1
|
Gao J, Guo H, Li J, Zhan M, You Y, Xin G, Liu Z, Fan X, Gao Q, Liu J, Zhang Y, Fu J. Buyang Huanwu decoction ameliorates myocardial injury and attenuates platelet activation by regulating the PI3 kinase/Rap1/integrin α(IIb)β(3) pathway. Chin Med 2024; 19:109. [PMID: 39160598 PMCID: PMC11331649 DOI: 10.1186/s13020-024-00976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Buyang Huanwu Decoction (BYHWD) is a traditional Chinese medicine to treat the syndrome of qi deficiency and blood stasis. Platelets play an important role in regulating thrombus and inflammation after ischemic injury, studies have shown that BYHWD regulate myocardial fibrosis and exert anti-inflammatory effects through IL-17 and TLR4 pathways, but the mechanism of platelet activation by BYHWD in stable coronary heart disease is still unknown. In the present study, model of left anterior descending coronary artery ligation was applied to investigate the mechanisms of BYHWD on modulating platelets hyperreactivity and heart function after fibrosis of ischemic myocardial infarction (MI). METHODS Myocardial infarction model was constructed by ligation of the left anterior descending coronary artery. The rats were randomly divided into five groups: sham, model, MI with aspirin (positive), MI with a low dosage of BYHWD (BYHWD-ld) and MI with a high dosage of BYHWD (BYHWD-hd) for 28 days. RESULTS Coronary artery ligation prominently induced left ventricle dysfunction, increased cardiomyocyte fibrosis, which was accompanied by platelets with hyperreactivity, and high levels of inflammatory factors. BYHWD obviously reversed cardiac dysfunction and fibrosis, increased the thickness of the left ventricular wall, and inhibited aggregation ratio and CD62p expression. BYHWD restored the mitochondrial respiration of platelets after MI, concomitant with an increased telomere expression and decreased inflammation. According to the result of transcriptome sequencing, we found that 106 differentially expressed genes compared model with BYHWD treatment. Enrichment analysis screened out the Ras-related protein Rap-1 (Rap1) signaling pathway and platelet activation biological function. Quantitative real-time PCR and Western blotting were applied to found that BYHWD reduced the expression of Rap1/PI3K-Akt/Src-CDC42 genes and attenuated the overactivity of PI3 kinase/Rap1/integrin α(IIb)β(3) pathway. CONCLUSION BYHWD reduced inflammation and platelet activation via the PI3 kinase/Rap1/integrin α(IIb)β(3) pathway and improved heart function after MI.
Collapse
Affiliation(s)
- Jiaming Gao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Hao Guo
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Junmei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Min Zhan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Yue You
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Gaojie Xin
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Zixin Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Qinghe Gao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| | - Yehao Zhang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| | - Jianhua Fu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Courtyard No. 1, Xiyuan Playground, Haidian District, Beijing, China.
| |
Collapse
|
2
|
Huang W, Yao W, Weng Y, Xie X, Jiang J, Zhang S, Shi Z, Fan Q. Hydroxysafflor yellow A inhibits the hyperactivation of rat platelets by regulating the miR-9a-5p/SRC axis. Arch Biochem Biophys 2023; 747:109767. [PMID: 37748625 DOI: 10.1016/j.abb.2023.109767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Pathological platelet activation plays a vital role in the prevalence of cardiovascular diseases. Hydroxysafflor yellow A (HSYA) has been shown to have significant anti-platelet aggregation and anti-activation effects, but its mechanism of action is unclear. Our study showed that HSYA inhibited the expression of platelet surface glycoproteins IIβ/III α (GPIIβ/III α) and thromboxane A2 (TXA2) during platelet activation and reduced platelet Ca2+ accumulation. HSYA significantly reduced the number of platelets and inhibited adrenaline-induced platelet hyperaggregation in rats. Transcriptomic analysis of platelets suggested that HSYA significantly suppressed SRC and MAPK3 (ERK1/2) gene expression. YEEI peptide, an SRC activator, could significantly reverse the inhibition of HSYA on the phosphorylation of SRC/PLCγ2/PKCδ/MEK/ERK1/2 pathway proteins and reverse the effect of HSYA on platelet activation-related markers GPIIβ/IIIα protein, TXA2 and cAMP. The SRC genes were further predicted by transcriptome analysis of HSYA-regulated miRNAs combined with bioinformatics techniques. The results suggested that HSYA could significantly upregulate the expression level of the miR-9a-5p gene and further confirmed that miR-9a-5p had a targeted regulatory relationship with SRC by dual-luciferase activity reporter and cell transfection experiments. The inhibitory effect of HSYA on the SRC/PLCγ2/PKCδ/MEK/ERK1/2 pathway was significantly reversed after platelets were transfected with the miR-9a inhibitor, while SRC siRNA attenuated the effect of the miR-9a inhibitor. SRC siRNA was able to attenuate the effect of the miR-9a inhibitor. In conclusion, this study suggests that HSYA can inhibit the activation of the SRC/PLCγ2/PKC δ/MEK/ERK1/2 axis by upregulating platelet miR-9a-5p, thereby reducing the activation of platelets and inhibiting platelet aggregation.
Collapse
Affiliation(s)
- Wei Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Wendong Yao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Yayun Weng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Xianze Xie
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Jiali Jiang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Shuo Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China
| | - Zheng Shi
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311400, China.
| | - Qiaomei Fan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310006, China.
| |
Collapse
|
3
|
Gao X, Gao J. Investigation of the efficacy and pharmacological mechanism of Danhong injections for treating chronic obstructive pulmonary disease: A PRISMA-compliant meta-analysis and network pharmacology analysis. Medicine (Baltimore) 2023; 102:e32846. [PMID: 36749263 PMCID: PMC9901954 DOI: 10.1097/md.0000000000032846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Accumulating evidence supported the clinical efficacy of Danhong injection (DHI) on chronic obstructive pulmonary disease (COPD). It is urgent to summarize the effects of DHI on various outcomes in COPD patients and to elucidate the molecular mechanisms of DHI in treating COPD. METHODS Eligible studies were retrieved from 6 databases including China national knowledge infrastructure, Wangfang, VIP, web of science, PubMed, and Embase. The heterogeneity across studies was tested using the I2 statistic and the quality of studies was assessed. The pooled evaluation of outcomes was calculated using a fix- or random-effect model according to the heterogeneity. The underlying mechanism of DHI in treating COPD was analyzed using network pharmacology. RESULTS A total of 34 eligible studies with a general medium quality were included in the meta-analysis. The pooled data showed that DHI intervention significantly increased clinical efficacy as compared to routine treatment. Meanwhile, our data also revealed that the addition of DHI markedly improved hemorheological indicators, lung function index, arterial blood gas index, and as well as blood coagulation functions. However, the current meta-analysis lacked sufficient data to support the significant effect of DHI on prothrombin time and activated partial thromboplastin time. Network pharmacology found 59 candidate targets of DHI in treating COPD, and enrichment analysis found these targets were associated with lymphocyte proliferation and activation, glucocorticoid receptor signaling, TREM1 signaling, IL-12 signaling and production in macrophages, and aryl hydrocarbon receptor signaling. Multiple core targets including AKT1, TNF, and IL1B, etc. Were identified and might play an important role in the action of DHI against COPD. CONCLUSION Taken together, this study suggested that DHI could ameliorate hemorheological indicators, lung function, arterial blood gas, and as well as coagulation functions of COPD patients and elucidate the underlying mechanism of DHI against COPD.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Department of Pharmacy, Jiangnan Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jinsong Gao
- Intensive Care Unit, Jiangnan Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- * Correspondence: Jinsong Gao, Intensive Care Unit, Jiangnan Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310016, China (e-mail: )
| |
Collapse
|
4
|
Effect of Yiqi Huoxue Granules on Platelet Activation Induced by Thrombin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6622848. [PMID: 34335832 PMCID: PMC8313338 DOI: 10.1155/2021/6622848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/10/2021] [Indexed: 11/18/2022]
Abstract
Objective To study the effects of Yiqi Huoxue (YQHX) granules on platelet activation and aggregation induced by thrombin. Methods The effect of YQHX on platelet aggregation rate was detected by platelet aggregation instrument; the effect of YQHX on thrombosis time was observed by the mouse mesentery thrombosis model. DAMI cells were induced to transform into platelet-like granules using PMA, and the effects of SCH (PAR-1 inhibitor) on thrombin-induced changes in platelet intracellular calcium concentration, PAR-1 protein expression, and phosphorylation of MAPK were examined. Results Compared with the control group, the platelet aggregation rate, PAR-1 protein expression, phosphorylation of ERK1/2, and p38 protein in the YQHX group decreased (P < 0.05), and there was no significant difference between the YQHX + SCH group and YQHX group (P > 0.05). Conclusion YQHX suppresses the platelet activation induced by thrombin by inhibiting PAR-1 expression.
Collapse
|
5
|
Bioactive Substances in Safflower Flowers and Their Applicability in Medicine and Health-Promoting Foods. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:6657639. [PMID: 34136564 PMCID: PMC8175185 DOI: 10.1155/2021/6657639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Safflower flowers (Carthamus tinctorius) contain many natural substances with a wide range of economic uses. The most famous dye isolated from flower petals is hydroxysafflor A (HSYA), which has antibacterial, anti-inflammatory, and antioxidant properties. This review is aimed at updating the state of knowledge about their applicability in oncology, pulmonology, cardiology, gynecology, dermatology, gastrology, immunology, and suitability in the treatment of obesity and diabetes and its consequences with information published mainly in 2018-2020. They were also effective in treating obesity and diabetes and its consequences. The issues related to the possibilities of using HSYA in the production of health-promoting food were also analyzed.
Collapse
|
6
|
Uncovering the pharmacological mechanism of Carthamus tinctorius L. on cardiovascular disease by a systems pharmacology approach. Biomed Pharmacother 2019; 117:109094. [PMID: 31203131 DOI: 10.1016/j.biopha.2019.109094] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Carthamus tinctorius L. is widely used in traditional Chinese medicines for the treatment of cardiovascular disease. However, our current understanding of the molecular mechanisms supporting its clinical application still lags behind. In this study, a systems pharmacology approach integrating drug-likeness evaluation, oral bioavailability prediction, target exploration, GO enrichment analysis, KEGG pathway performance and network construction was adopted to explore its therapeutic mechanism. A total of 21 active ingredients contained in Carthamus tinctorius L. and 113 major proteins were screened out as effective players in the treatment of cardiovascular disease through some related pathways. And the association among the active ingredients, major hubs and main pathways was investigated, implying the potential biological progression of Carthamus tinctorius L. acting on cardiovascular disease. Importantly, the majority of hubs and pathways were found to be highly related with platelet activation process. Core genes that can be regulated by Carthamus tinctorius L. in platelet activation pathway were PRKACA, PIK3R1, MAPK1, PPP1CC, PIK3CA and SYK, and they may play a central role in suppressing platelet aggregation. The systems pharmacology approach used in this study may provide a feasible tool to clarify the mechanism of traditional Chinese medicines and further develop their therapeutic potentials.
Collapse
|
7
|
Hydroxysafflor Yellow A: A Promising Therapeutic Agent for a Broad Spectrum of Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8259280. [PMID: 30356354 PMCID: PMC6176289 DOI: 10.1155/2018/8259280] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/12/2018] [Indexed: 01/13/2023]
Abstract
Hydroxysafflor yellow A (HSYA) is one of the major bioactive and water-soluble compounds isolated from Carthami Flos, the flower of safflower (Carthamus tinctorius L.). As a natural pigment with favorable medical use, HSYA has gained extensive attention due to broad and effective pharmacological activities since first isolation in 1993. In clinic, the safflor yellow injection which mainly contains about 80% HSYA was approved by the China State Food and Drug Administration and used to treat cardiac diseases such as angina pectoris. In basic pharmacology, HSYA has been proved to exhibit a broad spectrum of biological effects that include, but not limited to, cardiovascular effect, neuroprotection, liver and lung protection, antitumor activity, metabolism regulation, and endothelium cell protection. Although a great number of studies have been carried out to prove the pharmacological effects and corresponding mechanisms of HYSA, a systemic review of HYSA has not yet been seen. Here, we provide a comprehensive summarization of the pharmacological effects of HYSA. Together with special attention to mechanisms of actions, this review can serve as the basis for further researches and developments of this medicinal compound.
Collapse
|
8
|
Oral hydroxysafflor yellow A reduces obesity in mice by modulating the gut microbiota and serum metabolism. Pharmacol Res 2018; 134:40-50. [PMID: 29787870 DOI: 10.1016/j.phrs.2018.05.012] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/25/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
Abstract
Given the high and increasing prevalence of obesity, the safe and effective treatment of obesity would be beneficial. Here, we examined whether oral hydroxysafflor yellow A (HSYA), an active compound from the dried florets of Carthamus tinctorius L., can reduce high-fat (HF) diet-induced obesity in C57BL/6 J mice. Our results showed that the average body weight of HF group treated by HSYA was significantly lower than that of the HF group (P < 0.01). HSYA also reduced fat accumulation, ameliorated insulin resistance, restored glucose homeostasis, reduced inflammation, enhanced intestinal integrity, and increased short-chain fatty acids (SCFAs) production in HF diet-fed mice. Sequencing of 16S rRNA genes in fecal samples demonstrated that HSYA reversed HF diet induced gut microbiota dysbiosis. Particularly, HSYA increased the relative abundances of genera Akkermansia and Romboutsia, as well as SCFAs-producing bacteria, including genera Butyricimonas and Alloprevotella, whereas it decreased the phyla Firmicutes/Bacteroidetes ratio of HF diet-fed mice. Additionally, serum metabolomics analysis revealed that HSYA increased lysophosphatidylcholines (lysoPCs), L-carnitine and sphingomyelin, and decreased phosphatidylcholines in mice fed a HF diet, as compared to HF group. These changed metabolites were mainly linked with the pathways of glycerophospholipid metabolism and sphingolipid metabolism. Spearman's correlation analysis further revealed that Firmicutes was positively while Bacteroidetes and Akkermansia were negatively correlated with body weight, fasting serum glucose and insulin. Moreover, Akkermansia and Butyricimonas had positive correlations with lysoPCs, suggestive of the role of gut microbiota in serum metabolites. Our findings suggest HSYA may be a potential therapeutic drug for obesity and the gut microbiota may be potential territory for targeting of HSYA.
Collapse
|
9
|
Zhang Q, Tan CN, Wang YL, Liu WJ, Yang FQ, Chen H, Xia ZN. Adsorbed hollow fiber-based biological fingerprinting for the discovery of platelet aggregation inhibitors from Danshen-Honghua decoction. J Sep Sci 2018; 41:2651-2660. [PMID: 29573136 DOI: 10.1002/jssc.201701434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 01/07/2023]
Abstract
For lead compound discovery from natural products, hollow fiber cell fishing with chromatographic analysis is a newly developed method. In this study, an adsorbed hollow fiber-based biological fingerprinting method was firstly developed to discover potential platelet aggregation inhibitors from Danshen-Honghua decoction. Platelets were seeded on the fiber and their survival rate was tested. Results indicated that more than 92% platelets survived during the whole operation process. Ranitidine and tirofiban were used as positive and negative control respectively to verify the reliability of the presented approach. The main variables such as amount of extract and stirring time that affect the adsorbed hollow fiber-based biological fingerprinting process were optimized, and the repeatability of this method was also investigated. Finally, 12 potential active compounds in Danshen-Honghua decoction were successfully detected using the established approach and structures for nine of them were tentatively identified by liquid chromatography with mass spectrometry analysis. In addition, the in vitro platelet aggregation inhibition test was carried out for five of the nine hit compounds, and three active components, namely, lithospermic acid, salvianolic acid A, and salvianolic acid B were confirmed. These results proved that the proposed method could be an effective approach for screening platelet inhibitors from plant extracts.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Cheng-Ning Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Ya-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Wen-Jing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Hua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Zhi-Ning Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
10
|
Sun Y, Xu DP, Qin Z, Wang PY, Hu BH, Yu JG, Zhao Y, Cai B, Chen YL, Lu M, Liu JG, Liu X. Protective cerebrovascular effects of hydroxysafflor yellow A (HSYA) on ischemic stroke. Eur J Pharmacol 2017; 818:604-609. [PMID: 29166571 DOI: 10.1016/j.ejphar.2017.11.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 11/30/2022]
Abstract
The purpose of the present work was designed to explore protective cerebrovascular effects of hydroxysafflor yellow A (HSYA), and provide preclinical efficacy and mechanism data for its possible application in patients with cerebral ischemia. The protective effect of HSYA on ischemic stroke was evaluated by infarct sizes and neurological scores in Sprague-Dawley (SD) rats with middle cerebral artery occlusion (MCAO). Cerebrovascular permeability was detected by Evans blue dye leakage in MCAO rats. Cerebral blood flow, as well as blood pressure and heart rate were monitored using flow probes in Beagle dogs. Basilar artery tension isolated from Beagle dogs was evaluated with an MPA 2000 data-acquisition system. Coagulation-related function was also judged, including rabbit platelet aggregation by adenosine diphosphate (ADP) and platelet-aggregating factor (PAF), rabbit blood viscosity by a blood viscometer, and thrombus formation by rat arterial-venous shunts. Results showed that HSYA treatment significantly decreased the infarct sizes, neurological scores and cerebrovascular permeability in rats with MCAO. However, cerebral blood flow, blood pressure and heart rate were not affected by HSYA. In vitro, HSYA had a strong effect on cerebrovascular vasodilatation, and significantly decreased platelet aggregation, blood viscosity, and thrombogenesis. Besides well-known anti-coagulation effects, HSYA protects against ischemic stroke by dilating cerebral vessels and improving cerebrovascular permeability.
Collapse
Affiliation(s)
- Yang Sun
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Dong-Ping Xu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhen Qin
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Peng-Yuan Wang
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Bo-Han Hu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jian-Guang Yu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yong Zhao
- Shanghai Laboratory Animal Research Center, 3577 Jin-Ke Road, Shanghai 201203, China
| | - Ben Cai
- Zhejiang Yongning Pharmaceutical Co., Ltd., 4 Meihuajing Road, Huangyan, Taizhou 318020, China
| | - Yong-Ling Chen
- Zhejiang Yongning Pharmaceutical Co., Ltd., 4 Meihuajing Road, Huangyan, Taizhou 318020, China
| | - Min Lu
- Zhejiang Yongning Pharmaceutical Co., Ltd., 4 Meihuajing Road, Huangyan, Taizhou 318020, China
| | - Jian-Guo Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xia Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
11
|
Pan R, Zhang Y, Zheng M, Zang B, Jin M. Hydroxysafflor Yellow A Suppresses MRC-5 Cell Activation Induced by TGF-β1 by Blocking TGF-β1 Binding to TβRII. Front Pharmacol 2017; 8:264. [PMID: 28553231 PMCID: PMC5425600 DOI: 10.3389/fphar.2017.00264] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
Hydroxysafflor yellow A (HSYA) is an active ingredient of Carthamus tinctorius L.. This study aimed to evaluate the effects of HSYA on transforming growth factor-β1 (TGF-β1)-induced changes in proliferation, migration, differentiation, and extracellular matrix accumulation and degradation in human fetal lung fibroblasts (MRC-5), to explore the mechanisms whereby HSYA may alleviate pulmonary fibrosis. MRC-5 cells were incubated with various doses of HSYA and/or the TGF-β receptor type I kinase inhibitor SB431542 and then stimulated with TGF-β1. Cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium inner salt assay. Cell migration was detected by wound-healing assay. Protein levels of α-smooth muscle actin (α-SMA), collagen I α 1 (COL1A1), and fibronectin (FN) were measured by immunofluorescence. Protein levels of matrix metalloproteinase-2, tissue inhibitor of matrix metalloproteinase-1, tissue inhibitor of matrix metalloproteinase-2, TGF-β type II receptor (TβRII), and TGF-β type I receptor were detected by western blotting. TβRII knockdown with siRNA interfered with the inhibitory effect of HSYA on α-SMA, COL1A1, and FN expression, and TGF-β1-induced Sma and Mad protein (Smad), and extracellular signal-regulated kinase/mitogen-activated protein kinase signaling pathway activation. The antagonistic effect of HSYA on the binding of fluorescein isothiocyanate-TGF-β1 to MRC-5 cell cytoplasmic receptors was measured by flow cytometry. HSYA significantly suppressed TGF-β1-induced cell proliferation and migration. HSYA could antagonize the binding of FITC-TGF-β1 to MRC-5 cell cytoplasmic receptors. Also HSYA inhibited TGF-β1-activated cell expression of α-SMA, COL1A1, and FN and phosphorylation level of Smad2, Smad3, and ERK by targeting TβRII in MRC-5 cells. These findings suggest that TβRII might be the target responsible for the inhibitory effects of HSYA on TGF-β1-induced pathological changes in pulmonary fibrosis.
Collapse
Affiliation(s)
- Ruiyan Pan
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijing, China
| | - Yadan Zhang
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijing, China
| | - Meng Zheng
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijing, China
| | - Baoxia Zang
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijing, China
| | - Ming Jin
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel DiseasesBeijing, China
| |
Collapse
|
12
|
Zhu H, Wang X, Pan H, Dai Y, Li N, Wang L, Yang H, Gong F. The Mechanism by Which Safflower Yellow Decreases Body Fat Mass and Improves Insulin Sensitivity in HFD-Induced Obese Mice. Front Pharmacol 2016; 7:127. [PMID: 27242533 PMCID: PMC4876777 DOI: 10.3389/fphar.2016.00127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022] Open
Abstract
Objectives: Safflower yellow (SY) is the main effective ingredient of Carthamus tinctorius L. It has been reported that SY plays an important role in anti-inflammation, anti-platelet aggregation, and inhibiting thrombus formation. In present study, we try to investigate the effects of SY on body weight, body fat mass, insulin sensitivity in high fat diet (HFD)-induced obese mice. Methods: HFD-induced obese male ICR mice were intraperitoneally injected with SY (120 mg kg−1) daily. Eight weeks later, intraperitoneal insulin tolerance test (IPITT), and intraperitoneal glucose tolerance test (IPGTT) were performed, and body weight, body fat mass, serum insulin levels were measured. The expression of glucose and lipid metabolic related genes in white adipose tissue (WAT) were determined by RT-qPCR and western blot technologies. Results: The administration obese mice with SY significantly reduced the body fat mass of HFD-induced obese mice (P < 0.05). IPITT test showed that the insulin sensitivity of SY treated obese mice were evidently improved. The mRNA levels of insulin signaling pathway related genes including insulin receptor substrate 1(IRS1), PKB protein kinase (AKT), glycogen synthase kinase 3β (GSK3β) and forkhead box protein O1(FOXO1) in mesenteric WAT of SY treated mice were significantly increased to 1.9- , 2.8- , 3.3- , and 5.9-folds of that in HFD-induced control obese mice, respectively (P < 0.05). The protein levels of AKT and GSK3β were also significantly increased to 3.0 and 5.2-folds of that in HFD-induced control obese mice, respectively (P < 0.05). Meanwhile, both the mRNA and protein levels of peroxisome proliferator-activated receptorgamma coactivator 1α (PGC1α) in inguinal subcutaneous WAT of SY group were notably increased to 2.5 and 3.0-folds of that in HFD-induced control obese mice (P < 0.05). Conclusions: SY significantly reduce the body fat mass, fasting blood glucose and increase insulin sensitivity of HFD-induced obese mice. The possible mechanism is to promote the browning of subcutaneous WAT and activate the IRS1/AKT/GSK3β pathway in visceral WAT. Our study provides an important experimental evidence for developing SY as a potential anti-obesity and anti-diabetic drug.
Collapse
Affiliation(s)
- Huijuan Zhu
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science Beijing, China
| | - Xiangqing Wang
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science Beijing, China
| | - Yufei Dai
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science Beijing, China
| | - Naishi Li
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health and Family Planning Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science Beijing, China
| |
Collapse
|