization. Here, we expressed and purified Shematrin-2 from P. fucata and explored its function and transcriptional regulation. An in vitro functional assay revealed that Shematrin-2 binds the calcite, aragonite, and chitin components of the shell, decreases the rate of calcium carbonate deposition, and changes the morphology of the deposited crystal in the calcite crystallization system. Furthermore, we cloned the Shematrin-2 gene promoter, and analysis of its sequence revealed putative binding sites for the transcription factors CCAAT enhancer-binding proteins (Pf-C/EBPs) and nuclear factor-Y (NF-Y). Using transient co-transfection and reporter gene assays, we found that cloned and recombinantly expressed Pf-C/EBP-A and Pf-C/EBP-B greatly and dose-dependently up-regulate the promoter activity of the Shematrin-2 gene. Importantly, Pf-C/EBP-A and Pf-C/EBP-B knockdowns decreased Shematrin-2 gene expression and induced changes in the inner-surface structures in prismatic layers that were similar to those of antibody-based Shematrin-2 inhibition. Altogether, our data reveal that the transcription factors Pf-C/EBP-A and Pf-C/EBP-B up-regulate the expression of the matrix protein Shematrin-2 during shell formation in P. fucata, improving our understanding of the transcriptional regulation of molluscan shell development at the molecular level.
Collapse
Affiliation(s)
- Yan Chen
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Jing Gao
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Jun Xie
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Jian Liang
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Guilan Zheng
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084
| | - Liping Xie
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084.
| | - Rongqing Zhang
- From the Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084; Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang Province, China.
| |
Collapse
|
4
|
Osthole inhibits pancreatic cancer progression by directly exerting negative effects on cancer cells and attenuating tumor-infiltrating M2 macrophages. J Pharmacol Sci 2018; 137:290-298. [PMID: 30098910 DOI: 10.1016/j.jphs.2018.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/10/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer has remained a major cause of cancer-related deaths. A hallmark of pancreatic cancer is extensive stromal reactions, resulting in a unique tumor microenvironment, especially the involvement of macrophages. These tumor-educated cells limit the efficacy of chemotherapy. Therefore, it is necessary to identify an effective treatment strategy. In this study, we aimed to explore the anti-tumor and immunomodulatory effects of osthole on pancreatic cancer. We found that osthole suppressed Panc 02 cell migration and proliferation and induced apoptosis as shown in vitro. Osthole also attenuated the development of pancreatic cancer in mice by inhibiting tumor-infiltrating M2 macrophages in our study. Additionally, osthole inhibited the polarization of primary bone marrow cells into M2 macrophages and inhibited the expression of MRC1, CCL22 and TGF-β in the M2 polarization process in vitro. Detection of the related signaling pathways revealed that osthole exerted immunomodulatory effects on M2 macrophages by down-regulating p-STAT6 and the p-ERK1/2-C/EBP β axis. These results indicated that osthole has effective anti-tumor and immunomodulatory effects on pancreatic cancer.
Collapse
|
5
|
Identification of H7 as a novel peroxiredoxin I inhibitor to induce differentiation of leukemia cells. Oncotarget 2016; 7:3873-83. [PMID: 26716647 PMCID: PMC4826176 DOI: 10.18632/oncotarget.6763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/28/2015] [Indexed: 01/02/2023] Open
Abstract
Identifying novel targets to enhance leukemia-cell differentiation is an urgent requirment. We have recently proposed that inhibiting the antioxidant enzyme peroxiredoxin I (Prdx I) may induce leukemia-cell differentiation. However, this concept remains to be confirmed. In this work, we identified H7 as a novel Prdx I inhibitor through virtual screening, in vitro activity assay, and surface plasmon resonance assay. Cellular thermal shift assay showed that H7 directly bound to Prdx I but not to Prdxs II–V in cells. H7 treatment also increased reactive oxygen species (ROS) level and cell differentiation in leukemia cells, as reflected by the upregulation of the cell surface differentiation marker CD11b/CD14 and the morphological maturation of cells. The differentiation-induction effect of H7 was further observed in some non-acute promyelocytic leukemia (APL) and primary leukemia cells apart from APL NB4 cells. Moreover, the ROS scavenger N-acetyl cysteine significantly reversed the H7-induced cell differentiation. We demonstrated as well that H7-induced cell differentiation was associated with the activation of the ROS-Erk1/2-C/EBPβ axis. Finally, we showed H7 treatment induced cell differentiation in an APL mouse model. All of these data confirmed that Prdx I was novel target for inducing leukemia-cell differentiation and that H7 was a novel lead compound for optimizing Prdx I inhibition.
Collapse
|
6
|
LukS-PV induces differentiation by activating the ERK signaling pathway and c-JUN/c-FOS in human acute myeloid leukemia cells. Int J Biochem Cell Biol 2016; 76:107-14. [DOI: 10.1016/j.biocel.2016.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 11/24/2022]
|
7
|
Luo B, Gan W, Liu Z, Shen Z, Wang J, Shi R, Liu Y, Liu Y, Jiang M, Zhang Z, Wu Y. Erythropoeitin Signaling in Macrophages Promotes Dying Cell Clearance and Immune Tolerance. Immunity 2016; 44:287-302. [PMID: 26872696 DOI: 10.1016/j.immuni.2016.01.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/03/2015] [Accepted: 01/05/2016] [Indexed: 12/19/2022]
Abstract
The failure of apoptotic cell clearance is linked to autoimmune diseases, nonresolving inflammation, and developmental abnormalities; however, pathways that regulate phagocytes for efficient apoptotic cell clearance remain poorly known. Apoptotic cells release find-me signals to recruit phagocytes to initiate their clearance. Here we found that find-me signal sphingosine 1-phosphate (S1P) activated macrophage erythropoietin (EPO) signaling promoted apoptotic cell clearance and immune tolerance. Dying cell-released S1P activated macrophage EPO signaling. Erythropoietin receptor (EPOR)-deficient macrophages exhibited impaired apoptotic cell phagocytosis. EPO enhanced apoptotic cell clearance through peroxisome proliferator activated receptor-γ (PPARγ). Moreover, macrophage-specific Epor(-/-) mice developed lupus-like symptoms, and interference in EPO signaling ameliorated the disease progression in lupus-like mice. Thus, we have identified a pathway that regulates macrophages to clear dying cells, uncovered the priming function of find-me signal S1P, and found a role of the erythropoiesis regulator EPO in apoptotic cell disposal, with implications for harnessing dying cell clearance.
Collapse
Affiliation(s)
- Bangwei Luo
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Woting Gan
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Zongwei Liu
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Zigang Shen
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Jinsong Wang
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Rongchen Shi
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Yuqi Liu
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Yu Liu
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Man Jiang
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China
| | - Zhiren Zhang
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China.
| | - Yuzhang Wu
- Institute of Immunology of PLA, Third Military Medical University, 30 Gaotanyan Main Street, Chongqing 400038, China.
| |
Collapse
|
8
|
Teng CLJ, Han SM, Wu WC, Hsueh CM, Tsai JR, Hwang WL, Hsu SL. Mechanistic aspects of lauryl gallate-induced differentiation and apoptosis in human acute myeloid leukemia cells. Food Chem Toxicol 2014; 71:197-206. [DOI: 10.1016/j.fct.2014.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 11/29/2022]
|
9
|
Lu MC, El-Shazly M, Wu TY, Du YC, Chang TT, Chen CF, Hsu YM, Lai KH, Chiu CP, Chang FR, Wu YC. Recent research and development of Antrodia cinnamomea. Pharmacol Ther 2013; 139:124-56. [DOI: 10.1016/j.pharmthera.2013.04.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 12/20/2022]
|
10
|
Xestospongin C induces monocytic differentiation of HL60 cells through activation of the ERK pathway. Food Chem Toxicol 2013; 55:505-12. [DOI: 10.1016/j.fct.2013.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/14/2013] [Accepted: 01/19/2013] [Indexed: 11/20/2022]
|
11
|
Boukouvalas J, Albert V, Loach RP, Lafleur-Lambert R. Unified route to asymmetrically substituted butenolide, maleic anhydride, and maleimide constituents of Antrodia camphorata. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.09.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|