1
|
Liu Y, Li W, Wu K, Lei B, Chen J, Zhang X, Lei H, Duan X, Huang R. Antifungal molecular details of MNQ-derived novel carbon dots against Penicillium digitatum. Food Chem 2023; 413:135687. [PMID: 36804745 DOI: 10.1016/j.foodchem.2023.135687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/03/2022] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
It is urgent to develop high-efficiency and low-toxicity natural antifungal agents on green mold caused by Penicillium digitatum. The effect of 2-methoxy-1, 4-naphthoquinone (MNQ) inhibition of P. digitatum was not very satisfactory. MNQ-derived carbon dots (MNQ-CDs) synthesized through a solvothermal route were used as antifungal agents against P. digitatum. The antifungal activity of prepared MNQ-CDswas enhanced compared to MNQ, and the minimum inhibitory concentration was 2.8 μg/mL. A total of 441 genes and 122 metabolites have undergone significant changes. The omics data revealed that MNQ-CDs primarily modified the metabolism of aromatic amino acids and synthesis of the cell membrane in P. digitatum, thereby inhibiting its propagation. Furthermore, compared with MNQ, MNQ-CDs had a better control effect on the green mold of citrus fruits, and could more significantly inhibit the propagation of P. digitatum. This study provides a new idea for the design of new and efficient antifungal materials.
Collapse
Affiliation(s)
- Yongchun Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Keyue Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jianying Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Qian H, Wang B, Ma J, Li C, Zhang Q, Zhao Y. Impatiens balsamina: An updated review on the ethnobotanical uses, phytochemistry, and pharmacological activity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115956. [PMID: 36436713 DOI: 10.1016/j.jep.2022.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Impatiens balsamina is an annual herb of the Balsaminaceae family, which is cultivated extensively in Asia as an ornamental plant. Notably, as a folk medicine, I. balsamina has been long prescribed for the treatment of rheumatism, isthmus, generalized pain, fractures, inflammation of the nails, scurvy, carbuncles, dysentery, bruises, foot diseases, etc. AIM OF THE STUDY: The paper overviews comprehensive information on ethnobotanical uses, phytochemistry, pharmacological activity, and toxicity of I. balsamina, aiming at laying a sturdy foundation for further development of I. balsamina. MATERIALS AND METHODS Research information was acquired through electronic databases such as Web of Science, PubMed, SciFinder, ScienceDirect, Google Scholar, and CNKI with the keyword "Impatiens balsamina ". RESULTS Briefly, more than 307 natural compounds have been separated and identified from various medicinal parts of I. balsamina, which are classified into diverse groups, like flavonoids, naphthoquinones, coumarins, terpenoids, sterols, phenols, fatty acids and their ester, naphthalene derivatives, nitrogen-containing compounds, polysaccharides, and other compounds. In particular, 2-methoxy-1,4-naphthoquinone, one of the naphthoquinones, is the predominant and most representative component. Moreover, I. balsamina furnishes numerous and complicated pharmacological activities, including antimicrobial, antiallergic, antipruritic, antitumor, antioxidant, anti-inflammatory, immunomodulatory, anti-hepatic fibrosis, insecticidal, and anthelmintic as well as enzyme-inhibiting activities, etc. Toxicological studies have shown that the hexane extract of the stems and leaves was less toxic, and the hydroalcoholic extract of stems was more toxic. CONCLUSIONS The paper contributes to updating the ethnobotanical uses, phytochemistry, pharmacological activity, and toxicity of I. balsamina, which offer abundant information for future investigations and applications of I. balsamina.
Collapse
Affiliation(s)
- Huiqin Qian
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Bailing Wang
- School of Pharmaceutical Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jinshuo Ma
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Chunyan Li
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Qingjin Zhang
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Yongheng Zhao
- School of Pharmaceutical Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
3
|
Wong TY, Menaga S, Huang CYF, Ho SHA, Gan SC, Lim YM. 2-Methoxy-1,4-naphthoquinone (MNQ) regulates cancer key genes of MAPK, PI3K, and NF-κB pathways in Raji cells. Genomics Inform 2022; 20:e7. [PMID: 35399006 PMCID: PMC9001993 DOI: 10.5808/gi.21041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
2-Methoxy-1,4-naphthoquinone (MNQ) has been shown to cause cytotoxic towards various cancer cell lines. This study is designed to investigate the regulatory effect of MNQ on the key cancer genes in mitogen-activated protein kinase, phosphoinositide 3-kinase, and nuclear factor кB signaling pathways. The expression levels of the genes were compared at different time point using polymerase chain reaction arrays and Ingenuity Pathway Analysis was performed to identify gene networks that are most significant to key cancer genes. A total of 43 differentially expressed genes were identified with 21 up-regulated and 22 down-regulated genes. Up-regulated genes were involved in apoptosis, cell cycle and act as tumor suppressor while down-regulated genes were involved in anti-apoptosis, angiogenesis, cell cycle and act as transcription factor as well as proto-oncogenes. MNQ exhibited multiple regulatory effects on the cancer key genes that targeting at cell proliferation, cell differentiation, cell transformation, apoptosis, reduce inflammatory responses, inhibits angiogenesis and metastasis.
Collapse
Affiliation(s)
- Teck Yew Wong
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Subramaniam Menaga
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Siong Hock Anthony Ho
- School of Biosciences, Taylor's University, Lakeside Campus 1, 47500 Subang Jaya, Malaysia
| | - Seng Chiew Gan
- Department of Pre-Clinical Sciences Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia.,Department of Pre-Clinical Sciences Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| |
Collapse
|
4
|
Foong LC, Chai JY, Ho ASH, Yeo BPH, Lim YM, Tam SM. Comparative transcriptome analysis to identify candidate genes involved in 2-methoxy-1,4-naphthoquinone (MNQ) biosynthesis in Impatiens balsamina L. Sci Rep 2020; 10:16123. [PMID: 32999341 PMCID: PMC7527972 DOI: 10.1038/s41598-020-72997-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
Impatiens balsamina L. is a tropical ornamental and traditional medicinal herb rich in natural compounds, especially 2-methoxy-1,4-naphthoquinone (MNQ) which is a bioactive compound with tested anticancer activities. Characterization of key genes involved in the shikimate and 1,4-dihydroxy-2-naphthoate (DHNA) pathways responsible for MNQ biosynthesis and their expression profiles in I. balsamina will facilitate adoption of genetic/metabolic engineering or synthetic biology approaches to further increase production for pre-commercialization. In this study, HPLC analysis showed that MNQ was present in significantly higher quantities in the capsule pericarps throughout three developmental stages (early-, mature- and postbreaker stages) whilst its immediate precursor, 2-hydroxy-1,4-naphthoquinone (lawsone) was mainly detected in mature leaves. Transcriptomes of I. balsamina derived from leaf, flower, and three capsule developmental stages were generated, totalling 59.643 Gb of raw reads that were assembled into 94,659 unigenes (595,828 transcripts). A total of 73.96% of unigenes were functionally annotated against seven public databases and 50,786 differentially expressed genes (DEGs) were identified. Expression profiles of 20 selected genes from four major secondary metabolism pathways were studied and validated using qRT-PCR method. Majority of the DHNA pathway genes were found to be significantly upregulated in early stage capsule compared to flower and leaf, suggesting tissue-specific synthesis of MNQ. Correlation analysis identified 11 candidate unigenes related to three enzymes (NADH-quinone oxidoreductase, UDP-glycosyltransferases and S-adenosylmethionine-dependent O-methyltransferase) important in the final steps of MNQ biosynthesis based on genes expression profiles consistent with MNQ content. This study provides the first molecular insight into the dynamics of MNQ biosynthesis and accumulation across different tissues of I. balsamina and serves as a valuable resource to facilitate further manipulation to increase production of MNQ.
Collapse
Affiliation(s)
- Lian Chee Foong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.,Faculty of Applied Sciences, UCSI University, Jalan Puncak Menara Gading, UCSI Heights, 56000, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Jian Yi Chai
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Anthony Siong Hock Ho
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Brandon Pei Hui Yeo
- Fairview International School, Lot 4178, Jalan 1/27d, Seksyen 6 Wangsa Maju, 53300, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Yang Mooi Lim
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Lot PT 21144, Jalan Sungai Long, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia
| | - Sheh May Tam
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
5
|
Guo M, Liu J, Xu Z, Wang J, Li T, Lei H, Duan X, Sun Y, Zhang X, Huang R. 2-Methoxy-1,4-naphthoquinone Induces Metabolic Shifts in Penicillium Digitatum Revealed by High-Dimensional Biological Data. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9697-9706. [PMID: 32803964 DOI: 10.1021/acs.jafc.0c03396] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Penicillium digitatum is the primary pathogen causing the green mold of citrus. The need for the development of higher effective and lower toxic natural antifungal agents is urgent, owing to the lack of antifungal agents that can successfully combat P. digitatum. Herein, the effects and mechanisms of 2-methoxy-1,4-naphthoquinone (MNQ) as a potential inhibitor of P. digitatumwere studied. First, MNQ showed a significant anti-P. digitatum effect with a minimum inhibitory concentration value of 5.0 μg/mL. Then, transcriptome, proteome, and metabolome profiling were performed on the MNQ-treated P. digitatum. A total of 910 genes, 297 proteins, and 174 metabolites changed significantly. The omics analysis indicated that it could be seen that MNQ mainly inhibits the growth of P. digitatum by affecting the synthesis of branched-chain amino acids and cell walls. These findings will be a great contribution to the further understanding of the possible molecular action of MNQ.
Collapse
Affiliation(s)
- Meixia Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Liu
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuanming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Guo M, Zhang X, Li M, Li T, Duan X, Zhang D, Hu L, Huang R. Label-Free Proteomic Analysis of Molecular Effects of 2-Methoxy-1,4-naphthoquinone on Penicillium italicum. Int J Mol Sci 2019; 20:ijms20143459. [PMID: 31337149 PMCID: PMC6678512 DOI: 10.3390/ijms20143459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022] Open
Abstract
Penicillium italicum is the principal pathogen causing blue mold of citrus. Searching for novel antifungal agents is an important aspect of the post-harvest citrus industry because of the lack of higher effective and low toxic antifungal agents. Herein, the effects of 2-methoxy-1,4-naphthoquinone (MNQ) on P. italicum and its mechanism were carried out by a series of methods. MNQ had a significant anti-P. italicum effect with an MIC value of 5.0 µg/mL. The label-free protein profiling under different MNQ conditions identified a total of 3037 proteins in the control group and the treatment group. Among them, there were 129 differentially expressed proteins (DEPs, up-regulated > 2.0-fold or down-regulated < 0.5-fold, p < 0.05), 19 up-regulated proteins, 26 down-regulated proteins, and 67 proteins that were specific for the treatment group and another 17 proteins that were specific for the control group. Of these, 83 proteins were sub-categorized into 23 hierarchically-structured GO classifications. Most of the identified DEPs were involved in molecular function (47%), meanwhile 27% DEPs were involved in the cellular component and 26% DEPs were involved in the biological process. Twenty-eight proteins identified for differential metabolic pathways by KEGG were sub-categorized into 60 classifications. Functional characterization by GO and KEGG enrichment results suggests that the DEPs are mainly related to energy generation (mitochondrial carrier protein, glycoside hydrolase, acyl-CoA dehydrogenase, and ribulose-phosphate 3-epimerase), NADPH supply (enolase, pyruvate carboxylase), oxidative stress (catalase, glutathione synthetase), and pentose phosphate pathway (ribulose-phosphate 3-epimerase and xylulose 5-phosphate). Three of the down-regulated proteins selected randomly the nitro-reductase family protein, mono-oxygenase, and cytochrome P450 were verified using parallel reaction monitoring. These findings illustrated that MNQ may inhibit P. italicum by disrupting the metabolic processes, especially in energy metabolism and stimulus response that are both critical for the growth of the fungus. In conclusion, based on the molecular mechanisms, MNQ can be developed as a potential anti-fungi agent against P. italicum.
Collapse
Affiliation(s)
- Meixia Guo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Meiying Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Dandan Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Investigation of juglone effects on metastasis and angiogenesis in pancreatic cancer cells. Gene 2016; 588:74-8. [DOI: 10.1016/j.gene.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 12/20/2022]
|