1
|
Noleto-Dias C, Farag MA, Porzel A, Tavares JF, Wessjohann LA. A multiplex approach of MS, 1D-, and 2D-NMR metabolomics in plant ontogeny: A case study on Clusia minor L. organs (leaf, flower, fruit, and seed). PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:445-468. [PMID: 38069552 DOI: 10.1002/pca.3300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/09/2023] [Indexed: 04/13/2024]
Abstract
INTRODUCTION The genus Clusia L. is mostly recognised for the production of prenylated benzophenones and tocotrienol derivatives. OBJECTIVES The objective of this study was to map metabolome variation within Clusia minor organs at different developmental stages. MATERIAL AND METHODS In total 15 organs/stages (leaf, flower, fruit, and seed) were analysed by UPLC-MS and 1H- and heteronuclear multiple-bond correlation (HMBC)-NMR-based metabolomics. RESULTS This work led to the assignment of 46 metabolites, belonging to organic acids(1), sugars(2) phenolic acids(1), flavonoids(3) prenylated xanthones(1) benzophenones(4) and tocotrienols(2). Multivariate data analyses explained the variability and classification of samples, highlighting chemical markers that discriminate each organ/stage. Leaves were found to be rich in 5-hydroxy-8-methyltocotrienol (8.5 μg/mg f.w.), while flowers were abundant in the polyprenylated benzophenone nemorosone with maximum level detected in the fully mature flower bud (43 μg/mg f.w.). Nemorosone and 5-hydroxy tocotrienoloic acid were isolated from FL6 for full structural characterisation. This is the first report of the NMR assignments of 5-hydroxy tocotrienoloic acid, and its maximum level was detected in the mature fruit at 50 μg/mg f.w. Seeds as typical storage organ were rich in sugars and omega-6 fatty acids. CONCLUSION To the best of our knowledge, this is the first report on a comparative 1D-/2D-NMR approach to assess compositional differences in ontogeny studies compared with LC-MS exemplified by Clusia organs. Results derived from this study provide better understanding of the stages at which maximal production of natural compounds occur and elucidate in which developmental stages the enzymes responsible for the production of such metabolites are preferentially expressed.
Collapse
Affiliation(s)
- Clarice Noleto-Dias
- Natural and Synthetic Bioactive Products Graduate Program, Federal University of Paraíba, João Pessoa, PB, Brazil
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Josean F Tavares
- Natural and Synthetic Bioactive Products Graduate Program, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| |
Collapse
|
2
|
Magnavacca A, Sangiovanni E, Racagni G, Dell'Agli M. The antiviral and immunomodulatory activities of propolis: An update and future perspectives for respiratory diseases. Med Res Rev 2022; 42:897-945. [PMID: 34725836 PMCID: PMC9298305 DOI: 10.1002/med.21866] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Propolis is a complex natural product that possesses antioxidant, anti-inflammatory, immunomodulatory, antibacterial, and antiviral properties mainly attributed to the high content in flavonoids, phenolic acids, and their derivatives. The chemical composition of propolis is multifarious, as it depends on the botanical sources from which honeybees collect resins and exudates. Nevertheless, despite this variability propolis may have a general pharmacological value, and this review systematically compiles, for the first time, the existing preclinical and clinical evidence of propolis activities as an antiviral and immunomodulatory agent, focusing on the possible application in respiratory diseases. In vitro and in vivo assays have demonstrated propolis broad-spectrum effects on viral infectivity and replication, as well as the modulatory actions on cytokine production and immune cell activation as part of both innate and adaptive immune responses. Clinical trials confirmed propolis undeniable potential as an effective therapeutic agent; however, the lack of rigorous randomized clinical trials in the context of respiratory diseases is tangible. Since propolis is available as a dietary supplement, possible use for the prevention of respiratory diseases and their deleterious inflammatory drawbacks on the respiratory tract in humans is considered and discussed. This review opens up new perspectives on the clinical investigation of neglected propolis biological properties which, now more than ever, are particularly relevant with respect to the recent outbreaks of pandemic respiratory infections.
Collapse
Affiliation(s)
- Andrea Magnavacca
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| |
Collapse
|
3
|
Bicyclic polyprenylated acylphloroglucinols and their derivatives: structural modification, structure-activity relationship, biological activity and mechanism of action. Eur J Med Chem 2020; 205:112646. [PMID: 32791400 DOI: 10.1016/j.ejmech.2020.112646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/22/2022]
Abstract
Bicyclic polyprenylated acylphloroglucinols (BPAPs), the principal bioactive benzophenone products isolated from plants of genera Garcinia and Hypericum, have attracted noticeable attention from the synthetic and biological communities due to their fascinating chemical structures and promising biological activities. However, the potential drug interaction, undesired physiochemical properties and toxicity have limited their potential use and development. In the last decade, pharmaceutical research on the structural modifications, structure-activity relationships (SARs) and mechanisms of action of BPAPs has been greatly developed to overcome the challenges. A comprehensive review of these scientific literature is extremely needed to give an overview of the rapidly emerging area and facilitate research related to BPAPs. This review, containing over 226 references, covers the progress made in the chemical synthesis-based structure modifications, SARs and the mechanism of action of BPAPs in vivo and vitro. The most relevant articles will focus on the discovery of lead compounds via synthetic modifications and the important BPAPs for which the direct targets have been deciphered. From this review, several key points of the SARs and mode of actions of this novel class of compounds have been summarized. The perspective and future direction of the research on BPAPs are concluded. This review would be helpful to get a better grasp of medicinal research of BPAPs and become a compelling guide for chemists dedicated to the synthesis of these compounds.
Collapse
|
4
|
Ferraz CG, Ribeiro PR, Marques ÉJ, Mendonça R, Guedes MLS, Silveira ER, El-Bachá R, Cruz FG. Polyprenylated benzophenone derivatives with a novel tetracyclo[8.3.1.0 3,11.0 5,10]tetradecane core skeleton from Clusia burle-marxii exhibited cytotoxicity against GL-15 glioblastoma-derived human cell line. Fitoterapia 2019; 138:104346. [PMID: 31465815 DOI: 10.1016/j.fitote.2019.104346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 11/19/2022]
Abstract
Three new polyprenylated benzophenone derivatives (1-3) were identified in the hexane extract of Clusia burle-marxii trunks, through the isolation and structural elucidation of their methyl derivatives, along with two known polyprenylated benzophenone derivatives sampsonine N (4) and obdeltifolione C (5). Burlemarxiones A (1) and B (2) show an unprecedent tetracyclo[8.3.1.03,11.05,10]tetradecane core skeleton. These compounds are a pair of β-diketones in tautomeric equilibrium, whereas isonemorosonol (3) is the respective β-diketone pair in tautomeric equilibrium with nemorosonol. Burlemarxione A methyl derivative (1a) and sampsonine N exhibited strong in vitro cytotoxic activity against GL-15 glioblastoma-derived human cell line.
Collapse
Affiliation(s)
- Caline G Ferraz
- Grupo de Estudos de Substâncias Naturais Orgânicas (GESNAT), Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115 Salvador, Brazil; Centro de Ciências Exatas e Tecnológicas, CETEC, Universidade Federal do Recôncavo da Bahia, Rua Rui Barbosa, no710, 44.380-000 Cruz das Almas, Brazil; Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115 Salvador, Brazil.
| | - Paulo R Ribeiro
- Grupo de Estudos de Substâncias Naturais Orgânicas (GESNAT), Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115 Salvador, Brazil; Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115 Salvador, Brazil
| | - Édson J Marques
- Grupo de Estudos de Substâncias Naturais Orgânicas (GESNAT), Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115 Salvador, Brazil
| | - Renata Mendonça
- Instituto de Química, Universidade Federal do Rio Grande do Norte, CP 1524, 59072-970 Natal, RN, Brazil
| | - Maria Lenise S Guedes
- Instituto de Biologia, Universidade Federal da Bahia, 40.170-290 Salvador, BA, Brazil
| | - Edilberto R Silveira
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, 60021-940 Fortaleza, CE, Brazil
| | - Ramon El-Bachá
- Laboratório de Neuroquímica e Biologia Celular, Departamento de Bioquímica e Biofísica, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Frederico G Cruz
- Grupo de Estudos de Substâncias Naturais Orgânicas (GESNAT), Instituto de Química, Universidade Federal da Bahia, Rua Barão de Jeremoabo s/n, 40170-115 Salvador, Brazil
| |
Collapse
|
5
|
Yang XW, Grossman RB, Xu G. Research Progress of Polycyclic Polyprenylated Acylphloroglucinols. Chem Rev 2018; 118:3508-3558. [PMID: 29461053 DOI: 10.1021/acs.chemrev.7b00551] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of hybrid natural products sharing the mevalonate/methylerythritol phosphate and polyketide biosynthetic pathways and showing considerable structure and bioactivity diversity. This review discusses the progress of research into the chemistry and biological activity of 421 natural PPAPs in the past 11 years as well as in-depth studies of biological activities and total synthesis of some PPAPs isolated before 2006. We created an online database of all PPAPs known to date at http://www.chem.uky.edu/research/grossman/PPAPs . Two subclasses of biosynthetically related metabolites, spirocyclic PPAPs with octahydrospiro[cyclohexan-1,5'-indene]-2,4,6-trione core and complicated PPAPs produced by intramolecular [4 + 2] cycloadditions of MPAPs, are brought into the PPAP family. Some PPAPs' relative or absolute configurations are reassigned or critically discussed, and the confusing trivial names in PPAPs investigations are clarified. Pharmacologic studies have revealed a new molecular mechanism whereby hyperforin and its derivatives regulate neurotransmitter levels by activating TRPC6 as well as the antitumor mechanism of garcinol and its analogues. The antineoplastic potential of some type B PPAPs such as oblongifolin C and guttiferone K has increased significantly. As a result of the recent appearances of innovative synthetic methods and strategies, the total syntheses of 22 natural PPAPs including hyperforin, garcinol, and plukenetione A have been accomplished.
Collapse
Affiliation(s)
- Xing-Wei Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| | - Robert B Grossman
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , United States
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| |
Collapse
|
6
|
Aravind APA, Pandey R, Kumar B, Asha KRT, Rameshkumar KB. Phytochemical Screening of Garcinia travancorica by HPLC-ESI-QTOF Mass Spectrometry and Cytotoxicity Studies of the Major Biflavonoid Fukugiside. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Qualitative screening of multiclass secondary metabolites present in the fruits, leaves and stem bark extracts of Garcinia travancorica was carried out using HPLC-QTOF-MS analysis. Twenty-three compounds were identified in the fruits, leaves and stem bark, including two acids (hydroxycitric acid and hydroxycitric acid lactone), eight biflavonoids (morelloflavone, GB-1, GB-1a, GB-2, GB-2a, fukugiside, xanthochymusside and GB-1a glucoside), nine xanthones (α-mangostin, γ-mangostin, 1,5-dihydroxy-3-methoxyxanthone, garciniaxanthone E, 4-(1,1-dimethylprop-2-enyl)-1,3,5,8-tetrahydroxy-xanthone, garcinone A, garcinone B, garcinone C and polyanxanthone C) and four polyisoprenylated benzophenones (gambogenone, aristophenone A, garcinol and garciyunnanin A). Cytotoxicity studies of the major biflavonoid fukugiside reported from G. travancorica leaves revealed a dose-dependent cancer cell growth inhibition in A431 and HeLa cells. The antiproliferative effect appears to be due to the ability of fukugiside to induce S-phase arrest and apoptotic cell death. In HeLa cells, fukugiside reduced the expression of MAPKp38 by 26.1% compared with untreated control.
Collapse
Affiliation(s)
- Aravindakshanpillai P. Anu Aravind
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695562, Kerala, India
| | - Renu Pandey
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India
| | - Brijesh Kumar
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India
| | | | - Koranappallil B. Rameshkumar
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram 695562, Kerala, India
| |
Collapse
|
7
|
Phytochemical study and evaluation of cytotoxic and genotoxic properties of extracts from Clusia latipes leaves. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2015.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Role of mitochondria in the leishmanicidal effects and toxicity of acyl phloroglucinol derivatives: nemorosone and guttiferone A. Parasitology 2015; 142:1239-48. [PMID: 26027642 DOI: 10.1017/s0031182015000608] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nemorosone (Nem) and guttiferone A (GutA) are acyl phloroglucinol derivatives (APD) that are present in different natural products. For both compounds anti-cancer and anti-microbial properties have been reported. In particular, an anti-leishmanial activity of both compounds was demonstrated. The aim of this study was to explore the possible role of mitochondria in the anti-leishmanial activity of Nem and GutA in comparison with their action on mammalian mitochondria. Both APD inhibited the growth of promastigotes of Leishmania tarentolae (LtP) with half maximal inhibitory concentration (IC50) values of 0·67 ± 0·17 and 6·2 ± 2·6 μ m; while IC50 values for cytotoxicity against peritoneal macrophages from BALB/c mice were of 29·5 ± 3·7 and 9·2 ± 0·9 μ m, respectively. Nemorosone strongly inhibited LtP oxygen consumption, caused species-specific inhibition (P < 0·05) of succinate:ubiquinone oxidoreductase (complex II) from LtP-mitochondria and significantly increased (P < 0·05) the mitochondrial superoxide production. In contrast, GutA caused only a moderate reduction of respiration in LtP and triggered less superoxide radical production in LtP compared with Nem. In addition, GutA inhibited mitochondrial complex III in bovine heart submitochondrial particles, which is possibly involved in its mammalian toxicity. Both compounds demonstrated at low micromolar concentrations an effect on the mitochondrial membrane potential in LtP. The present study suggests that Nem caused its anti-leishmanial action due to specific inhibition of complexes II/III of mitochondrial respiratory chain of Leishmania parasites that could be responsible for increased production of reactive oxygen species that triggers parasite death.
Collapse
|
9
|
|
10
|
Camargo MS, Oliveira MT, Santoni MM, Resende FA, Oliveira-Höhne AP, Espanha LG, Nogueira CH, Cuesta-Rubio O, Vilegas W, Varanda EA. Effects of nemorosone, isolated from the plant Clusia rosea, on the cell cycle and gene expression in MCF-7 BUS breast cancer cell lines. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:153-157. [PMID: 25636884 DOI: 10.1016/j.phymed.2014.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 09/30/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Breast cancer is the cause of considerable morbidity and mortality in women. While estrogen receptor antagonists have been widely used in breast cancer treatment, patients have increasingly shown resistance to these agents and the identification of novel targeted therapies is therefore required. Nemorosone is the major constituent of the floral resin from Clusia rosea and belongs to the class of polycyclic polyisoprenylated benzophenones of the acylphloroglucinol group. The cytotoxicity of nemorosone in human cancer cell lines has been reported in recent years and has been related to estrogen receptors in breast cancer cells. METHODS Changes induced by nemorosone in the cell cycle and gene expression of the MCF-7 BUS (estrogen-dependent) breast cancer cell line were analyzed using flow cytometry and the RT(2) Profiler PCR array, respectively. RESULTS In comparison to breast cancer cells without treatment, nemorosone induced discrete cell cycle arrest in the G1 phase and significant depletion in the G2 phase. Moreover, the compound altered the expression of 19 genes related to different pathways, especially the cell cycle, apoptosis and hormone receptors. CONCLUSION These promising results justify further studies to clarify mechanisms of action of nemorosone, in view of evaluate the possible use of this benzophenone as adjuvant in the treatment of breast cancer.
Collapse
Affiliation(s)
- M S Camargo
- UNESP - Univ. Estadual Paulista, Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Araraquara, São Paulo, Brazil
| | - M T Oliveira
- UEL - Univ. Estadual Londrina, Londrina, Paraná, Brazil
| | - M M Santoni
- UNESP - Univ. Estadual Paulista, Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Araraquara, São Paulo, Brazil
| | - F A Resende
- UNESP - Univ. Estadual Paulista, Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Araraquara, São Paulo, Brazil.
| | - A P Oliveira-Höhne
- UNESP - Univ. Estadual Paulista, Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Araraquara, São Paulo, Brazil
| | - L G Espanha
- UNESP - Univ. Estadual Paulista, Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Araraquara, São Paulo, Brazil
| | - C H Nogueira
- UNESP - Univ. Estadual Paulista, Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Araraquara, São Paulo, Brazil
| | - O Cuesta-Rubio
- Instituto de Farmacia y Alimentos (IFAL), Universidad de La Habana, La Habana, Cuba
| | - W Vilegas
- UNESP - Univ. Estadual Paulista, Instituto de Química, Campus Araraquara, c.p. 355, CEP 14800-900, Araraquara, São Paulo, Brazil
| | - E A Varanda
- UNESP - Univ. Estadual Paulista, Faculdade de Ciências Farmacêuticas de Araraquara, Departamento de Ciências Biológicas, CEP 14801-902, Araraquara, São Paulo, Brazil
| |
Collapse
|
11
|
Wu SB, Long C, Kennelly EJ. Structural diversity and bioactivities of natural benzophenones. Nat Prod Rep 2014; 31:1158-74. [DOI: 10.1039/c4np00027g] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural benzophenones are a class of compounds with more than 300 members, mainly in the Clusiaceae family. We review key benzophenones, and provide an in-depth discussion of their great structural diversity and biological activity.
Collapse
Affiliation(s)
- Shi-Biao Wu
- College of Life and Environmental Science
- Minzu Unversity of China
- Beijing 100081, China
- Department of Biological Sciences
- Lehman College, and The Graduate Center
| | - Chunlin Long
- College of Life and Environmental Science
- Minzu Unversity of China
- Beijing 100081, China
| | - Edward J. Kennelly
- College of Life and Environmental Science
- Minzu Unversity of China
- Beijing 100081, China
- Department of Biological Sciences
- Lehman College, and The Graduate Center
| |
Collapse
|
12
|
Nemorosone and its emerging anti-neoplastic effects. Graefes Arch Clin Exp Ophthalmol 2013; 251:2487. [DOI: 10.1007/s00417-013-2395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/22/2013] [Indexed: 11/26/2022] Open
|
13
|
Camargo MS, Prieto AM, Resende FA, Boldrin PK, Cardoso CRP, Fernández MF, Molina-Molina JM, Olea N, Vilegas W, Cuesta-Rubio O, Varanda EA. Evaluation of estrogenic, antiestrogenic and genotoxic activity of nemorosone, the major compound found in brown Cuban propolis. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:201. [PMID: 23902919 PMCID: PMC3733937 DOI: 10.1186/1472-6882-13-201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/25/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Brown propolis is the major type of propolis found in Cuba; its principal component is nemorosone, the major constituent of Clusia rosea floral resins. Nemorosone has received increasing attention due to its strong in vitro anti-cancer action. The citotoxicity of nemorosone in several human cancer cell lines has been reported and correlated to the direct action it has on the estrogen receptor (ER). Breast cancer can be treated with agents that target estrogen-mediated signaling, such as antiestrogens. Phytoestrogen can mimic or modulate the actions of endogenous estrogens and the treatment of breast cancer with phytoestrogens may be a valid strategy, since they have shown anti-cancer activity. METHODS The aim of the present investigation was to assess the capacity of nemorosone to interact with ERs, by Recombinant Yeast Assay (RYA) and E-screen assays, and to determine by comet assay, if the compound causes DNA-damaging in tumoral and non-tumoral breast cells. RESULTS Nemorosone did not present estrogenic activity, however, it inhibited the 17-β-estradiol (E2) action when either of both methods was used, showing their antiestrogenicity. The DNA damage induced by the benzophenone in cancer and normal breast cells presented negative results. CONCLUSION These findings suggest that nemorosone may have therapeutic application in the treatment of breast cancer.
Collapse
|