1
|
Potent and Selective Inhibition of CYP1A2 Enzyme by Obtusifolin and Its Chemopreventive Effects. Pharmaceutics 2022; 14:pharmaceutics14122683. [PMID: 36559174 PMCID: PMC9786103 DOI: 10.3390/pharmaceutics14122683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Obtusifolin, a major anthraquinone component present in the seeds of Cassia tora, exhibits several biological activities, including the amelioration of memory impairment, prevention of breast cancer metastasis, and reduction of cartilage damage in osteoarthritis. We aimed to evaluate the inhibitory effects of obtusifolin and its analogs on CYP1A enzymes, which are responsible for activating procarcinogens, and investigate its inhibitory mechanism and chemopreventive effects. P450-selective substrates were incubated with human liver microsomes (HLMs) or recombinant CYP1A1 and CYP1A2 in the presence of obtusifolin and its four analogs. After incubation, the samples were analyzed using liquid chromatography-tandem mass spectrometry. Molecular docking simulations were performed using the crystal structure of CYP1A2 to identify the critical interactions between anthraquinones and human CYP1A2. Obtusifolin potently and selectively inhibited CYP1A2-mediated phenacetin O-deethylation (POD) with a Ki value of 0.031 µM in a competitive inhibitory manner in HLMs, whereas it exhibited negligible inhibitory effect against other P450s (IC50 > 28.6 µM). Obtusifolin also inhibited CYP1A1- and CYP1A2-mediated POD and ethoxyresorufin O-deethylation with IC50 values of <0.57 µM when using recombinant enzymes. Our molecular docking models suggested that the high CYP1A2 inhibitory activity of obtusifolin may be attributed to the combination of hydrophobic interactions and hydrogen bonding. This is the first report of selective and potent inhibitory effects of obtusifolin against CYP1A, indicating their potential chemopreventive effects.
Collapse
|
2
|
Park SY, Nguyen PH, Kim G, Jang SN, Lee GH, Phuc NM, Wu Z, Liu KH. Strong and Selective Inhibitory Effects of the Biflavonoid Selamariscina A against CYP2C8 and CYP2C9 Enzyme Activities in Human Liver Microsomes. Pharmaceutics 2020; 12:pharmaceutics12040343. [PMID: 32290339 PMCID: PMC7238120 DOI: 10.3390/pharmaceutics12040343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Like flavonoids, biflavonoids, dimeric flavonoids, and polyphenolic plant secondary metabolites have antioxidant, antibacterial, antiviral, anti-inflammatory, and anti-cancer properties. However, there is limited data on their effects on cytochrome P450 (P450) and uridine 5'-diphosphoglucuronosyl transferase (UGT) enzyme activities. In this study we evaluate the inhibitory potential of five biflavonoids against nine P450 activities (P450s1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A) in human liver microsomes (HLMs) using cocktail incubation and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The most strongly inhibited P450 activity was CYP2C8-mediated amodiaquine N-dealkylation with IC50 ranges of 0.019~0.123 μM. In addition, the biflavonoids-selamariscina A, amentoflavone, robustaflavone, cupressuflavone, and taiwaniaflavone-noncompetitively inhibited CYP2C8 activity with respective Ki values of 0.018, 0.083, 0.084, 0.103, and 0.142 μM. As selamariscina A showed the strongest effects, we then evaluated it against six UGT isoforms, where it showed weaker inhibition (UGTs1A1, 1A3, 1A4, 1A6, 1A9, and 2B7, IC50 1.7 μM). Returning to the P450 activities, selamariscina A inhibited CYP2C9-mediated diclofenac hydroxylation and tolbutamide hydroxylation with respective Ki values of 0.032 and 0.065 μM in a competitive and noncompetitive manner. However, it only weakly inhibited CYP1A2, CYP2B6, and CYP3A with respective Ki values of 3.1, 7.9, and 4.5 μM. We conclude that selamariscina A has selective and strong inhibitory effects on the CYP2C8 and CYP2C9 isoforms. This information might be useful in predicting herb-drug interaction potential between biflavonoids and co-administered drugs mainly metabolized by CYP2C8 and CYP2C9. In addition, selamariscina A might be used as a strong CYP2C8 and CYP2C9 inhibitor in P450 reaction-phenotyping studies to identify drug-metabolizing enzymes responsible for the metabolism of new chemicals.
Collapse
Affiliation(s)
- So-Young Park
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-Y.P.); (G.-H.L.)
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (G.K.); (N.M.P.); (Z.W.)
| | - Phi-Hung Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam;
| | - Gahyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (G.K.); (N.M.P.); (Z.W.)
| | - Su-Nyeong Jang
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-Y.P.); (G.-H.L.)
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (G.K.); (N.M.P.); (Z.W.)
| | - Ga-Hyun Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-Y.P.); (G.-H.L.)
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (G.K.); (N.M.P.); (Z.W.)
| | - Nguyen Minh Phuc
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (G.K.); (N.M.P.); (Z.W.)
- Vietnam Hightech of Medicinal and Pharmaceutical JSC, Group 11 Quang Minh town, Hanoi 100000, Vietnam
| | - Zhexue Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (G.K.); (N.M.P.); (Z.W.)
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-Y.P.); (G.-H.L.)
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (G.K.); (N.M.P.); (Z.W.)
- Correspondence: ; Tel.: +82-53-950-8567; Fax: +82-53-950-8557
| |
Collapse
|
3
|
Effect of Naoxintong Capsules on the Activities of CYP450 and Metabolism of Metoprolol Tartrate in Rats Evaluated by Probe Cocktail and Pharmacokinetic Methods. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5242605. [PMID: 31662775 PMCID: PMC6778862 DOI: 10.1155/2019/5242605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022]
Abstract
Naoxintong capsule (NXT), a prescribed Chinese medicine, has been used clinically for more than 20 years and is widely received by patients. We determined five probe drugs, namely, omeprazole (CYP2C19), midazolam (CYP3A4), phenacetin (CYP1A2), tolbutamide (CYP2C9), and dextromethorphan (CYP2D6) to study the potential influences of NXT on the activities of CYP enzymes and assessed the pharmacokinetics effect of NXT on metoprolol tartrate in rat plasma. The study showed that AUC(0–24) and AUC(0–∞) of midazolam (CYP3A4) in NXT coadministration group (283.7 ± 65.2 h·ng·mL−1 and 292.0 ± 75.1 h·ng·mL−1 in group B; 295.7 ± 62.7 h·ng·mL−1 and 299.5 ± 60.0 h·ng·mL−1 in group C) were significantly decreased as compared to another group (416.8 ± 82.3 h·ng·mL−1 and 424.9 ± 77.9 h·ng·mL−1 in group A), while that of dextromethorphan (CYP2D6) showed an opposite tendency (540.7 ± 119.7 h·ng·mL−1 and 595.3 ± 122.2 h·ng·mL−1 in group A, 760.6 ± 184.9 h·ng·mL−1 and 788.7 ± 211.0 h·ng·mL−1 in group B, and 734.3 ± 118.5 h·ng·mL−1 and 757.2 ± 105.4 h·ng·mL−1 in group C). Moreover, NXT preadministration can enhance the metabolism of metoprolol tartrate and reduce the metabolism of O-demethylmetoprolol. The results indicated that NXT had potential effects in inducing CYP3A4 and inhibiting CYP2D6 in the metabolism of metoprolol tartrate. It suggests that patients who coadministered NXT and metoprolol tartrate should be advised of potential herb-drug interactions (HDIs) to reduce therapeutic failure or accelerated toxicity of conventional drug treatment.
Collapse
|
4
|
Machilin A Inhibits Tumor Growth and Macrophage M2 Polarization Through the Reduction of Lactic Acid. Cancers (Basel) 2019; 11:cancers11070963. [PMID: 31324019 PMCID: PMC6678097 DOI: 10.3390/cancers11070963] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Lactate dehydrogenase A (LDHA) is an important enzyme responsible for cancer growth and energy metabolism in various cancers via the aerobic glycolytic pathway. Here, we report that machilin A (MA), which acts as a competitive inhibitor by blocking the nicotinamide adenine dinucleotide (NAD) binding site of LDHA, suppresses growth of cancer cells and lactate production in various cancer cell types, including colon, breast, lung, and liver cancers. Furthermore, MA markedly decreased LDHA activity, lactate production, and intracellular adenosine triphosphate (ATP) levels induced by hypoxia-induced LDHA expression in cancer cells, and significantly inhibited colony formation, leading to reduced cancer cell survival. In mouse models inoculated with murine Lewis lung carcinoma, MA significantly suppressed tumor growth as observed by a reduction of tumor volume and weight; resulting from the inhibition of LDHA activity. Subsequently, the suppression of tumor-derived lactic acid in MA-treated cancer cells resulted in decrease of neovascularization through the regulation of alternatively activated macrophages (M2) polarization in macrophages. Taken together, we suggest that the reduction of lactate by MA in cancer cells directly results in a suppression of cancer cell growth. Furthermore, macrophage polarization and activation of endothelial cells for angiogenesis were indirectly regulated preventing lactate production in MA-treated cancer cells.
Collapse
|
5
|
Kim HJ, Lee H, Ji HK, Lee T, Liu KH. Screening of ten cytochrome P450 enzyme activities with 12 probe substrates in human liver microsomes using cocktail incubation and liquid chromatography-tandem mass spectrometry. Biopharm Drug Dispos 2019; 40:101-111. [PMID: 30730576 DOI: 10.1002/bdd.2174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 11/09/2022]
Abstract
Testing for potential drug interactions of new chemical entities is essential when developing a novel drug. In this study, an assay was designed to evaluate drug interactions with 10 major human cytochrome P450 (P450) enzymes incubated in liver microsomes, involving 12 probe substrates with two cocktail incubation sets used in a single liquid chromatography-tandem mass spectrometry (LC-MS/MS) run. The P450 substrate composition in each cocktail set was optimized to minimize solvent effects and mutual drug interactions among substrates as follows: cocktail A was composed of phenacetin for CYP1A2, bupropion for CYP2B6, amodiaquine for CYP2C8, diclofenac for CYP2C9, S-mephenytoin for CYP2C19, and dextromethorphan for CYP2D6; cocktail B was composed of coumarin for CYP2A6, chlorzoxazone for CYP2E1, astemizole for CYP2J2, and midazolam, nifedipine, and testosterone for CYP3A. Multiple probe substrates were used for CYP3A owing to the multiple substrate-binding sites and substrate-dependent inhibition. After incubation in human liver microsomes, each incubation mixture was pooled and all probe metabolites were simultaneously analysed in a single LC-MS/MS run. Polarity switching was used to acquire the negative-ion mode for hydroxychlorzoxazone and positive-ion mode for the remaining analytes. The method was validated by comparing the inhibition data obtained from incubation of each individual probe substrate alone and with the substrate cocktails. The half-maximal inhibitory concentration values obtained from the cocktail and individual incubations were well correlated and in agreement with previously reported values. This new method will be useful in assessing the drug interaction potential of new chemical entities during new drug development.
Collapse
Affiliation(s)
- Hyun-Ji Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea.,BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyunyoung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea.,BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyeon-Kyeong Ji
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea.,BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| | - Taeho Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea.,BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu, 41566, South Korea
| |
Collapse
|
6
|
Kim JH, Kwon SS, Jeong HU, Lee HS. Inhibitory Effects of Dimethyllirioresinol, Epimagnolin A, Eudesmin, Fargesin, and Magnolin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes. Int J Mol Sci 2017; 18:ijms18050952. [PMID: 28468305 PMCID: PMC5454865 DOI: 10.3390/ijms18050952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/13/2022] Open
Abstract
Magnolin, epimagnolin A, dimethyllirioresinol, eudesmin, and fargesin are pharmacologically active tetrahydrofurofuranoid lignans found in Flos Magnoliae. The inhibitory potentials of dimethyllirioresinol, epimagnolin A, eudesmin, fargesin, and magnolin on eight major human cytochrome P450 (CYP) enzyme activities in human liver microsomes were evaluated using liquid chromatography-tandem mass spectrometry to determine the inhibition mechanisms and inhibition potency. Fargesin inhibited CYP2C9-catalyzed diclofenac 4′-hydroxylation with a Ki value of 16.3 μM, and it exhibited mechanism-based inhibition of CYP2C19-catalyzed [S]-mephenytoin 4′-hydroxylation (Ki, 3.7 μM; kinact, 0.102 min−1), CYP2C8-catalyzed amodiaquine N-deethylation (Ki, 10.7 μM; kinact, 0.082 min−1), and CYP3A4-catalyzed midazolam 1′-hydroxylation (Ki, 23.0 μM; kinact, 0.050 min−1) in human liver microsomes. Fargesin negligibly inhibited CYP1A2-catalyzed phenacetin O-deethylation, CYP2A6-catalyzed coumarin 7-hydroxylation, CYP2B6-catalyzed bupropion hydroxylation, and CYP2D6-catalyzed bufuralol 1′-hydroxylation at 100 μM in human liver microsomes. Dimethyllirioresinol weakly inhibited CYP2C19 and CYP2C8 with IC50 values of 55.1 and 85.0 μM, respectively, without inhibition of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 activities at 100 μM. Epimagnolin A, eudesmin, and magnolin showed no the reversible and time-dependent inhibition of eight major CYP activities at 100 μM in human liver microsomes. These in vitro results suggest that it is necessary to investigate the potentials of in vivo fargesin-drug interaction with CYP2C8, CYP2C9, CYP2C19, and CYP3A4 substrates.
Collapse
Affiliation(s)
- Ju-Hyun Kim
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea.
| | - Soon-Sang Kwon
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea.
| | - Hyeon-Uk Jeong
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea.
| | - Hye Suk Lee
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea.
| |
Collapse
|
7
|
Inhibitory Effects of Aschantin on Cytochrome P450 and Uridine 5'-diphospho-glucuronosyltransferase Enzyme Activities in Human Liver Microsomes. Molecules 2016; 21:molecules21050554. [PMID: 27128896 PMCID: PMC6273138 DOI: 10.3390/molecules21050554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 01/13/2023] Open
Abstract
Aschantin is a bioactive neolignan found in Magnolia flos with antiplasmodial, Ca2+-antagonistic, platelet activating factor-antagonistic, and chemopreventive activities. We investigated its inhibitory effects on the activities of eight major human cytochrome P450 (CYP) and uridine 5′-diphospho-glucuronosyltransferase (UGT) enzymes of human liver microsomes to determine if mechanistic aschantin–enzyme interactions were evident. Aschantin potently inhibited CYP2C8-mediated amodiaquine N-de-ethylation, CYP2C9-mediated diclofenac 4′-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4′-hydroxylation, and CYP3A4-mediated midazolam 1′-hydroxylation, with Ki values of 10.2, 3.7, 5.8, and 12.6 µM, respectively. Aschantin at 100 µM negligibly inhibited CYP1A2-mediated phenacetin O-de-ethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated bupropion hydroxylation, and CYP2D6-mediated bufuralol 1′-hydroxylation. At 200 µM, it weakly inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A6-catalyzed N-acetylserotonin glucuronidation, and UGT1A9-catalyzed mycophenolic acid glucuronidation, with IC50 values of 131.7, 144.1, and 71.0 µM, respectively, but did not show inhibition against UGT1A3, UGT1A4, or UGT2B7 up to 200 µM. These in vitro results indicate that aschantin should be examined in terms of potential interactions with pharmacokinetic drugs in vivo. It exhibited potent mechanism-based inhibition of CYP2C8, CYP2C9, CYP2C19, and CYP3A4.
Collapse
|
8
|
Su YC, Hsu KP, Li SC, Ho CL. Composition, in vitro Cytotoxicity, and Anti-mildew Activities of the Leaf Essential Oil of Machilus thunbergii from Taiwan. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501001153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study investigated the chemical composition, in-vitro cytotoxicity, and anti-mildew fungal activities of the essential oil isolated from the leaf of Machilus thunbergii from Taiwan. The essential oil was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC–FID and GC–MS. Eighty-three compounds were identified, representing 99.8% of the oil. The main components identified were n-decanal (26.6%), β-caryophyllene (15.8%), α-humulene (10.8%), and β-eudesmol (10.5%). The oil exhibited cytotoxic activity against human oral, liver, lung, colon, melanoma, and leukemic cancer cells. The active source compounds were β-caryophyllene, α-humulene, and β-eudesmol. The anti-mildew activity of the leaf oil was also evaluated. Results showed that the leaf oil had excellent anti-mildew activity. For the anti-mildew activity of the leaf oil, the active source compound was determined to be β-eudesmol.
Collapse
Affiliation(s)
- Yu-Chang Su
- Department of Forestry, National Chung Hsing University, 250 Kuo Kuang Rd., Taichung, Taiwan 402
| | - Kuan-Ping Hsu
- Division of Wood Cellulose, Taiwan Forestry Research Institute. 53, Nanhai Rd., Taipei, Taiwan 100
| | - Shu-Ching Li
- Division of Wood Cellulose, Taiwan Forestry Research Institute. 53, Nanhai Rd., Taipei, Taiwan 100
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute. 53, Nanhai Rd., Taipei, Taiwan 100
| |
Collapse
|