1
|
Yon DK, Kim YJ, Park DC, Jung SY, Kim SS, Yeo JH, Lee J, Lee JM, Yeo SG. Induction of Autophagy and Its Role in Peripheral Nerve Regeneration after Peripheral Nerve Injury. Int J Mol Sci 2023; 24:16219. [PMID: 38003409 PMCID: PMC10671617 DOI: 10.3390/ijms242216219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
No matter what treatment is used after nerve transection, a complete cure is impossible, so basic and clinical research is underway to find a cure. As part of this research, autophagy is being investigated for its role in nerve regeneration. Here, we review the existing literature regarding the involvement and significance of autophagy in peripheral nerve injury and regeneration. A comprehensive literature review was conducted to assess the induction and role of autophagy in peripheral nerve injury and subsequent regeneration. Studies were included if they were prospective or retrospective investigations of autophagy and facial or peripheral nerves. Articles not mentioning autophagy or the facial or peripheral nerves, review articles, off-topic articles, and those not written in English were excluded. A total of 14 peripheral nerve studies that met these criteria, including 11 involving sciatic nerves, 2 involving facial nerves, and 1 involving the inferior alveolar nerve, were included in this review. Studies conducted on rats and mice have demonstrated activation of autophagy and expression of related factors in peripheral nerves with or without stimulation of autophagy-inducing factors such as rapamycin, curcumin, three-dimensional melatonin nerve scaffolds, CXCL12, resveratrol, nerve growth factor, lentinan, adipose-derived stem cells and melatonin, basic fibroblast growth factor, and epothilone B. Among the most studied of these factors in relation to degeneration and regeneration of facial and sciatic nerves are LC3II/I, PI3K, mTOR, Beclin-1, ATG3, ATG5, ATG7, ATG9, and ATG12. This analysis indicates that autophagy is involved in the process of nerve regeneration following facial and sciatic nerve damage. Inadequate autophagy induction or failure of autophagy responses can result in regeneration issues after peripheral nerve damage. Animal studies suggest that autophagy plays an important role in peripheral nerve degeneration and regeneration.
Collapse
Affiliation(s)
- Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
- Department of Pediatrics, Kyung Hee University School of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong Choon Park
- Department of Obstetrics and Gynecology, St. Vincent's Hospital, The Catholic University of Korea, Suwon 16247, Republic of Korea
| | - Su Young Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Myongji Hospital, Hanyang University College of Medicine, Goyang 04763, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joon Hyung Yeo
- Public Health Center, Danyang-gun, Seoul 27010, Republic of Korea
| | - Jeongmin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Jae Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea
| |
Collapse
|
2
|
Hu R, Lu M, She L. Integrated analysis of diagnostic, prognostic value and potential drug treatment of GSDME in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2023; 280:4239-4253. [PMID: 37204444 DOI: 10.1007/s00405-023-08022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSC) poses a global health challenge. Effective biomarkers for early detection are necessary to improve the survival rate of HNSC patient. The purpose of this study was using integrated bioinformatic analysis to investigate the potential biological roles of GSDME in HNSC. METHODS The Gene Expression Omnibus (GEO) and Cancer Gnome Atlas (TCGA) databases were used to analyze the expression of GSDME in different cancer types. The correlation between GSDME expression and immune cell infiltration or immune checkpoint genes was examined by Spearman correlation analysis. DNA methylation analysis of the GSDME gene was conducted using the MethSurv database. Kaplan-Meier (K-M) survival curves, diagnostic receiver operating characteristic (ROC) curves, nomogram model, and Cox regression analysis were chosen to evaluate the diagnostic and prognostic predictive value of GSDME. Connectivity Map (Cmap) online platform, Protein Data Bank (PDB) database and Chem3D, AutoDock Tool and PyMol software were used to predict and visualize potential molecular drugs aimed for GSDME. RESULTS GSDME expression level in HNSC was significantly higher than in the controls (p < 0.001). Differentially expressed genes (DEGs) correlation with GSDME were enriched in the GO pathways, such as protein activation cascade, complement activation and classical pathway (p < 0.05). According to GSEA, GSDME-associated differentially expressed genes were significantly enriched in KRAS signaling pathway and cytokine signaling molecule (p < 0.05). There is a significant relation between GSDME expression and immune cell infiltration in HNSC tissues, as well as immune checkpoint genes expression (p < 0.001). DNA methylation status of cg17790129 CpG islands of GSDME gene is correlated with HNSC prognosis (p < 0.05). Based on Cox regression analysis of HNSC patients, GSDME as a potential risk gene has high correlation with overall survival (OS) and disease specific survival (DSS) (p < 0.05). In a ROC curve analysis, HNSC tissues were differentiated from adjacent peritumoral tissues based on GSDME expression levels (AUC = 0.928). Totally six potential drugs targeted for GSDME were screened and the molecular docking tests between GSDME protein and candidate drugs were conducted. CONCLUSIONS GSDME is a promising therapeutic target as well as a potential clinical biomarker in HNSC patients.
Collapse
Affiliation(s)
- Rulong Hu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Mingshui Lu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Li She
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Abstract
Autophagy is a self-digestion process by which misfolded proteins and damaged organelles in eukaryotic cells are degraded to maintain cellular homeostasis. This process is involved in the tumorigenesis, metastasis, and chemoresistance of various tumors such as ovarian cancer (OC). Noncoding RNAs (ncRNAs), mainly including microRNAs, long noncoding RNAs, and circular RNAs, have been extensively investigated in cancer research for their roles in the regulation of autophagy. Recent studies have shown that in OC cells, ncRNAs can modulate the formation of autophagosomes, which affect tumor progression and chemoresistance. An understanding of the role of autophagy in OC progression, treatment, and prognosis is important, and the identification of the regulatory roles of ncRNAs in autophagy leads to intervention strategies for OC therapy. This review summarizes the role of autophagy in OC and discusses the role of ncRNA-mediated autophagy in OC, as an understanding of these roles may contribute to the development of potential therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Cong Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, P.R. China
- Heilongjiang University of Chinese Medicine, Harbin 150040, P.R. China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin 150040, P.R. China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150001, P.R. China
| |
Collapse
|
4
|
Xu J, Elshazly AM, Gewirtz DA. The Cytoprotective, Cytotoxic and Nonprotective Functional Forms of Autophagy Induced by Microtubule Poisons in Tumor Cells—Implications for Autophagy Modulation as a Therapeutic Strategy. Biomedicines 2022; 10:biomedicines10071632. [PMID: 35884937 PMCID: PMC9312878 DOI: 10.3390/biomedicines10071632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Microtubule poisons, as is the case with other antitumor drugs, routinely promote autophagy in tumor cells. However, the nature and function of the autophagy, in terms of whether it is cytoprotective, cytotoxic or nonprotective, cannot be predicted; this likely depends on both the type of drug studied as well as the tumor cell under investigation. In this article, we explore the literature relating to the spectrum of microtubule poisons and the nature of the autophagy induced. We further speculate as to whether autophagy inhibition could be a practical strategy for improving the response to cancer therapy involving these drugs that have microtubule function as a primary target.
Collapse
Affiliation(s)
- Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Ahmed M. Elshazly
- Massey Cancer Center, Department of Pharmacology and Toxicology, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - David A. Gewirtz
- Massey Cancer Center, Department of Pharmacology and Toxicology, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
- Correspondence:
| |
Collapse
|
5
|
Liu Y, Liu X, Wang H, Ding P, Wang C. Agrimonolide inhibits cancer progression and induces ferroptosis and apoptosis by targeting SCD1 in ovarian cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154102. [PMID: 35526323 DOI: 10.1016/j.phymed.2022.154102] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/17/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Ovarian cancer is a gynaecological tumour has high incidence and mortality rates. Agrimonolide, isolated from Agrimonia pilosa Ledeb, has multiple biomedical activities, including anticancer activity. PURPOSE Here, we aimed to reveal the function of agrimonolide on ovarian cancer progression. METHODS MTT assay, colony-formation assay, flow cytometry, transwell assay, scratch test, western immunoblotting, reactive oxygen species (ROS) detection, and ferroptosis analysis were performed to reveal the role and underlying mechanisms of agrimonolide in ovarian cancer cell lines (A2780 and SKOV-3). The effects of agrimonolide on the SKOV-3 xenograft model were also studied. RESULTS Agrimonolide dose-dependently inhibited proliferation, migration, and invasion and promoted apoptosis in A2780 and SKOV-3 cells. Agrimonolide induced ferroptosis in tumour cells, evidenced by the increased levels of ROS, total iron, and Fe2+ and downregulation of ferroptosis indicators (SLC7A11 and GPX4). The SwissTargetPrediction and Comparative Toxicogenomics Database predicted SCD1 as a target protein for agrimonolide. Molecular Operating Environment software docked agrimonolide in the SCD1 protein, and the binding energy of interaction was -8.21 kcal/mol. The effects of agrimonolide on proliferation, invasion, and induction of apoptosis and ferroptosis were attenuated by SCD1 overexpression in A2780 and SKOV-3 cells. Additionally, agrimonolide attenuated the tumour growth of ovarian cancer in the SKOV-3 xenograft model and significantly downregulated SCD1 in tumour tissues. CONCLUSION Our study is the first to suggest that agrimonolide acts as a novel apoptosis- and ferroptosis-inducing agent in ovarian cancer cells by targeting SCD1. Agrimonolide may be a novel therapeutic agent for treating ovarian cancer.
Collapse
Affiliation(s)
- Ying Liu
- Department of Obstetrics and Gynecology, Yantai Zhifu Hospital, Yantai, Shandong, 266000, P.R. China
| | - Xiaobei Liu
- Department of Reproductive Genetics, Taian City Central Hospital, Taian, Shandong, 271000, P.R. China
| | - Hui Wang
- Department of Obstetrics, Taian City Central Hospital, Taian, Shandong, 271000, P.R. China
| | - Pingping Ding
- Department of Gynecology, Affiliated Hospital of Shandong University of traditional Chinese Medicine, Jinan, Shandong, 250011, P.R. China
| | - Changlin Wang
- Department of Gynecology, Taian City Central Hospital, Taian, Shandong, 271000, P.R. China.
| |
Collapse
|
6
|
Gralewska P, Gajek A, Rybaczek D, Marczak A, Rogalska A. The Influence of PARP, ATR, CHK1 Inhibitors on Premature Mitotic Entry and Genomic Instability in High-Grade Serous BRCAMUT and BRCAWT Ovarian Cancer Cells. Cells 2022; 11:cells11121889. [PMID: 35741017 PMCID: PMC9221516 DOI: 10.3390/cells11121889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Olaparib is a poly (ADP-ribose) polymerase inhibitor (PARPi) that inhibits PARP1/2, leading to replication-induced DNA damage that requires homologous recombination repair. Olaparib is often insufficient to treat BRCA-mutated (BRCAMUT) and BRCA wild-type (BRCAWT) high-grade serous ovarian carcinomas (HGSOCs). We examined the short-term (up to 48 h) efficacy of PARPi treatment on a DNA damage response pathway mediated by ATR and CHK1 kinases in BRCAMUT (PEO-1) and BRCAWT (SKOV-3 and OV-90) cells. The combination of ATRi/CHK1i with PARPi was not more cytotoxic than ATR and CHK1 monotherapy. The combination of olaparib with inhibitors of the ATR/CHK1 pathway generated chromosomal abnormalities, independent on BRCAMUT status of cells and formed of micronuclei (MN). However, the beneficial effect of the PARPi:ATRi combination on MN was seen only in the PEO1 BRCAMUT line. Monotherapy with ATR/CHK1 inhibitors reduced BrdU incorporation due to a slower rate of DNA synthesis, which resulted from elevated levels of replication stress, while simultaneous blockade of PARP and ATR caused beneficial effects only in OV-90 cells. Inhibition of ATR/CHK1 increased the formation of double-strand breaks as measured by increased γH2AX expression at collapsed replication forks, resulting in increased levels of apoptosis. Our findings indicate that ATR and CHK1 inhibitors provoke premature mitotic entry, leading to genomic instability and ultimately cell death.
Collapse
Affiliation(s)
- Patrycja Gralewska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| | - Dorota Rybaczek
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
- Correspondence: ; Tel.: +48-42-635-44-77
| |
Collapse
|
7
|
Chen J, Wei Z, Fu K, Duan Y, Zhang M, Li K, Guo T, Yin R. Non-apoptotic cell death in ovarian cancer: Treatment, resistance and prognosis. Biomed Pharmacother 2022; 150:112929. [PMID: 35429741 DOI: 10.1016/j.biopha.2022.112929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is mostly diagnosed at an advanced stage due to the absence of effective screening methods and specific symptoms. Repeated chemotherapy resistance and recurrence before PARPi are used as maintenance therapies, lead to low survival rates and poor prognosis. Apoptotic cell death plays a crucial role in ovarian cancer, which is proved by current researches. With the ongoing development of targeted therapy, non-apoptotic cell death has shown substantial potential in tumor prevention and treatment, including autophagy, ferroptosis, necroptosis, immunogenic cell death, pyroptosis, alkaliptosis, and other modes of cell death. We systematically reviewed the research progress on the role of non-apoptotic cell death in the onset, development, and outcome of ovarian cancer. This review provides a more theoretical basis for exploring therapeutic targets, reversing drug resistance in refractory ovarian cancer, and establishing risk prediction models that help realize the clinical transformation of vital drugs.
Collapse
Affiliation(s)
- Jinghong Chen
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zhichen Wei
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Kaiyu Fu
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yuanqiong Duan
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mengpei Zhang
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Kemin Li
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Tao Guo
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Rutie Yin
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
8
|
Liu WS, Feng YX, Li SN, Shao YJ, Wang K. Prognostic Implications of an Autophagy-related Gene Signature in Pancreatic Ductal Adenocarcinoma. Am J Clin Oncol 2022; 45:95-104. [PMID: 35195559 DOI: 10.1097/coc.0000000000000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is difficult to diagnose and resistant to therapy and has a poor prognosis. Autophagy plays a vital role in PDAC development and progression. This study aimed to establish an autophagy-related gene (ARG) signature to predict the prognosis of patients with PDAC. MATERIALS AND METHODS The expression profiles of PDAC and healthy pancreatic tissues were obtained from The Cancer Genome of Atlas (TCGA) and GTEx (Genotype-Tissue Expression) databases, respectively. Univariate and multivariate Cox regression analyses were performed on differentially expressed ARGs to identify the optimal prognosis-related genes. RESULTS A total of 73 ARGs demonstrated significant differences in expression levels between PDAC and healthy pancreatic tissues. Several pathways that play crucial roles in biological processes were identified via enrichment analyses. Furthermore, an ARG signature was established based on overall survival-related ARGs (CASP4, BAK1, PIK3R4, CASP8, BIRC5, RPTOR, and CAPN1) using least absolute shrinkage and selection operator (LASSO) regression. Cox regression analysis confirmed that the 7-gene signature was an independent prognostic factor for patients with PDAC (P<0.001). In addition, the GSE21501 and GSE28735 datasets were used to validate the predictive value of the prognostic model for PDAC. We also constructed a clinical nomogram with a concordance index of 0.712 to predict the overall survival of patients by integrating clinical characteristics and the ARG signature. Calibration curves substantiated fine concordance between nomogram prediction and actual observation. CONCLUSION We constructed a new ARG-related prognostic model, which can be a prognostic biomarker and offers insights into identifying potential therapeutic targets for PDAC.
Collapse
Affiliation(s)
- Wei-Shuai Liu
- Departments of Pain Management
- Key Laboratory of Cancer Prevention and Therapy
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Yi-Xing Feng
- Ultrasound
- Key Laboratory of Cancer Prevention and Therapy
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Sheng-Nan Li
- Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer
- Key Laboratory of Cancer Prevention and Therapy
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Yue-Juan Shao
- Departments of Pain Management
- Key Laboratory of Cancer Prevention and Therapy
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| | - Kun Wang
- Departments of Pain Management
- Key Laboratory of Cancer Prevention and Therapy
- Tianjin's Clinical Research Center for Cancer, Tianjin, P.R. China
| |
Collapse
|
9
|
Luján AP, Bhat MF, Saravanan T, Poelarends GJ. Chemo‐ and Enantioselective Photoenzymatic Ketone Reductions Using a Promiscuous Flavin‐dependent Nitroreductase. ChemCatChem 2022. [DOI: 10.1002/cctc.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alejandro Prats Luján
- University of Groningen: Rijksuniversiteit Groningen Chemical and Pharmaceutical Biology NETHERLANDS
| | - Mohammad Faizan Bhat
- University of Groningen: Rijksuniversiteit Groningen Chemical and Pharmaceutical Biology NETHERLANDS
| | - Thangavelu Saravanan
- University of Groningen: Rijksuniversiteit Groningen Chemical and Pharmaceutical Biology NETHERLANDS
| | - Gerrit J. Poelarends
- University of Groningen Chemical and Pharmaceutical Biology Antonius Deusinglaan 1 9713 AV Groningen NETHERLANDS
| |
Collapse
|
10
|
Metformin Affects Olaparib Sensitivity through Induction of Apoptosis in Epithelial Ovarian Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms221910557. [PMID: 34638899 PMCID: PMC8508816 DOI: 10.3390/ijms221910557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
This study examined the effect of combination treatment with the poly (ADP-ribose) polymerase inhibitor olaparib and metformin on homologous recombination (HR)-proficient epithelial ovarian cancer (EOC). Ovarian cancer cell lines (OV-90 and SKOV-3) were treated with olaparib, metformin, or a combination of both. Cell viability was assessed by MTT and colony formation assays. The production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential were examined using the specific fluorescence probes, DCFH2-DA (2′,7′-dichloro-dihydrofluorescein diacetate) and JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine). Apoptotic and necrotic changes were measured by double staining with Hoechst 33258 and propidium iodide, orange acridine and ethidium bromide staining, phosphatidylserine externalization, TUNEL assay, caspase 3/7 activity, and cytochrome c and p53 expression. Compared with single-drug treatment, the combination of olaparib and metformin significantly inhibited cell proliferation and colony formation in HR-proficient ovarian cancer cells. ROS production preceded a decrease in mitochondrial membrane potential. The changes in ROS levels suggested their involvement in inducing apoptosis in response to combination treatment. The present results indicate a shift towards synergism in cells with mutant or null p53, treated with olaparib combined with metformin, providing a new approach to the treatment of gynecologic cancers. Taken together, the results support the use of metformin to sensitize EOC to olaparib therapy.
Collapse
|
11
|
Ferroptosis-Related Gene Signature Promotes Ovarian Cancer by Influencing Immune Infiltration and Invasion. JOURNAL OF ONCOLOGY 2021; 2021:9915312. [PMID: 34135962 PMCID: PMC8175133 DOI: 10.1155/2021/9915312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is a kind of gynecological malignancy with high mortality. Ferroptosis is a new type of iron-dependent cell death characterized by the formation of lipid peroxides and excessive accumulation of reactive oxygen species. Studies have shown that ferroptosis modulates tumor genesis, progression, and invasion, including ovarian cancer. Based on the mRNA expression data from TCGA, we construct a scoring system using consensus clustering analysis, univariate Cox regression analysis, and least absolute selection operator. Then, we systematically evaluate the relationship between score and clinical characteristics of ovarian cancer. The result from the prediction of biofunction pathways shows that score serves as an independent prognostic marker for ovarian cancer and affects tumor progression by modulating tumor metastasis. Moreover, immunocytes such as activated CD4 T cell, activated CD8 T cell, regulatory T cells, macrophage, and stromal cells, including adipocytes, epithelial cells, and fibroblast infiltrate more in the tumor microenvironment in a high-score group, indicating ferroptosis can also affect tumor immune landscape. Critically, four potentially sensitive drugs, including staurosporine, epothilone B, DMOG, and HG6-64-1 based on the scores, are predicted, and DMOG is recognized as a novel targeted drug for ovarian cancer. In general, we construct the scoring system based on ferroptosis-related genes that can predict the prognosis of ovarian cancer patients and propose that ferroptosis may affect ovarian cancer progression by mediating tumor metastasis and immune landscape. Novel drugs to target ovarian cancer are also predicted.
Collapse
|
12
|
Škubník J, Jurášek M, Ruml T, Rimpelová S. Mitotic Poisons in Research and Medicine. Molecules 2020; 25:E4632. [PMID: 33053667 PMCID: PMC7587177 DOI: 10.3390/molecules25204632] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the greatest challenges of the modern medicine. Although much effort has been made in the development of novel cancer therapeutics, it still remains one of the most common causes of human death in the world, mainly in low and middle-income countries. According to the World Health Organization (WHO), cancer treatment services are not available in more then 70% of low-income countries (90% of high-income countries have them available), and also approximately 70% of cancer deaths are reported in low-income countries. Various approaches on how to combat cancer diseases have since been described, targeting cell division being among them. The so-called mitotic poisons are one of the cornerstones in cancer therapies. The idea that cancer cells usually divide almost uncontrolled and far more rapidly than normal cells have led us to think about such compounds that would take advantage of this difference and target the division of such cells. Many groups of such compounds with different modes of action have been reported so far. In this review article, the main approaches on how to target cancer cell mitosis are described, involving microtubule inhibition, targeting aurora and polo-like kinases and kinesins inhibition. The main representatives of all groups of compounds are discussed and attention has also been paid to the presence and future of the clinical use of these compounds as well as their novel derivatives, reviewing the finished and ongoing clinical trials.
Collapse
Affiliation(s)
- Jan Škubník
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic;
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 3, 166 28, Prague 6, Czech Republic; (J.Š.); (T.R.)
| |
Collapse
|
13
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Modulatory effects of statins on the autophagy: A therapeutic perspective. J Cell Physiol 2019; 235:3157-3168. [DOI: 10.1002/jcp.29227] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine University of Tabriz Tabriz Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine University of Tabriz Tabriz Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center Birjand University of Medical Sciences Birjand Iran
| | - Saeed Samarghandian
- Department of Basic Medical Science Neyshabur University of Medical Sciences Neyshabur Iran
| |
Collapse
|